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Abstract

To characterize microbiomes, microbial ecologists routinely sequence and compare short loci1

that differ among focal taxa. Counts of these sequences convey information regarding the2

occurrence and relative abundances of taxa in an assemblage, but provide no direct measure3

of their absolute abundances, due to the limitations of the sequencing process. The relative4

abundances in compositional data are inherently constrained and difficult to interpret. The5

incorporation of internal standards (ISDs; colloquially referred to as “spike-ins”) into DNA6

pools for sequencing can ameliorate the problems posed by relative abundance data and allow7

absolute abundances to be approximated. Unfortunately, many laboratory and sampling8

biases cause ISDs to underperform or fail. Here, we discuss how careful deployment of ISDs9

can avoid these complications and be an integral component of well-designed, amplicon-based10

studies of microbial ecology.11

Introduction12

Microbial assemblages are routinely characterized by DNA sequencing of marker loci, which13

are typically short and are chosen because they vary among focal taxa (Caporaso et al. 2012;14

Carini 2019; Goodrich et al. 2014)—portions of the ribosomal RNA operon are particularly15

popular markers. Characterizing assemblages in this way is referred to as metabarcoding16

(Schmidt et al. 2013; Taberlet et al. 2012). Qualitative differences in the sequences obtained17

from a metabarcoding study can be used to generate hypotheses regarding the types of18

organisms present in an assemblage, but understanding the abundances of each of these19

organisms from sequence data alone has proven extremely challenging. This is because20

sequencing methods yield a finite number of sequences per operational period, which are21

then parsed among samples and molecules within each sample. Thus, DNA sequencing can22

only provide direct knowledge of the relative abundances of organisms, not their absolute23

abundances.24
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Analyzing relative abundances is challenging for several reasons. First, biological insights25

often depend on knowledge of absolute abundances. For instance, in a study of the faecal26

microbiome of patients with Crohn’s disease, absolute abundance data (obtained through27

flow cytometry) revealed that bacterial load was associated with disease phenotype—an un-28

obtainable result when using relative abundance data. More generally, dramatically different29

results were obtained from analyses of absolute versus relative abundance data. For exam-30

ple, the use of absolute abundance data led to detection of 76 covarying microbial genera,31

compared to detection of only 10 covarying genera when using relative abundance informa-32

tion. Relative abundance data were misleading about microbial richness, rank abundances,33

and associations of specific taxa with disease phenotype (Vandeputte et al. 2017)—thus34

demonstrating that relative abundance data are unsuitable for addressing many biological35

questions.36

The second, and more insidious, problem with relative abundances is that they are com-37

positional (Aitchison 1982), that is, as one taxon increases within a sample, it does so relative38

to some other taxon (or taxa) that must decrease. For over a hundred years, mathematicians39

have been aware of the numerous problems associated with the analysis of compositional data40

(Pearson 1897) and several sub-fields of ecology have developed rich literatures about these41

complications (Jackson 1997). In some cases, disciplinary names for the challenges of com-42

positionality are used, such as the ‘Fagerlind effect’ (i.e. a term used in paleoecology to refer43

to the problems inherent to the analysis of compositional pollen data), which complicate44

cross-disciplinary transfer of relevant information (Davis 1963; Fagerlind 1952; Prentice and45

Webb 1986). Nevertheless, acknowledgement of the constraints imposed by compositional46

data is becoming more commonplace among microbial ecologists (Gloor and Reid 2016;47

Weiss et al. 2017). However many studies still do not adequately confront the problem of48

compositionality and are hampered by the limitations of relative abundance data.49

A variety of statistical transformations involving log ratios have been suggested to address50

the problems of compositionality, the most common being the centered log ratio transforma-51
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tion (Aitchison 1982; Egozcue et al. 2003; Fernandes et al. 2014; Gloor et al. 2017). However,52

the benefits of these transformations are limited for high-dimensional, sparse data (data with53

many zeros, such as those describing assemblages with numerous rare taxa, which may not54

be observed at all in many samples), such as those characterizing microbial biodiversity (for55

more see Tsilimigras and Fodor 2016). Furthermore, the transformations alone do not allow56

for the conversion of relative abundance estimates to absolute abundances.57

A promising solution to these problems is the incorporation of an internal standard58

