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Abstract 30 

Social interactions present opportunities for both information and infection to spread through 31 

populations. Social learning is often proposed as a key benefit of sociality, while disease epidemics 32 

are proposed as a major cost. Multiple empirical and theoretical studies have demonstrated the 33 

importance of social structure for either information or infectious disease, but rarely in combination. 34 

We provide an overview of relevant empirical studies, discuss differences in the transmission 35 

processes of infection and information, and review how these processes have been modelled. 36 

Finally, we highlight ways in which animal social network structure and dynamics might mediate the 37 

trade-off between the sharing of information and infection. We reveal how modular social network 38 

structures can promote the spread of information and mitigate against the spread of infection 39 

relative to other network structures. We discuss how the maintenance of long-term social bonds, 40 

clustering of social contacts in time, and adaptive plasticity in behavioural interactions, all play 41 

important roles in influencing the transmission of information and infection. We provide novel 42 

hypotheses and suggest new directions for research that quantifies the transmission of information 43 

and infection simultaneously across different network structures to help tease apart their influence 44 

on the evolution of social behaviour. 45 

Key words: social network, epidemic, social learning, social evolution, group-living, dynamic 46 

network 47 
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Introduction 49 

The diversity of social systems in animals is shaped by differences among populations in the 50 

costs and benefits of different types of social interaction (Krause and Ruxton 2002). The sharing of 51 

information provides one key benefit that improves fitness of more sociable individuals (Dall, 52 

Giraldeau, Olsson, McNamara and Stephens 2005, Danchin, Giraldeau, Valone and Wagner 2004), 53 

while the risk of acquiring infectious disease represents an important cost of sociality (Ezenwa, Ghai, 54 

McKay and Williams 2016, Ezenwa and Worsley-Tonks 2018, Krause and Ruxton 2002). An important 55 

challenge in evolutionary ecology is to identify whether, and how, natural selection might favour 56 

social structures that can simultaneously optimise information-sharing and reduce the spread of 57 

infection in social species. The solution to this evolutionary problem will depend on the differences 58 

in transmission dynamics between information and infection. 59 

Social network analyses and modelling are increasingly used to study animal social 60 

behaviour, and these approaches have greatly benefitted research into disease and information 61 

transmission in wild animals. Interactions with more individuals result in increased opportunities for 62 

infectious disease spread, while simultaneously making it possible for information to proliferate 63 

within a group or population (Wey, Blumstein, Shen and Jordán 2008, White, Forester and Craft 64 

2017). However, studying the trade-off between efficient information transmission and rapid spread 65 

of disease is challenging due to the difficulty of combining data that reveal infection status, and data 66 

that indicate information transmission. Consequently, while studies have examined how social 67 

relationships impact the transmission of either infection or information separately, there has been 68 

little consideration of the interplay between information and infection spread within animal social 69 

networks. 70 

 Here we synthesise knowledge on the role of social networks in transmission of information 71 

and infectious disease and develop hypotheses regarding how animal social systems may be adapted 72 

to reconcile the trade-off between acquiring information and contracting disease. We briefly review 73 
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studies examining the transmission of infectious disease and information in animal social networks. 74 

We then highlight potential differences between the transmission processes of information and 75 

infection that will mediate this trade-off. Finally, we discuss how social relationships may be adapted 76 

to optimise both types of transmission, integrating insights from the network modelling literature 77 

and through empirical work in natural populations. Throughout we emphasise new avenues of study 78 

into the flow of disease and information through animal social networks to promote a better 79 

understanding of how these two important ecological processes affect each other. 80 

 81 

Infectious disease transmission in animal social networks 82 

The transmission of parasites and pathogens that cause infectious disease can happen 83 

directly via specific types of behavioural interaction or indirectly via the environment (e.g. an 84 

individual using a refuge that has been contaminated by an infectious individual) (White, Forester 85 

and Craft 2017). Many infections are endemic, persisting stably within a host population for a long 86 

period of time (Viana, Mancy, Biek, Cleaveland, Cross, Lloyd-Smith and Haydon 2014). Others are 87 

emergent, acquired either from a long-term environmental reservoir or spilling over from alternative 88 

host species (Daszak, Cunningham and Hyatt 2000). Networks of spatial associations and behavioural 89 

interactions are now known to be closely associated with infectious disease epidemiology in wild 90 

animal populations (e.g VanderWaal, Atwill, Isbell and McCowan 2014, Weber, Carter, Dall, Delahay, 91 

McDonald, Bearhop and McDonald 2013). Overall network structure is critical in determining how 92 

infectious disease spreads through populations. For example, the presence of distinct social 93 

communities can limit the spread of infection in animal groups or populations (Griffin and Nunn 94 

2012, Sah, Leu, Cross, Hudson and Bansal 2017). Social network analysis can also help identify 95 

potential routes of transmission (Silk, Croft, Delahay, Hodgson, Boots, Weber and McDonald 2017, 96 

White, Forester and Craft 2017), determines individual variation in transmission potential 97 

(VanderWaal and Ezenwa 2016) and predicts or explains how infection spreads through populations 98 



 5 

(Craft 2015, Silk, Croft, Delahay, Hodgson, Weber, Boots and McDonald 2017). Network analyses 99 

have also revealed associations between individual phenotypes, infection and network position. For 100 

example, European badgers Meles meles that test positive for bovine tuberculosis tend to have 101 

fewer connections to their own social group and more social connections with neighbouring groups 102 

(Weber, Carter, Dall, Delahay, McDonald, Bearhop and McDonald 2013), and male-biased infection is 103 

associated with sex-differences in social network position (Silk, Weber, Steward, Hodgson, Boots, 104 

Croft, Delahay and McDonald 2018).  105 

Fine-scale social networks can be used to identify if and how different types of social 106 

interaction generate transmission opportunities. The most important type of contact for 107 

transmission may vary among systems: in some species direct social contacts may be more 108 

important than shared space use (Blyton, Banks, Peakall, Lindenmayer and Gordon 2014, 109 

VanderWaal, Atwill, Isbell and McCowan 2014). More recently, the importance of cryptic contacts 110 

has been revealed in a mixed-species community of bats, with social networks based solely on the 111 

sharing of, or physical contact at, roosts not sufficient to capture fungal pathogen transmission 112 

dynamics (Hoyt, Langwig, White, Kaarakka, Redell, Kurta, DePue, Scullon, Parise, Foster, Frick and 113 

Kilpatrick 2018). Together these studies reveal that using social networks in disease ecology might 114 

help to identify potential transmission routes, but might be uninformative and potentially misleading 115 

if the types of social interactions modelled are not those that facilitate disease spread.  116 

Infection may lead to temporal changes to network structure by changing patterns of social 117 

behaviour (Ezenwa, Archie, Craft, Hawley, Martin, Moore and White 2016). Pathogens and parasites 118 

often manipulate the host’s social behaviour to facilitate further transmission (e.g. Berdoy, Webster 119 

and Macdonald 2000, Loot, Brosse, Lek and Guégan 2001, Randall, Marino, Haydon, Sillero-Zubiri, 120 

Knobel, Tallents, Macdonald and Laurenson 2006),while the social behaviour of the infected host 121 

and/or the individuals that interact with it might change to prevent spread, resulting in co-dynamics 122 

between disease spread and network structure (Silk, Croft, Delahay, Hodgson, Boots, Weber and 123 

McDonald 2017). In guppies Poecilia reticulata for example, infected individual are avoided by 124 
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uninfected fish, making sick individuals less well connected and causing the networks to become less 125 

clustered overall (Croft, Edenbrow, Darden, Ramnarine, van Oosterhout and Cable 2011). At a 126 

network-level these behaviour-infection co-dynamics can have a protective effect. In ants, for 127 

example, social networks of infected colonies become more modular and assortative, resulting in 128 

them becoming less efficient in terms of information transmission capacity but more effective at 129 

limiting the spread of infection (Stroeymeyt, Grasse, Crespi, Mersch, Cremer and Keller 2018). It is 130 

clear then that variation in connectivity among individuals, the resultant network structure, and 131 

changes in network dynamics following infection, all have important implications for the emergence, 132 

spread and persistence of wildlife disease. 133 

 134 

Information transmission in animal social networks 135 

Information can be acquired by sampling the environment (personal information; Dall, 136 

Giraldeau, Olsson, McNamara and Stephens 2005) or by observing or interacting with other 137 

individuals or their products (social information; Dall, Giraldeau, Olsson, McNamara and Stephens 138 

2005, Danchin, Giraldeau, Valone and Wagner 2004). Individuals can spread social information 139 

inadvertently or can choose to deliberately transmit information via signals. A receiver must then 140 

decide whether to act on this information or not (Dall, Giraldeau, Olsson, McNamara and Stephens 141 

2005, Schmidt, Dall and Van Gils 2010). The transfer of social information usually requires sensory 142 

contact between individuals and is therefore linked directly to spatial association and/or behavioural 143 

interactions. Consequently, as with infectious disease transmission, an individual’s social network 144 

position causes variation in the probability and rate of  receipt of information, and their contribution 145 

to the speed and quality of information transmission through a population (Lusseau 2003, Lusseau 146 

and Newman 2004, Modlmeier, Keiser, Watters, Sih and Pruitt 2014). Depending on the duration 147 

information is useful, an individual’s network position will strongly influence how they can utilise this 148 

information. For example, information such as the discovery of a resource location (Aplin, Farine, 149 
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Morand-Ferron and Sheldon 2012, Blonder and Dornhaus 2011, Webster, Atton, Hoppitt and Laland 150 

2013) may only be accurate for a short time if a resource is ephemeral or is rapidly depleted. A 151 

central network position or high level of connectivity to the individual who initially discovers such 152 

resources will be highly beneficial to potential recipients, as demonstrated in several studies of the 153 

influence of network position on food patch discovery in flocks of songbirds (Aplin, Farine, Morand-154 

Ferron and Sheldon 2012, Farine, Aplin, Sheldon and Hoppitt 2015, Jones, Aplin, Devost and 155 

Morand-Ferron 2017, Tóth, Tuliozi, Baldan, Hoi and Griggio 2017). Therefore, when information-156 

gathering is beneficial, group members may be attracted to individuals who regularly provide 157 

information, changing their position in the social network. In ring tailed lemurs Lemur catta, for 158 

example, this led to informed individuals occupying more central network positions (Kulahci, 159 

Ghazanfar and Rubenstein 2018).  160 

Social associations are also linked to the spread, through social learning, of behavioural 161 

innovations which can arise via trial and error learning (Allen, Weinrich, Hoppitt and Rendell 2013, 162 

Aplin, Farine, Morand-Ferron, Cockburn, Thornton and Sheldon 2014). Such innovations range from 163 

simply adopting a new foraging ground (Schakner, Petelle, Tennis, Leeuw, Stansell and Blumstein 164 

2017) to tool use (Coelho, Falótico, Izar, Mannu, Resende, Siqueira and Ottoni 2015, Hobaiter, 165 

Poisot, Zuberbühler, Hoppitt and Gruber 2014, Mann, Stanton, Patterson, Bienenstock and Singh 166 

2012, St Clair, Burns, Bettaney, Morrissey, Otis, Ryder, Fleischer, James and Rutz 2015) or novel 167 

foraging techniques (Aplin, Farine, Morand-Ferron, Cockburn, Thornton and Sheldon 2014, Boogert, 168 

Nightingale, Hoppitt and Laland 2014, Kendal, Custance, Kendal, Vale, Stoinski, Rakotomalala and 169 

Rasamimanana 2010). Innovations of long-term value can be transmitted to subsequent generations 170 

(Aplin, Farine, Morand-Ferron, Cockburn, Thornton and Sheldon 2014, Cantor and Whitehead) and 171 

impact long-term social structure, provided individuals alter their social interactions to maximise 172 

their chances of acquiring information (Coelho, Falótico, Izar, Mannu, Resende, Siqueira and Ottoni 173 

2015, Kulahci, Ghazanfar and Rubenstein 2018). One possible outcome is that long-term, 174 

preferential associations with individuals who adopt the same behaviours (Mann, Stanton, 175 
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Patterson, Bienenstock and Singh 2012) will homogenise behavioural repertoires in any given group 176 

and can establish “animal cultures”  (Allen, Weinrich, Hoppitt and Rendell 2013, Aplin, Farine, 177 

Morand-Ferron, Cockburn, Thornton and Sheldon 2014, Krützen, Mann, Heithaus, Connor, Bejder 178 

and Sherwin 2005). For example, bottlenose dolphins Tursiops spp. using marine sponges as tools 179 

during foraging have been shown to preferentially associate with other tool users (Krützen, Mann, 180 

Heithaus, Connor, Bejder and Sherwin 2005, Mann, Stanton, Patterson, Bienenstock and Singh 181 

2012). This behavioural homogenisation may, depending on initial network structure, increase 182 

connectedness which can lead to the structure of networks becoming more random. Alternatively, if 183 

networks are already divided into distinct social communities, these groups might become 184 

increasingly isolated from each other (Cantor and Whitehead 2013, Morgan and Laland 2012). 185 

Generally, the transmission of social information is considered to benefit the recipient 186 

individuals. However, there is potential for information transmitted to be outdated, poor, corrupted 187 

or misleading (Klein, Vogt, Unrein and Reineke 2018, Koops 2004, Preece and Beekman 2014, 188 

Schmidt, Dall and Van Gils 2010). While such information might simply result in wasted time and 189 

energy (Dall, Giraldeau, Olsson, McNamara and Stephens 2005, Giraldeau, Valone and Templeton 190 

2002, Preece and Beekman 2014), more severe costs are possible depending on the value of 191 

accurate information (Koops 2004, Nocera, Forbes and Giraldeau 2005, Rieucau and Giraldeau 192 

2011). For example, inexperienced bobolinks Dolichonyx oryzivorus relying on social information to 193 

make breeding habitat choices were found to settle in and defend sub-optimal territories in 194 

response to misleading information (Nocera, Forbes and Giraldeau 2005).  The spread of 195 

misinformation through a network could have impacts on fitness that resemble the spread of 196 

infectious disease (Laland and Williams 1998). When learning how to solve problems, individuals 197 

commonly show strong preference for the first solution to which they are exposed ( birds: Aplin, 198 

Farine, Morand-Ferron, Cockburn, Thornton and Sheldon 2014, e.g. fish: Laland and Williams 1998). 199 

In competitive situations, recipients of suboptimal information might lose out to better informed 200 

individuals or successful innovators. While the spread of misinformation has not yet been the 201 
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subject of empirical study using network techniques, there is strong potential for it to be important 202 

in nature. Similar to infectious disease, misinformation may be more likely to spread through a 203 

population if an individual transmitting misinformation is highly central to the social network, as 204 

information from these individuals may be more likely to be utilised by others, and their central 205 

position provides more transmission opportunities (Pruitt, Wright, Keiser, DeMarco, Grobis and 206 

Pinter-Wollman 2016). 207 

 208 

Differences between information and disease transmission 209 

We have illustrated the importance of an individual’s social connections both in their access 210 

to and sharing of information, and in their exposure to and onward transmission of infectious 211 

disease. This suggests that animal societies might suffer a direct trade-off between the transmission 212 

of information and infectious disease. However, there are important general (though not universal) 213 

distinctions between the two transmission processes (Table 1).  214 

  215 
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Table 1: Summary of the general key differences in mechanisms and consequences of information 216 

and infectious disease transmission.  217 

 Infection Information 

Transmitter decisions 

Individuals inadvertently infect 
others (though parasites might 
change host behaviour to 
facilitate infection). 