(ISD) into the DNA sequencing process (Chen et al. 2016; Hossain et al. 2020; Jiang et59

al. 2011; Smets et al. 2016; Tourlousse et al. 2017; Zemb et al. 2020). Similar approaches60

to spiking samples with an ISD have been applied in other disciplines seeking absolute61

abundances (e.g. paleoecology; Benninghoff 1962; Davis 1966; Davis and Deevey 1964),62

although complications have caused some communities to abandon methods of calculating63

absolute counts (Giesecke and Fontana 2008). In microbial analyses, the relevant ISD is64

a unique molecule (or cell, see below) that is added to all samples in a known absolute65

abundance (i.e., as measured in cells or moles). Through comparison to the ISD, the relative66

abundances of other sequenced features can be converted to units of absolute abundance.67

ISDs are powerful tools that are rapidly gaining attention, but they are still not routinely68

used by microbial ecologists (Chen and Li 2013; Fernandes et al. 2014; Gloor et al. 2017).69

As ISDs become regarded as critical components of a well-designed sequencing study (Chen70

et al. 2016; Jones et al. 2015), there is a need for clear understanding of the many commonly-71

encountered sampling scenarios and the laboratory biases that can undercut the efficacy of72

the standards. Here, we describe these considerations and suggest best practices for the73

design and use of ISDs.74

How does an internal standard work?

The potential benefit of ISDs is that they allow the conversion of relative abundances75

into absolute abundances. To see why this is desirable and why relative abundances in76

compositional data are problematic, consider a hypothetical comparison of two microbiome77
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samples. The first sample contains two equally-abundant microbial taxa and the second78

sample contains the same two taxa, but their relative abundances have shifted such that79

one is more abundant than the other. We could represent sequence data for these samples80

as vectors of proportions, with the first sample consisting of two equally abundant elements81

with proportions that sum to one ~p1 = [0.5, 0.5]. Whereas, the second sample has unequal82

elements, but the proportions also sum to one, e.g.: ~p2 = [0.7, 0.3]. The fact that both vectors83

must share the same sum (1 in this case) is referred to as the “constant sum constraint” of84

compositional data (Gloor et al. 2017) and is why neither of these vectors, nor the underlying85

sequence data, contain direct information regarding the absolute abundances of the microbial86

taxa being examined. For instance, it is impossible to know why in sample two the first87

microbe is greater in relative abundance compared to sample one. The difference could88

be due to the first taxon truly having a higher absolute abundance in sample two than in89

sample one. But it could also be due to a decrease in the second microbial taxon, or some90

combination of both possibilities, because the constant sum constraint of relative abundance91

data must be satisfied.92

This conundrum can potentially be resolved if a known quantity of a third microbial93

taxon is added to each sample as an ISD. Continuing with the previous example, we could94

include an ISD as the third element of each sample. After adding the same number of95

cells of the ISD to both microbial samples and repeating the sequencing process, one might96

obtain a proportion vector for sample one of: ~p1 = [0.45, 0.45, 0.1], and for sample two of97

~p2 = [0.7, 0.25, 0.05] (the proportion taken by the ISD, the third number, could take any98

non-zero value). Because the same cell count of ISD was added to each sample, calculating99

the ratio of microbial relative abundances to the relative abundance of the ISD transforms100

the relative abundances making them proportional to absolute abundances, with units of the101

ISD (Fig. 1). In the example, on the scale of the ISD, the absolute abundances in sample102

one are [4.5, 4.5, 1] and in sample two are [14, 5, 1]. We found that for every unit of ISD we103

observed 14 of the first microbial taxon in sample two, but only 4.5 in sample one, indicating104
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that the first microbial taxon is present at higher absolute abundance in sample two. The105

second microbial taxon also increased in abundance in sample two compared to sample one,106

but did not do so as much as the first taxon. Absolute abundances in units of the ISD can107

be scaled appropriately to other units by knowing the amount of standard that was added108

(the number of cells, or the number of moles of a DNA molecule).109

What type of internal standard should be used?110

Two main approaches exist for using ISDs in sequencing studies. The first involves adding111

a foreign molecule (or cell) to samples to be sequenced; we will refer to this method as a112

“spike-in” ISD. Alternatively, invariant features already present within samples can be used;113

we will refer to this type of ISD as an “inherent” ISD.114

Researchers studying gene expression have long relied on inherent ISDs to facilitate com-115

parison of transcription levels across samples (reviewed by Eisenberg and Levanon 2013;116