Individuals can inadvertently inform 
others (e.g. through 
cues/eavesdropping) or choose to 
deliberately inform others (e.g. 
signals).  

Receiver decisions 
Recipients of infection cannot 
choose whether they become 
infected or not. 

Individuals decide whether to alter 
their behaviour based on the 
information received. 

Number of transmitters 

The probability of infection 
depends directly on the absolute 
magnitude of exposure. The 
number of simultaneously 
infected associates does not 
affect per contact likelihood of 
infection. 

The probability of accepting 
information can depend on the 
relative magnitude of exposure to 
transmitters and non-transmitters. 
The proportion and phenotypic 
traits of associates transmitting 
information can influence if an 
individual uses information received 
(social learning strategies). 

Social relationships 
Prior social relationships have no 
effect on the per-contact 
likelihood of infection. 

Prior social relationships can 
influence whether an individual 
adopts information received. 

Transmission vectors 

Infection spreads mainly through 
direct physical contact or close 
proximity, or via shared use of 
environmental reservoirs. 

Information spread does not tend to 
require physical contact and can 
potentially occur via long range 
sensory interactions. 

Selection 
Selection acts on both the host 
and the pathogens they 
transmit. 

Selection acts on the information 
transmitter and receiver, but only 
indirectly on the information being 
transmitted. 

Behavioural changes 

Infected individuals are often 
avoided by group members, and 
become less well-connected in 
the social network. Infections 
might manipulate host 
behaviour to increase 
probabilities of onward 
transmission. 

Informed individuals can be 
desirable to associate with, and 
become better connected in the 
social network. 

 218 

Most importantly, information transmission will typically involve choice, sometimes for a 219 

transmitter, who can choose when to transmit information and to whom, and always for the 220 

receiver, who chooses whether to alter their behaviour based on the information. Choice by the 221 

receiver means that the social transmission of information does not necessarily depend on a simple 222 
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probability of transmission associated with each interaction (Bakshy, Karrer and Adamic 2009, 223 

Jackson and López-Pintado 2013). Individuals may require multiple exposures to a transmitter, or 224 

require a certain proportion of social connections to be transmitting before choosing to utilise a 225 

piece of information (Bakshy, Karrer and Adamic 2009, Jackson and López-Pintado 2013). For 226 

example, chimpanzees were more likely to acquire a behaviour if it was demonstrated by three 227 

different individuals than when it was demonstrated three times by a single individual (Haun, Rekers 228 

and Tomasello (2012). Evidence for such social conformity, where naïve individuals disproportionally 229 

copy the behaviour demonstrated by the majority of conspecifics, has also been reported for mate-230 

choice copying in fruit flies (Nöbel et al 2018) and great tits solving puzzle boxes in the wild (Aplin et 231 

al 2015). This information transmission process differs from disease transmission where a) the risk of 232 

acquiring infection rises monotonically with the duration and/or number of contacts with infected 233 

individuals, and b) having multiple infected social connections presents more opportunities for 234 

contact with infected individuals, but does not alter the per-interaction probability of infection. 235 

Therefore, in species showing conformist social learning strategies, the acceptance of information 236 

depends on the relative magnitude of exposure to transmitters and non-transmitters of information 237 

in a frequency-dependent manner, and similar non-linear changes in the likelihood of transmission 238 

can also occur for other social learning strategies.  239 

Another key difference between information and infection is the effect that prior social 240 

associations can have on the likelihood of transmission. The current and previous social relationships 241 

of an individual can directly impact the probability of using information acquired through a particular 242 

social interaction. This phenomenon was first coined “directed social learning” (Coussi-Korbel and 243 

Fragaszy 1995) and later described as one of many potential “social learning strategies”(Laland 244 

2004). Some of the clearest evidence of such a “Whom to learn from” social learning strategy comes 245 

from the importance of familiarity for the rate of social learning in many species (e.g. Kavaliers, 246 

Colwell and Choleris 2005, Swaney, Kendal, Capon, Brown and Laland 2001). Information from a 247 

familiar individual may result in an immediate change in behaviour, whereas an animal may require 248 
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more exposures to a piece of information if the source is unfamiliar. Transmitter familiarity is one of 249 

several relationship traits that might influence the decision to use a piece of information, with traits 250 

such as relatedness or social rank also potentially important (Boogert, Lachlan, Spencer, Templeton 251 

and Farine 2018, Evans, Jones and Morand-Ferron 2018, Farine, Spencer and Boogert 2015, 252 

Kavaliers, Colwell and Choleris 2005, Radford 2004, Valsecchi, Choleris, Moles, Guo and Mainardi 253 

1996). Relationship traits can also interact with the phenotype of the transmitter, such as their 254 

experience (McComb, Moss, Durant, Baker and Sayialel 2001) or obvious fitness cues (Toth and 255 

Griggio 2011), to shape the likelihood of information being used. Similarly, it is possible for prior 256 

social relationships with other group members to have a profound effect on the health of individuals 257 

in social species (Sapolsky 2005), and the social buffering hypothesis (Ezenwa, Ghai, McKay and 258 

Williams 2016) proposes that positive social relationships can increase resistance to, and tolerance 259 

of, infection in group-living species (e.g. Almberg, Cross, Dobson, Smith, Metz, Stahler and Hudson 260 

2015, Balasubramaniam, Beisner, Vandeleest, Atwill and McCowan 2016, Ezenwa and Worsley-Tonks 261 

2018, Scharf, Modlmeier, Beros and Foitzik 2012, Walker and Hughes 2009). However, unlike the 262 

spread of information, this is a general effect and specific prior relationships with infected 263 

individuals do not influence the transmission process in the same way that prior relationships with 264 

informed individuals do.  265 

Another important consideration is how information and infection are transmitted. Social 266 

information can be transmitted in multiple ways (Blanchet, Clobert and Danchin 2010, Danchin, 267 

Giraldeau, Valone and Wagner 2004), which may require prolonged or close interactions (e.g. the 268 

waggle dance in bees; Von Frisch 1967), may be possible with much looser associations (e.g, auditory 269 

cues; Hollen and Radford 2009), or may be transmitted indirectly via environmental signals or cues 270 

(e.g, scent marking: Gosling and Roberts 2001). Conversely, infectious disease is likely to be 271 

transmitted through a different set of interactions, such as prolonged close contact that facilitates 272 

aerosol transmission (Delahay, Cheeseman and Clifton-Hadley 2001) ; shared use of environmental 273 

reservoirs of pathogens (Godfrey, Bull, James and Murray 2009); aggressive interactions or mating 274 



 13 

(Hamilton, Jones, Cameron, McCallum, Storfer, Hohenlohe and Hamede 2019) . The extent of the 275 

overlap in the types of social interaction that expose individuals to either information or infection 276 

will be important in determining the costs and benefits of being central in different types of social 277 

network. 278 

 A final important distinction between information and infectious disease transmission is 279 

that the former is the subject of selection only on the host population, while the latter depends on 280 

selection on both the host and the parasite being transmitted. For example, individuals that acquire 281 

novel social information may develop new social associations and become more central within a 282 

social network (Kulahci, Ghazanfar and Rubenstein 2018), which may benefit both themselves and 283 

other group members, especially in highly related groups. This is in direct contrast to transmission of 284 

infection, where group members would be expected to avoid contact with infected individuals 285 

(Croft, Edenbrow, Darden, Ramnarine, van Oosterhout and Cable 2011, Stephenson, Perkins and 286 

Cable 2018), which can lead uninfected individuals to become more central as a result of infectious 287 

disease spread (Shaw and Schwartz 2008). A key component of this difference between infection 288 

and information is that there is often antagonistic selection on sickness behaviours between hosts 289 

and their parasites, whereby hosts will be selected to behave to avoid infecting (related) group 290 

members (Croft, Edenbrow, Darden, Ramnarine, van Oosterhout and Cable 2011, Lopes, Block and 291 

König 2016), while pathogens will be selected to cause host behaviours that maximise transmission 292 

(e.g. furious behaviour in rabid canines; Randall, Marino, Haydon, Sillero-Zubiri, Knobel, Tallents, 293 

Macdonald and Laurenson 2006) 294 

 295 

   The outcome of these differences between the transmission of infection and information is 296 

that while infection can be considered a simple contagion process, the spread of information is 297 

increasingly considered a complex contagion (Centola 2010, Macy 1991) affected by many of the 298 

social learning rules described above. Consequently, the spread of infectious disease has normally 299 

been modelled as a simple contagion using cascade models (Moore and Newman 2000), in which the 300 
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probability of infection increases with increasing absolute exposure to infected individuals. In 301 

contrast, the transmission of information could be either a simple or complex contagion depending 302 

on the social learning rules used by individuals. As a result, the spread of information has been 303 

modelled using a variety of dose-response models, including simple cascades,  threshold models 304 

(Kempe, Kleinberg and Tardos 2003), and hybrid cascade-threshold models (de Kerchove, Krings, 305 

Lambiotte, Van Dooren and Blondel 2009) models (Fig. 1). The precise nature of the threshold, and 306 

whether it is a true threshold (deterministic), a stochastic transmission process with a threshold or a 307 

continuous dose-response curve, will depend on the social learning rules used. The measure of 308 

exposure used in these models might be relative exposure (conformist social learning in response to 309 

the prevalence of information among social contacts), absolute exposure (social learning in response 310 

to a minimum number of neighbours behaving in a particular way) or based on temporal rules (e.g. 311 

learning in response to a threshold number of interactions with informed individuals in a given time 312 

period). Variation in the status of informed individuals or their relationships to the focal individual 313 

could be key mechanisms which push the transmission process even further away from simple 314 

contagion. 315 

 316 

Using models to capture the differences between 317 

information and disease transmission 318 

The similarities and differences between information and disease transmission can be 319 

captured using dynamic computational modelling tools (Fig. 1), such as compartmental models. 320 

Compartmental models consider the transition of individuals between states, with individuals in 321 

each state assumed to have the same characteristics (Stattner and Vidot 2011). For example, a 322 

susceptible-infected-recovered (SIR) model (used commonly in epidemiology) contains three states: 323 

susceptible (or naïve) individuals; infected with a parasite (or exposed to and exploiting the 324 
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information); and recovered individuals who are now immune to that infection (or who no longer 325 

use the information to inform their behaviour). When applied to transmission through networks, 326 

compartmental models are typically applied as stochastic individual-based models, in which the 327 

transition of each individual between compartments is modelled separately and depends on the 328 

properties of their network connections. Such models are usually impossible to solve analytically 329 

(Craft 2015). These models avoid the assumption that populations mix freely, and hence that any 330 

individual will be able to infect any other individual in a population. General compartmental models 331 

applied to networks can be used to study infectious disease transmission, information flow, or both 332 

simultaneously (See supplementary table 1 for examples of simple compartmental models that can 333 

be applied to both information and disease and those more suitable for detailed models of particular 334 

transmission types).  335 

Cascade, threshold and hybrid compartmental models can all be adapted to capture system-336 

specific nuances regarding the importance of transmitter identity, social history, and behaviours that 337 

change in response to exposure (Fig. 1). Cascade models are typically implemented as stochastic 338 

models, with each additional unit of social interaction associated with a linear increase in the risk of 339 

infection (Fig. 1a). True threshold models are deterministic with individuals moving between states 340 

following fixed rules that are determined by the states of their neighbours, and can be used to 341 

model strictly conformist social learning, for example. Hybrid models can be used to mix properties 342 

of either model, for example by introducing stochasticity to the threshold model or incorporating 343 

continuous dose-response curves. For example, the latter might be applicable to studying imperfect 344 

conformist social learning where changes in state are governed by the states of neighbouring 345 

individuals according to a sigmoidal function rather than a strict threshold (e.g. Fig. 1c). 346 
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 347 

Figure 1. a) Example of a cascade model of simple contagion acting on an unweighted network (all individuals have an 348 
association strength of either 1 or 0) of 16 individuals over four time steps. Grey lines represent social associations, red 349 
nodes represent infected/informed individuals while yellow nodes represent individuals who will become 350 
infected/informed in the next time step. In this cascade model an infected/informed individual infects/informs each 351 
uninfected neighbour with a probability of 0.5 per time step. Solid red lines indicate an infected/informed node 352 
successfully infecting/informing a neighbour, while a dashed line represents a failure. If successful, the neighbour will 353 
become infected/informed in the next time step. b) A conformist transmission model (here a true threshold model, but a 354 
stochastic implementation would produce similar results) acting on the same network as a). Individuals become 355 
infected/informed when 50% of their neighbours are infected/informed. In this simulation, spread stalls at timestep 4 as 356 
there are not enough infected/informed individuals to result in transmission. c) Comparison between simple and 357 
conformist contagion models in a random network of 100 individuals, showing the percentage of the population infected 358 
over 200 arbitrary time-steps. For the simple contagion model there is a probability of 0.8% chance per time-step that 359 
infection is transmitted through an edge between an infected and susceptible individual. In the conformist model a sigmoid 360 
curve is fitted to the likelihood of an individual exploiting information with a baseline (asocial) individual learning rate of 361 
0.2% per time-step, a maximum probability of learning of 30% per time-step and the threshold (pivot point of the sigmoid 362 
function) occurring at 50% of connected individuals providing information. Full R code for the model is provided in the 363 
Supplementary information. 364 

 Social structure and the infection-information trade-off 365 

In the following sections, we highlight ways in which animal social networks might reflect 366 

the outcome of selection acting on individuals to maximise their acquisition of beneficial information 367 

and minimise their risk of being infected by parasites or pathogens. Specifically, we focus on the role 368 
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of structural heterogeneity in social networks, temporal heterogeneity in interactions, responsive 369 

changes in social interactions and the role of different types of interaction. We integrate the extent 370 

of our current knowledge of animal social systems with insights from compartmental network 371 

models (SI table 1) applied to theoretical and data-driven network structures in other disciplines. 372 

 373 

Structural heterogeneity and transmission in animals 374 

The structure of contact networks is integral to transmission dynamics for cascade models 375 

(Moore and Newman 2000, Newman 2002) and threshold models (Alkemade and Castaldi 2005, 376 

Hodas and Lerman 2014). We focus on three aspects of social network structure that have received 377 

considerable research interest and have clear applications to the study of animal societies: i) 378 

variation in connectivity among individuals causing networks to possess heterogeneous degree 379 

distributions (the extreme case being networks with scale-free properties), ii) modular structure that 380 

is characterised by densely connected regions (called communities) with rather few connections 381 

between these communities, and iii) small-world structure, which is best envisaged as individuals (or 382 