Thellin et al. 1999). Inherent ISDs are chosen from among those genes that contribute to117

the basic functioning of the cell (“housekeeping” genes) and are thus expected to be con-118

stitutively expressed. The idea is that these genes constantly produce the same number of119

transcripts, thus reads from them can be used as a baseline when comparing the expres-120

sion levels of other genes among samples. Identifying housekeeping genes that are suitable121

for use as inherent ISDs is challenging and highly system-dependent because constitutively122

expressed genes differ among organisms and tissues. Moreover, the assumption that house-123

keeping genes do not vary in expression among focal tissues is often violated (Eisenberg and124

Levanon 2013; Jonge et al. 2007; Lun et al. 2017; Thellin et al. 1999; Tricarico et al. 2002).125

These drawbacks have led many geneticists away from inherent ISDs and toward spike-in126

standards (Chen and Li 2013; Jiang et al. 2011). For the same reason, inherent ISDs are127

inappropriate for molecular community ecology—no taxon is expected to exist at identical128

abundances among habitats.129
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Developing and using a spike-in ISD is not without its own challenges, however, because130

a successful ISD must satisfy the following assumptions: 1.) the ISD must behave similarly131

to template nucleic acids during laboratory practices, a characteristic referred to as “com-132

mutability” (Hardwick et al. 2017; Risso et al. 2014); and, 2.) there can be no chance that133

the ISD can be mistaken for a feature naturally occurring in samples.134

The development of molecular spike-in ISDs was pioneered by functional geneticists in-135

terested in gene expression (e.g., Jiang et al. 2011) and microbial ecologists can learn much136

from their work. Pools of RNA represent particularly complex chemical mixtures because137

transcripts can differ dramatically in length, nucleotide composition (e.g., GC content, re-138

peat density), and concentration (Lynch 2007; Oshlack and Wakefield 2009; Risso et al.139

2011). Moreover, alternative splicing of transcripts leads to multiple isoforms. Given this140

complexity, no ISD will mirror the behavior of all transcripts present within even a single141

cell during laboratory preparation. Accordingly, the External RNA Controls Consortium142

(ERCC) developed an ISD mixture comprising 92 RNA sequences that vary in length from143

250–2000 nucleotides, differ dramatically in GC content, and that span a concentration range144

of 220 (Jiang et al. 2011; also see Hardwick et al. 2016 and Hardwick et al. 2018). Even such145

a thorough approach has its limitations—Risso et al. 2014 reported unsatisfactorily high146

technical variation upon sequencing the ISD mixture (also see Qing et al. 2013). Accord-147

ingly, Risso et al. 2014 suggested a statistical modeling approach to estimate and remove148

unwanted technical variation as informed by ISD read counts (see below for more regarding149

the benefits of such modeling).150

The challenges facing microbial ecologists are somewhat less daunting than those with151

which functional geneticists must contend—this is because among-amplicon variation for152

commonly used microbial marker loci is typically much lower than what would be expected153

within a pool of RNA, given that transcripts can vary by over ten thousand nucleotides (nt)154

in length (Oshlack and Wakefield 2009). By comparison, for many bacterial taxa the 16s155

marker gene is approximately 1,500 nt long (Bibby et al. 2010; Case et al. 2007; Clarridge156
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2004), and often a smaller subunit is amplified for sequencing. The ITS operon, which is157

the typical marker for fungal ecology, is more complex—among taxa it can vary in length158

by several orders of magnitude (Schoch et al. 2012; Stewart and Cavanaugh 2007). But159

an ITS amplicon pool will still contain less among-sequence variation than an RNA pool160

(Lynch 2007). Consequently, ISD solutions tailored for molecular community ecology can161

be relatively simple and typically consist of adding a known DNA sequence or cells from a162

specific microbial taxon to samples.163

One of the first studies to demonstrate the benefits of ISDs for microbial ecology was164

Stämmler et al. 2016. These researchers suggested using cells of several halophilic bacterial165

taxa and one bacterial taxon that occurs in the plant rhizosphere as ISDs for studies of the166

mammalian faecal microbiome (also see Piwosz et al. 2018). This approach has the im-167

portant benefit of measuring potential variation in extraction performance among samples,168

which is likely to dramatically improve ISD commutability for many substrates (see below).169

The downsides to cellular ISDs are two-fold: first, choosing a cellular ISD can be challenging170

because it must have similar traits to focal organisms, be easily cultured (or available com-171

mercially), and cannot occur in the biological samples. Second, a mixed culture of a cellular172