“nodes”) being connected mostly with (spatial) neighbours, but possessing occasional contacts with 383 

much more distant nodes, resulting in transmission pathways through the network that are typically 384 

short compared to random or modular networks. We depict these different aspects of network 385 

structure in Fig. 2. Animal social structure is highly variable and can display one or multiple of the 386 

scale-free, small-world or modular properties introduced here (Wey, Blumstein, Shen and Jordán 387 

2008).  388 

 389 
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 390 

Figure 2. Demonstration of three key types of network structure with important implications for transmission. The 391 
network structure (a-c), degree distribution (d-f) and transmission dynamics (g-i) of a simple contagion model for infection 392 
(red) and conformist contagion model for information (blue) are illustrated. All networks plotted here have the same edge 393 
densities (proportion of potential edges that are connected). Scale-free (or approximately scale-free) networks (a,d,g) have 394 
highly heterogeneous degree distributions (i.e. high variation in connectivity) with some high-degree (very well connected) 395 
individuals acting as “hubs”, causing average path lengths to be short and resulting in very rapid spread of disease but 396 
slower spread of information. In small-world networks (b,e,h) most connections are to neighbours, but occasional long-397 
range contacts act as “bridges”, maintaining short average path lengths and enabling more rapid diffusion than random 398 
networks, and permitting faster spread via the cascade than the threshold model. In modular networks (c,f,i) most 399 
connections are to individuals in the same social community or module, resulting in high transitivity (or clustering of 400 
connections to ‘friends of friends’) and high average path lengths. Modular networks can have mixed effects on 401 
transmission speed that can depend on whether transmission follows a simple or conformist contagion dynamics. In this 402 
example, infection and information are able to spread at similar speeds through the modular network (i) but infection 403 
spreads more rapidly through scale-free (g) and small-world (h) network structures. Code for generating and plotting the 404 
networks and running the stochastic models is provided in the Supplementary Information. 405 

  406 
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Heterogeneous degree distributions 407 

Many animal social networks have highly heterogeneous degree distributions, with certain 408 

highly connected individuals acting as “hubs”. Taking these differences in connectivity into account is 409 

important to understand transmission dynamics. For infectious disease spread, models show that 410 

more heterogeneous degree distributions increase the speed of epidemic spread and result in a 411 

higher prevalence of epidemic peaks due to the presence of highly connected superspreader 412 

individuals (Barthélemy, Barrat, Pastor-Satorras and Vespignani 2004, Lloyd-Smith, Schreiber, Kopp 413 

and Getz 2005), but reduce the frequency of epidemics (Lloyd-Smith, Schreiber, Kopp and Getz 414 

2005). In more extreme situations where networks are truly scale-free, epidemics can spread almost 415 

instantaneously through populations (Barthélemy, Barrat, Pastor-Satorras and Vespignani 2004), 416 

making them especially vulnerable to infectious disease spread. For information transmission, the 417 

role of degree heterogeneity is more complex. In some contexts, individuals occupying globally 418 

central roles in a network are more likely to acquire information (Aplin, Farine, Morand-Ferron and 419 

Sheldon 2012, Jones, Aplin, Devost and Morand-Ferron 2017). However, when considering 420 

information transmission as complex contagion (as might be appropriate when individuals have 421 

conformity biases and accept information based on relative exposure), it is possible that individuals 422 

with many social connections might require stronger signals to distinguish a piece of information 423 

from the general “noise” received from their many associates (Hodas and Lerman 2012, Hodas and 424 

Lerman 2014).  Conversely, lower-degree individuals may be more likely to utilise information 425 

sooner, as having a smaller number of ties means that fewer transmitting associates are required to 426 

achieve conformist transmission (González-Avella, Eguíluz, Marsili, Vega-Redondo and San Miguel 427 

2011). Differences in the nature of transmission between information (when considered to spread 428 

through complex contagion) and infection may generate differences in the “most susceptible” 429 

network position between the two types of transmission that will reduce the intensity of any trade-430 

off between the acquisition of information and infectious disease.  431 
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Networks with highly heterogeneous degree distributions will allow the rapid spread of 432 

infection and (often) information through populations. However, we hypothesise that information 433 

will spread more slowly than infection through these types of network when conformist social 434 

learning strategies are used. Individuals with a larger number of connections will require a larger 435 

proportion number of their associates to transmit the information in order to achieve the same 436 

relative magnitude of exposure, compared to less centrally positioned individuals. Hubs may 437 

therefore be slower to respond to information than less well-connected individuals. This will drive 438 

differences in which network positions are most likely to acquire information and those which are 439 

most likely to become infected. Being highly connected may be disproportionately risky in terms of 440 

the risk of infection per unit of social information acquired (and used), while being embedded 441 

within a network region (i.e. sharing contacts with your associates) will minimise the risk of 442 

becoming infected per unit of social information gathered. 443 

 444 

Small-world networks 445 

Small-world networks can arise as a result of the majority of social associations or 446 

interactions occurring mainly with close neighbours within groups, but with infrequent longer-range 447 

connections acting as “bridges” between regions of the network. It is easy to see how small-world 448 

properties might arise in animal networks through behaviours such as territoriality with occasional 449 

extra-territorial forays. For example, in African Lions Panthera leo contacts between prides are 450 

normally driven by space use, with prides from neighbouring territories coming into contact much 451 

more frequently. However, occasional contacts between prides that are normally spatially well-452 

separated do occur, resulting in a network with small-world properties (Craft, Volz, Packer and 453 

Meyers 2009). In small-world networks the epidemic threshold (i.e. the transmission probability at 454 

which epidemics become possible) decreases considerably as the likelihood of long-range 455 

connections in the network increases (Moore and Newman 2000). For example, in a territorial, 456 

monogamous animal this would equate to epidemics of a sexually-transmitted infection becoming 457 
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more likely as extra-pair copulations occurred over greater distances rather than happening only 458 

among neighbouring territories.  459 

As with models of disease transmission, theoretical models predict that information flow will 460 

be faster in small-world networks than random networks (Alkemade and Castaldi 2005, de Kerchove, 461 

Krings, Lambiotte, Van Dooren and Blondel 2009, Delre, Jager and Janssen 2007, Nekovee, Moreno, 462 

Bianconi and Marsili 2007) and the importance of multiple social contacts in enabling transmission 463 

will be increased (de Kerchove, Krings, Lambiotte, Van Dooren and Blondel 2009). The findings of de 464 

Kerchove, Krings, Lambiotte, Van Dooren and Blondel (2009) suggest that to spread information 465 

effectively, an individual with long-range connections must have somewhat stable associations to 466 

“seed” individuals within the region of the network it is connected to, as a single interaction may be 467 

insufficient to enable transmission. If relative exposure to new information is important (i.e. it is 468 

necessary for a threshold proportion of contacts to be informed before an individual accepts 469 

information) then we can speculate that these “seed” individuals are more likely to be low-degree 470 

individuals who adopt information more rapidly due to their small number of other connections. The 471 

exception to this will occur if highly central individuals in the naïve group have a low information-use 472 

threshold (i.e. they require few demonstrators to transmit the information before adopting it 473 

themselves), which may be the case if individuals that acquire useful information tend to become 474 

more central in networks or if the bridging individuals are extremely influential due to their social 475 

status (or another trait). 476 

Small-world networks are characterised by the importance of occasional long-range social 477 

connections involving small number of individuals. We suggest that the importance of these 478 

“bridge” individuals is easier to predict for infectious disease transmission, while for threshold 479 

models of information transmission their role will depend to a greater extent on the social learning 480 

rules of the individuals they are connected to, and therefore be more variable. We also predict that 481 

social dynamics will play a greater role in these small-world networks as the death of these 482 
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“bridge” individuals or changes to their interactions will reduce the rate of global transmission of 483 

infection and information. 484 

 485 

Modular network structure 486 

Social networks with distinct social community structure are widespread in animals, 487 

especially in species living in stable social groups (Drewe, Madden and Pearce 2009, Weber, Carter, 488 

Dall, Delahay, McDonald, Bearhop and McDonald 2013, Weinrich 1991). Both community structure 489 

and transitivity (the tendency to be connected to ‘friends of friends’) reduce the size of infectious 490 

disease outbreaks but can lower the epidemic threshold. This makes it easier for less transmissible 491 

infections to spread, as the presence of many connections among the same set of individuals 492 

increases the probability of local spread, but these local connections reduce the probability of large-493 

scale epidemics (Newman 2003, Sah, Leu, Cross, Hudson and Bansal 2017, Salathé and Jones 2010). 494 

The effect of modular structure is greater when interactions between individuals in different social 495 

communities are more infrequent so that sub-divisions between them are stronger (Sah, Leu, Cross, 496 

Hudson and Bansal 2017, Salathé and Jones 2010). A meta-analysis of animal social networks has 497 

shown that the impact of modularity on the spread of disease is limited except when there are very 498 

few connections between communities (Sah, Leu, Cross, Hudson and Bansal 2017). The impact of 499 

modularity will also depend on the transmissibility of the pathogen. For example, (Rozins, Silk, Croft, 500 

Delahay, Hodgson, McDonald, Weber and Boots 2018) demonstrated that the effect of the modular 501 

structure of empirically-derived European badger contact networks was greatest for simulated 502 

pathogens with intermediate transmissibility (i.e. infectious enough to cause an outbreak but not so 503 

infectious that it can spread easily between social groups).  504 

In contrast, models suggest that modularity may not interfere with information diffusion in 505 

the same way. In some scenarios a modular network structure may actually increase global diffusion 506 

by enhancing within-community spreading. For example, Nematzadeh, Ferrara, Flammini and Ahn 507 

(2014) used a threshold model to show that conformist social learning strategies could lead to 508 



 23 

information being transmitted most quickly in networks of intermediate modularity. The networks of 509 

species living in stable groups would therefore be expected to have reduced epidemic spreading, 510 

and potentially enhanced (or unchanged) information diffusion, as an outcome of being highly 511 

modular (Fig. 2). In this way, structural heterogeneity in animal social networks may mediate the 512 

trade-off between the transmission of information and infection, especially for group-living or 513 

fission-fusion social systems with more modular social networks. 514 

We therefore suggest that a modular network structure may be critical in mediating the 515 

trade-off between minimising the spread of disease and maximising the spread of information. 516 

Community structure can promote the spread of social information when individuals follow 517 

conformist social learning strategies, while trapping infection within particular regions of the 518 

network. We predict that the dual selection pressures imposed by the access to information and 519 

the risk of acquiring disease will lead to natural selection generating modular network structures. 520 

The modularity of these structures will depend on the relative benefits information and costs of 521 

infectious disease o individuals, and the social learning strategies that they use.  522 

 523 

Different types of associations - Multilayer relationships 524 

As outlined in the previous section, different types of interaction will not all be equivalent 525 

for the transmission of infection or information. Considering how transmission dynamics vary for 526 

different types of interactions is therefore critical in understanding how animal societies might be 527 

adapted for efficient information transmission and minimal disease spread. Multilayer networks 528 

allow multiple interaction types to be incorporated within a single conceptual framework (Kivelä, 529 

Arenas, Barthelemy, Gleeson, Moreno and Porter 2014). A layer can denote different types of 530 

behavioural interaction between the same (or similar) set(s) of individuals, such as one layer for 531 

affiliative interactions and another for agonistic interactions (Finn, Silk, Porter and Pinter-Wollman 532 

2019, Silk, Finn, Porter and Pinter-Wollman 2018). Layers can also consist of interactions between 533 

different types of individuals, such as different sexes (Silk, Weber, Steward, Hodgson, Boots, Croft, 534 
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Delahay and McDonald 2018) or species (Silk, Drewe, Delahay, Weber, Steward, Wilson-Aggarwal, 535 

Boots, Hodgson, Croft and McDonald 2018), with edges between layers representing interactions 536 

between those types of individuals. 537 

Theoretical models using multilayer networks have been valuable in understanding the 538 

spread of a single pathogen or piece of information through multiple types of interaction, and the 539 

consequences of multiple spreading processes occurring across the same set of individuals (for 540 

example, multiple information types: Liu et al. 2018a, multiple pathogens: e.g. Azimi-Tafreshi 2016, 541 

or infection and information together: e.g. Funk et al. 2009; Granell, Gómez & Arenas 2013; Granell, 542 

Gómez & Arenas 2014; Guo et al. 2016, Funk and Jansen 2010, Marceau, Noël, Hébert-Dufresne, 543 

Allard and Dubé 2011, Zhao, Zheng and Liu 2014). Applying  these approaches to animal behaviour 544 

research (Finn, Silk, Porter and Pinter-Wollman 2019, Silk, Finn, Porter and Pinter-Wollman 2018) 545 

requires data on multiple types of social connections simultaneously (e.g. Franz, Altmann and 546 

Alberts 2015, Gazda, Iyer, Killingback, Connor and Brault 2015), and quantification of the importance 547 

of these different social connections for transmission (e.g. Farine, Aplin, Sheldon and Hoppitt 2015).  548 

 Taking a multilayer approach also enables the integration of the indirect effect of positive 549 

and negative social relationships on transmission processes. Theoretical models on multilayer 550 

networks consider the effects of these different types of social relationships by modelling them as a 551 

type of transmission through the network, alongside infection and/or information. For example, one 552 

type of model considers the flow of social support that improves recovery rate from infection (which 553 

could, for example, represent the strength of affiliative relationships) on a second layer and has 554 

been used to show that social support can supress disease outbreaks, but that the effect is 555 

dependent on network structure and the correlation between the layers (Chen, Wang, Tang, Cai, 556 

Stanley and Braunstein 2018, Chen, Wang, Cai, Stanley and Braunstein 2018). Using models such as 557 

these enables the impact of social buffering to be integrated into network models, to determine 558 

how it may shape the trade-off between encountering useful information and risking infection. At its 559 
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simplest, if well-connected individuals are healthy and capable of resisting infection, then they do 560 

not face a trade-off at all.  561 

Multiple spreading processes can also interact to promote or interfere with each other. For 562 

example, Liu, Wang, Cai, Tang and Lai (2018), when modelling the synergistic spread of multiple 563 

pieces of information transmitted simultaneously, showed that individuals having adopted one piece 564 

of  information were subsequently more likely to adopt the other piece of information, one 565 

enhancing the other. A similar scenario in animal societies may be choosing to follow a particular 566 

individual’s migratory route leading to an increased likelihood of socially learning a more efficient 567 

version of that route (Berdahl, Kao, Flack, Westley, Codling, Couzin, Dell and Biro 2018). . 568 

Alternatively, different types of information might compete, with one piece of information 569 

overriding/displacing the other (Kostka, Oswald and Wattenhofer 2008, Trpevski, Tang and Kocarev 570 