ISD could possess copy number variation (CNV) in marker loci that must be measured and173

accounted for, else the ISD will not provide consistent and accurate absolute abundance esti-174

mates (Kembel et al. 2012). For well-known taxa, estimates of CNV for marker loci could be175

obtained from published genomic resources (Stoddard et al. 2015) or, for less studied taxa,176

quantitative PCR (qPCR) could be used to estimate copy number per cell. Likewise, clonal177

propagation of cellular ISDs could minimize CNV for marker loci.178

An alternative approach to cellular ISDs is the use of DNA molecules. Many micro-179

bial ecologists have advocated DNA ISDs, either in the form of extracted genomic DNA180

from organisms not likely to be present in samples or as synthetically designed molecules181

(Hardwick et al. 2018; Lin et al. 2019; Smets et al. 2016; Tkacz et al. 2018; Tourlousse182

et al. 2017; Venkataraman et al. 2018; Yang et al. 2018; Zemb et al. 2020). We suggest183
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that synthetic sequences are superior to biologically-derived DNA for several reasons. First,184

and most obviously, there is no chance a synthetic sequence will occur naturally in samples,185

regardless of sample type. Second, reference DNA for a standard that is isolated from the186

genome could correspond to a variable number of genomic loci (CNV; as would actual cells;187

see above) and accounting for this potential variation among different isolates of a standard188

would require additional laboratory work, such as qPCR. Third, the nucleotide composition189

of an extracted DNA sequence is fixed and will likely only be commutable to a subset of190

focal taxa. By comparison, a synthetic ISD’s DNA sequence can be specified such that it191

is comparable to the nucleotide composition of any organism (e.g., in length, GC content,192

repeat density, etc.) and thus could be tailored to fit the specific needs of a study.193

The design of a synthetic ISD is fairly simple. The primary requirement is that the se-194

quence cannot match any known organisms and is long enough that it will not be removed195

during PCR clean up (e.g., when using size selection to remove excess primer molecules). If a196

generic ISD is desired, then the sequence should minimize homopolymers and internal com-197

plementarity, have balanced GC content, and be approximately the same length as the focal198

barcoding locus (see Tourlousse et al. 2017, for guidance). After designing the ISD sequence199

it must be bracketed by the preferred primer pair, with the complement of the forward primer200

at the beginning of the read and the uncomplemented reverse primer appended to the read201

(assuming single stranded synthesis). A variety of ISD designs are present in the literature202

and can be inexpensively synthesized by various commercial suppliers (Palmer et al. 2018;203

Tkacz et al. 2018; Tourlousse et al. 2017; Zemb et al. 2020). Hardwick et al. 2018 describe an204

elegant approach to ensure ISDs emulate focal taxa during laboratory preparation through205

preserving sequence composition characteristics (e.g., GC content, etc.). These researchers206

suggest simply reversing the portion of the genome of the focal taxon under consideration207

(e.g., the portion of the rRNA operon commonly used for molecular barcoding).208

As we have described, tradeoffs exist with any ISD such that a general statement regard-209

ing the superiority of any single approach would be misleading. However, we do suggest that210
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actual microbial cells should be used as ISDs for studies involving samples that are likely211

to vary in nucleic extraction yield. On the other hand, if a study uses samples that are212

not likely to vary systematically in extraction performance (e.g., leaves from the same plant213

taxon; aliquots of similar soils) then a synthetic ISD, such as those described by Tourlousse214

et al. 2017, should suffice and could be simpler to employ than a cellular spike-in ISD.215

Regardless of whether a study design dictates the use of either cellular or synthetic spike-216

in ISDs, researchers should consider the benefits of using a mixture of multiple ISDs as217

opposed to a single sequence or taxon. By adding a known amount of multiple ISDs to each218

sample, the failure of an ISD to act as a true standard can be detected (Ji et al. 2020).219