2010). This could be important if the two pieces of information differ in their accuracy, or represent 571 

alternative strategies. Similarly, models suggest that multiple pathogens spreading on a multilayer 572 

network can promote (Azimi-Tafreshi 2016) or inhibit (Funk and Jansen 2010) each other’s spread, 573 

and so are likely to be beneficial in understanding patterns of co-infection. When considering 574 

infection and information spread together, transmission models that integrate different 575 

transmission processes can provide fascinating insights (e.g. Funk, Gilad, Watkins and Jansen 2009, 576 

Granell, Gómez and Arenas 2013, Granell, Gómez and Arenas 2014, Guo, Lei, Jiang, Ma, Huo and 577 

Zheng 2016). For example, Funk, Gilad, Watkins and Jansen (2009) showed that information diffusing 578 

across a second network layer could slow epidemics, or even prevent the spread of infection across 579 

the first network layer, and that the impact of the information layer was amplified if it overlapped 580 

with the infection layer (i.e. had more similar patterns of interactions), or if the networks on each 581 

layer were highly clustered. These findings would suggest that if information about an infection can 582 

be spread through an animal social network via similar types of interaction as the infection itself, 583 

then infection avoidance behaviour can be much more effective in preventing the spread of disease. 584 

Social insect colonies offer a perfect candidate system through combining the feasibility of 585 
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experimental approaches, well documented roles for networks in information sharing (Preece and 586 

Beekman 2014), and evidence for adaptive changes to network structure in response to infection 587 

(Stroeymeyt, Grasse, Crespi, Mersch, Cremer and Keller 2018).  588 

We predict that animal social systems will have evolved such that different network 589 

structures for different types of interactions can help facilitate rapid acquisition of information 590 

while minimising the risk of infection. Multilayer network analysis may provide a valuable tool in 591 

modelling the combined spread of different pathogens and/or different types of information. We 592 

expect that taking into account the full complexity of animal social systems using this approach 593 

will i) provide important new insights into transmission dynamics of both infection and disease and 594 

ii) reveal crucial information as to when trade-offs between the gathering of information and 595 

avoidance of infection actually arise (and when they do not), and iii) be critical in revealing how 596 

this balance can be mediated.  597 

 598 

Social dynamics and the infection-information trade-off 599 

Temporal heterogeneity and transmission in animals 600 

Most animal social networks are dynamic, varying predictably over time (Hirsch, Reynolds, 601 

Gehrt and Craft 2016) or across different contexts (Smith, Gamboa, Spencer, Travenick, Ortiz, Hunter 602 

and Sih 2018). Accounting for these temporal changes can change how we understand transmission 603 

in animal social systems (e.g. Hirsch, Reynolds, Gehrt and Craft 2016, Springer, Kappeler and Nunn 604 

2017). If social associations change faster than transmission occurs, then considering contacts as 605 

dynamic is important when using models to understand transmission through a network (Taylor, 606 

Taylor and Kiss 2012, Volz and Meyers 2007). While the presence of temporal changes to network 607 

structure in animals is well-established, very few empirical studies have considered temporal 608 

heterogeneity, or burstiness, in contact dynamics. “Bursty” contact dynamics consist of many 609 

contact events with a short gap between them, and occasional much longer gaps between contacts 610 
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(Fig. 3), such as the clustering of heterospecific associations around a watering hole in an arid 611 

environment. “bursty” contact dynamics cause temporal clustering of interactions, which can 612 

impede the transmission of infection as compared to a scenario where contacts are distributed more 613 

uniformly through time, because such clustered repeated exposure can result in connections that 614 

redundant from a transmission perspective. In contrast, bursty contact dynamics may enhance the 615 

spread of information for some social learning strategies, as repeated exposures to novel 616 

information in quick succession might enhance learning opportunities by passing the information 617 

“acceptance threshold” (see Karsai, Kivelä, Pan, Kaski, Kertész, Barabási and Saramäki 2011; Min, 618 

Goh & Kim 2013; c.f. Rocha, Liljeros & Holme 2011; Rocha & Blondel 2013). Consequently, varied 619 

temporal patterns of interactions could mitigate the potential trade-off between acquiring 620 

information and avoiding infection, especially for more “risky” interactions, such as between-group 621 

interactions in group-living species, which are more likely to be “bursty”. Temporally clustered 622 

interactions with new individuals will disproportionately increase the likelihood of acquiring 623 

information relative to becoming infected. Recent theoretical models have incorporated both 624 

temporal heterogeneity and structural heterogeneity (e.g. community structure), demonstrating 625 

that regulation of spread is typically dominated by one or the other (Delvenne, Lambiotte and Rocha 626 

2015). This suggests that the importance of heterogeneous contact dynamics for transmission in 627 

animal societies may vary systematically with other aspects of the social system, such as the stability 628 

of social groups.  629 

We recommend research that focuses on the implications of temporal clustering of 630 

interactions and/or contacts for the spread of information and infectious disease, providing 631 

valuable insights into how individuals balance the costs and benefits of their social interactions. 632 

We predict that “bursty” contact dynamics could enhance the transmission of some types of 633 

information (depending on the social learning strategies of individuals), while having no effect or 634 

even reducing the risk of disease transmission – a good example may be lek mating systems. It 635 

would be possible to test these predictions in established experimental systems and then scale the 636 
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findings to a population or network level using stochastic models. We also expect that accounting 637 

for the effects of heterogeneous contact dynamics will be most important for species living in 638 

highly fluid societies rather than more stable social groups.  639 

 640 

Figure 3. An illustration of differences in the burstiness of contact dynamics. When contact dynamics are “bursty”, there is 641 
a high variance in the gaps between contact events, resulting in clusters of contacts with occasional longer gaps. Bursty 642 
dynamics may promote the transmission of some types of information whilst reducing the risk of infection. 643 

 644 

Responsive network dynamics and transmission in animals 645 

Animal social networks can change in response to the spread of infection (Croft, Edenbrow, 646 

Darden, Ramnarine, van Oosterhout and Cable 2011, Stroeymeyt, Grasse, Crespi, Mersch, Cremer 647 

and Keller 2018) and information (Kulahci, Ghazanfar and Rubenstein 2018) with a key difference 648 

between infection and information being that changes to network structure during the spread of 649 

infection may be determined by the phenotype of both the hosts and their parasites/pathogens 650 

(Franz, Kramer‐Schadt, Greenwood and Courtiol 2018), while any adaptive changes to network 651 

structure in response to the acquisition of information are solely an outcome of selection on the 652 

“host”, or “hosts” in the case of heterospecific transmission (Table 1). Theoretical models can 653 

provide some useful predictions as to how this affects transmission dynamics. Models where 654 

network connections can be altered in response to infection or information are referred to as 655 

adaptive network models (Bansal, Read, Pourbohloul and Meyers 2010, Funk, Bansal, Bauch, Eames, 656 

Edmunds, Galvani and Klepac 2015). The most common assumptions in disease modelling are that 657 
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individuals display infection-avoidance behaviour by either losing or reducing the strength of 658 

connections with infected individuals (e.g. Van Segbroeck, Santos and Pacheco 2010) or by replacing 659 

them with connections to other non-infected individuals (e.g. Shaw and Schwartz 2008). In the case 660 

of infectious disease, computational models indicate that adaptive networks typically have higher 661 

epidemic thresholds, delaying outbreaks and reducing peak prevalences (e.g. Gross, D’Lima and 662 

Blasius 2006, Shaw and Schwartz 2008, Van Segbroeck, Santos and Pacheco 2010). These 663 

behavioural responses to infection also frequently impact aspects of the network structure, for 664 

example by increasing variation in the connectivity of susceptible individuals and causing infected 665 

individuals to be much more poorly connected (Shaw and Schwartz 2008) or by increasing 666 

community structure with community membership assorted by infection state (Yang, Tang and 667 

Zhang 2012). While these changes reduce the impact of the current epidemic, they may make 668 

endemic disease more likely (Gross, D’Lima and Blasius 2006, Shaw and Schwartz 2008) or even 669 

result in long-term epidemic re-emergence (Zhou, Xiao, Cheong, Fu, Wong, Ma and Cheng 2012), 670 

which may have important implications for longer-term eco-evolutionary dynamics in animal 671 

populations. It is also possible for infection avoidance behaviour to exacerbate epidemics if 672 

individuals switch their connections from infected to susceptible individuals subsequent to being 673 

infected, although this remains relatively poorly explored (but see (Zhang, Small, Fu, Sun and Wang 674 

2012)).  675 

Many adaptive network models have previously assumed perfect knowledge about the 676 

infection status of other individuals, and this is unlikely to be the case in many natural host-677 

pathogen systems. Identifying when information is available about the infection status of individuals 678 

relative to when the infection is most transmissible (Stephenson, Perkins and Cable 2018) will be 679 

crucial to understanding how “adaptive” changes to network structure can mediate the trade-off 680 

between information and infectious disease transmission. It may also be important to consider 681 

changes to the behaviour of infected individuals; sickness behaviour. Sickness behaviours in 682 

particular could be influenced by selection on hosts or parasites/pathogens. At times, sickness 683 
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behaviour could be favoured by both host and parasite (e.g. dispersal away from a highly related 684 

group; Iritani and Iwasa 2014), but at other times optimal outcomes may be directly opposed (e.g. 685 

reduction in number of contacts; Lopes, Block and König 2016) and generate antagonistic co-686 

evolution between the host and pathogen.  687 

The results from equivalent models of information transmission are more diverse. One 688 

model suggests that individuals may be more likely to cluster with those who are more inclined to 689 

use information they are deliberately transmitting (Jackson and López-Pintado 2013), while another 690 

model suggests individuals will break ties with those who do not use the information they 691 

deliberately transmit (Zhang, Zhang, Weissing, Perc, Xie and Wang 2012). In some species of animal, 692 

individuals may preferentially associate with those who will accept foraging information from them, 693 

so as to maximise the likelihood of gaining benefits from recruiting others to feed (Wright, Stone and 694 

Brown 2003). Similarly, a male displaying within a lek will attempt to maximise the number of 695 

individuals who receive their signals, while also choosing to give up and stop transmitting to those 696 

who are unlikely to mate with them (Patricelli and Krakauer 2009). In a similar manner to signalling 697 

individuals manipulating their physical environment (e.g. birds singing from prominent perches), 698 

individuals may also dynamically alter their social interactions so as to maximise their chances of 699 

transmitting information to less informed node (Liu and Zhang 2014) if it is beneficial for them to do 700 

so (e.g. in highly related groups). In contrast to the avoidance behaviour expected in response to the 701 

spread of disease, “adaptive” behaviours that favour the acquisition of useful information while 702 

minimising exposure to misinformation would be expected (Kulahci and Quinn 2019), depending on 703 

previous interactions between the individuals involved. An individual who produces useful 704 

information may be more likely to have others use that information in the future, while an individual 705 

that frequently provides inaccurate information may be ignored (refractory behaviour). An 706 

important caveat to this idea is that an individual who has previously produced useful information 707 

may subsequently be more likely to cause misinformation to be transmitted (Pruitt, Wright, Keiser, 708 

DeMarco, Grobis and Pinter-Wollman 2016), especially if the value of information changes over time 709 
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(e.g. by becoming outdated).  This can be exploited by individuals aiming to transmit misinformation 710 

to manipulate the receivers’ behaviour to their advantage, as is the case in fork-tailed drongos 711 

(Dicrurus adsimilis) who mimic other species’ alarm calls to steal food from meerkats (Flower, 712 

Gribble and Ridley 2014). Whether drongos flexibly change their social associations with 713 

heterospecifics once they have been identified as cheats by the local meerkat group remains to be 714 

determined.  715 

Considering behavioural dynamics alongside transmission dynamics is important to our 716 

understanding of how individuals may resolve the conflict between the acquisition and 717 

transmission of information and infection. Obvious signs of infection or regular transmission of 718 

misinformation can result in individuals becoming less well connected in a network while 719 

transmission of useful information can lead to the opposite pattern. We predict that behavioural 720 

plasticity that causes patterns of social interactions to be modified in the presence of infection or 721 

innovations will therefore be a key mechanism by which this balance between the costs and 722 

benefits of being highly socially connected is mediated and expect that these behavioural 723 

dynamics are much more widespread than previously described. Behavioural dynamics are also 724 

likely to be closely interlinked with network structure, and we predict that behavioural responses 725 

to infectious disease and information will co-vary with social structure (especially group dynamics 726 

and modularity) between populations. 727 

 728 

Future research priorities 729 

Our review highlights several key priorities for future research. First, it is essential that we 730 

continue to build on our understanding of how infection and information are transmitted through 731 

natural populations. In particular, discovering how widespread the use of complex social learning 732 

strategies is in animals will be critical in revealing whether particular social network structures, and 733 

particular social network positions within them, favour the transfer or acquisition of information 734 
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over and above that of infectious disease. Second, a renewed effort to consider the dynamic and 735 

multilayer structure of animal social networks is also crucial to understanding differences between 736 

these two ecological processes, especially when they spread through different but overlapping sets 737 

of interactions. Third, the development of data-based evolutionary models will be required to fully 738 

understand the implications of these differences in the transmission of infection and information for 739 

the evolution of animal social systems. 740 

Conclusions   741 

Social network structure is fundamental to both the transmission of information and 742 

infectious disease through populations. Both represent important selection pressures on how 743 

individuals structure their social interactions. Individuals face a trade-off to maximise the acquisition 744 

of reliable information while minimising the risk of becoming infected with parasites and pathogens. 745 

However, our understanding of this trade-off is complicated by how these processes depend on 746 

social network structure in different ways. The risk of acquiring infection typically increases 747 

monotonically with the frequency and duration of interaction with infectious individuals. In contrast, 748 

information acquisition is more complex, with the likelihood of accepting information often 749 

depending on exposure to that information in a non-linear fashion. For example, empirical evidence 750 

from some animal social networks suggests that acquisition of information might often be a 751 

threshold trait. A receiver’s threshold of exposure could be determined by the proportion of 752 

associates demonstrating the behaviour, or could be determined more broadly by the identity, 753 

influence or traits of transmitters (e.g. social learning directed by dominance, familiarity, 754 

relatedness). Information transmission is also complicated by the sharing of both good and bad (or 755 

out-dated) information, and by “refractory” behaviours among recipients that result in the 756 

acquisition of information not affecting the behaviour of all individuals in the same way.  757 

Crucially, these differences in the nature of transmission and the types of interactions that 758 

result in transmission can mediate the apparent trade-off between acquiring information and 759 
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infection in social systems. Furthermore, plasticity of social behaviour can generate changes to social 760 

structures that can protect against the spread of disease or promote the spread of information. In 761 

this way, behavioural plasticity is likely critical in regulating infection risk and information benefits 762 

obtained by social animals. Information transmission is often integral to behavioural responses to 763 

avoid infection, making quantifying differences in how information and infection are transmitted and 764 

their different routes of transmission even more important. Consequently, our understanding of the 765 

interplay between information and infection in shaping animal social systems requires a better grasp 766 

of how transmission is affected by the structural, temporal and multi-layered heterogeneities that 767 

are inherent to animal social networks. 768 
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