For instance, if three ISDs were added to each sample in equal abundance and the relative220

abundance of the ISDs in the sequences were 1:2:1, then it is clear that the second ISD was221

over-represented and should be omitted from consideration for that sample. Identification of222

a single malfunctioning standard is possible when using three (or more) standards, whereas223

if only two standards were used it would not be possible to determine which of the two ISDs224

had failed.225

Another benefit of a mixture of ISDs is that it may lead to increased ability to estimate226

technical variation. For instance, Tourlousse et al. 2017 created 12 synthetic ISDs and227

reported that each responded slightly differently to laboratory practices. Accordingly, they228

reported an improvement in the accuracy of absolute abundance calculations when summing229

read counts across ISDs. The same result was reported by Stämmler et al. 2016, who used230

several cellular ISDs.231

A final benefit of an ISD mixture is that sequences (or cells) emulating a variety of taxa232

can be included; thus, providing insight into the effects of laboratory practices across taxa233

akin to using a mock community as a positive control (Goodrich et al. 2014; Nguyen et234

al. 2014). Clearly, as ISD mixtures become more complex, they demand more sequencing235

depth—saying nothing of the time spent on their design. Until a sufficient breadth of ISD236

mixtures becomes commercially available, we suggest that researchers strike a balance be-237
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tween commutability and logistical cost by choosing a handful of sequences (or cells) that238

emulate those of focal taxa.239

Prior to designing an ISD suitable for a particular study design, it is worth considering to240

what extent an ISD is needed at all. For instance, if the sample can be homogenized to allow241

counting of target cells within an aliquot then an ISD will provide little additional benefit—242

though it could still act as a positive control and provide insight into technical variation.243

Counting cells may be possible for studies with few samples and can be accomplished through244

fluorescence microscopy (Amann and Fuchs 2008; Daims et al. 2001) or flow cytometry (Props245

et al. 2017a,b). For example, Vandeputte et al. (2017) used flow cytometry to count cells246

within a series of faecal samples and used these counts to transform 16s data from relative247

to actual abundances (also see Frossard et al. 2016). Such approaches hold great merit248

because many of the concerns with ISD efficacy that we describe below would be obviated249

by having a cell count in hand. Unfortunately, optimizing flow cytometry protocols for focal250

substrates may be impractical for many researchers, particularly those studying microbial251

assemblages living inside tissues of a host organism (Doležel et al. 2007). Moreover, flow252

cytometry requires specialized equipment and skill, and can increase the logistical burden of253

a study more than the use of a spike-in ISD.254

Quantitative PCR can also be used to estimate total copies of a genomic feature in a255

sample (e.g., copies of 16s), which can then be used to convert relative abundance estimates256

for each taxon to absolute abundances (Bonk et al. 2018; Dannemiller et al. 2014; Higuchi et257

al. 1993; Jian et al. 2020; Lou et al. 2018; Zhang et al. 2017). Droplet digital PCR (ddPCR;258

Hindson et al. 2011), is a promising tool for this approach because it provides heightened259

accuracy and throughput compared to conventional real-time qPCR; most importantly, it260

estimates abundances directly and does not rely on comparison to a quantitative standard261

(Baker 2012; Hindson et al. 2011; Kim et al. 2015; Morella et al. 2018). At the time of262

writing, ddPCR is currently more expensive than qPCR and also operates over a smaller263

dynamic range. The use of qPCR, via ddPCR or traditional techniques, is a simple, elegant264
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approach to estimate absolute microbial abundances, however many of the pitfalls affecting265

ISDs can also affect this technique (e.g., primer bias, PCR inhibitors; Bonk et al. 2018).266

Moreover, while qPCR is relatively inexpensive, costs can mount when analyzing many267

thousands of samples and, therefore, the use of an ISD may save time and money for large-268

scale sequencing studies. The benefits and drawbacks of qPCR versus ISDs are poorly269

characterized, however, Stämmler et al. 2016 suggested that cellular ISDs outperformed270

qPCR for conversion of relative abundances to absolute abundances. These authors were271

studying the faecal microbiome and it is unclear if their findings translate to other substrates.272

Considerations when deploying an internal standard273

The primary reason ISDs can fail to act as a standard is when the ratio of focal cells (or274

sequences) to the ISD shifts among samples in unexpected and unmeasured ways (Fig. 1, 2).275

A simple way this can happen is if there is unmeasured and unaccounted for variation among276

samples in input mass. To see why this is problematic, consider the situation in which two277

samples have identical microbial assemblages, but one sample has half the input mass of278

the other sample and therefore contains half as much DNA (Fig. 1c). If the same amount279

of ISD were added to each sample and normalization calculations performed as described280

above, then it would appear as if microbial abundance was twice as high for one of the281

samples. While the two samples truly differ in microbial abundance, the difference is driven282

by differences in input mass among samples, not by differences in the microbial abundance283

in the source material. Consequently, laboratory methods typically involve standardization284

of the input mass of samples. However, imprecision in mass measurements made prior to285

nucleic acid extraction is rarely accounted for during data analysis and can add misleading286

variation to absolute abundance estimates. Problematic confounding could arise if sample287

mass were to differ systematically by substrate, experimental treatment, or among other288

batches. Fortunately, if input mass or volume varied among samples but was recorded,289

researchers can transform absolute abundances to absolute densities, on a scale of units of290
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the ISD per unit of input mass (or volume).291

A more insidious problem is when samples possess similar total masses but differ in the292

amount of target substrate present. For instance, if samples differ in hydration, then vari-293

ation in the amount of water present could obscure differences in extractable mass among294

samples. Therefore, samples should be well dried prior to weighing and ISD incorporation.295

Variation in the amount of inorganic substrate present is particularly challenging for soil sam-296

ples, which often differ in mineral composition, and hence density. In such cases, researchers297

should consider if volume is a more appropriate unit by which to standardize samples. The298

problem becomes amplified by comparisons across different substrates with fundamentally299

different characteristics and varying mixtures of potential microbial ’habitats’ (e.g., compar-300

isons across water, soil, and plants, or even different soils containing assemblages derived301

from communities within pore water, organic, and inorganic matter pools). Two soils could302

have identical soil water masses and microbial communities, but varying soil matrices and303

associated microbial masses that could alter the final homogenized samples if normalized by304

total volume or mass. Time represented by the sample may also be important (e.g., duration305

of water filtration or soil accumulation and dormant microbial burial).306

ISD efficacy can also be undercut by variation in nucleic extraction performance among307

samples (Fig. 1c). For instance, if samples differ in physical toughness, such as what could be308

expected among tissue types of plants (i.e., stems versus leaves), more DNA will be obtained309

from samples with cells that are easier to lyse and the ratio of ISD to template DNA obtained310

will shift among samples, leading to inaccurate absolute abundance calculations. The same311

problem could occur if samples differ in the presence of compounds that inhibit extraction312

effectiveness (e.g., phenols in plants; Wilson 1997).313

Variation in extraction yield is particularly difficult to measure for researchers interested314

in endosymbiotic microbial assemblages. This is because the recalcitrance of samples is315

defined by the traits of the host cells within and among which focal microbes reside (e.g.,316

cell wall thickness can vary among plant taxa and tissue type) and a microbial cellular ISD317
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will not emulate these traits. A possible solution for this problem is suggested through recent318

work by Karasov et al. (2019) who show that host-derived DNA can function as an inherent319

ISD when examining microbial symbiont assemblages. These researchers suggest estimation320

of microbial load as the ratio of host to bacterial reads obtained from shotgun metagenomic321

sequencing (also see Karasov et al. 2018, 2019; Regalado et al. 2019). A possible benefit of322

this approach, as stated by the authors, is that metagenomic sequencing is a less biased way323

to estimate total host and bacterial load than amplicon sequencing.324

Unfortunately, nucleic acid extraction methodology is not the only laboratory technique325

that can influence the effectiveness of an ISD. Compounds that can inhibit or facilitate PCR326

(Rossen et al. 1992; Wilson and Carroll 1997) may also cause problems by imposing biases327

upon amplicon mixtures. Consider the case when variation in amplification has occurred328

across samples that differ only in the presence of inhibiting or facilitating compounds (re-329

viewed by Schrader et al. 2012). Such a scenario would give the erroneous impression that330

shifts in actual abundance had taken place. Commonly encountered inhibitors include humic331

and fulvic acids in soil (Opel et al. 2010; Yeates et al. 1998) and phenols and polysaccharides332

in plants (Schrader et al. 2012; Wilson 1997). It is reasonable to assume that inhibitory com-333

pounds commonly vary in their concentrations among environmental samples (e.g., among334

soil types or plant taxa). Quantifying and accounting for variation in these compounds is335

onerous, thus the use of nucleic acid extraction protocols that consistently remove problem-336

atic compounds at the outset will minimize this source of variation—a stated benefit of many337

commercially available extraction kits (e.g., the Qiagen PowerSoil kit removes humic acid;338

Mahmoudi et al. 2011).339

Given the many ways an ISD can fail as standards, we suggest researchers incorporate340

several control measures into sequencing studies to ensure ISDs perform as expected. At341

the minimum, ISDs should be added to technical replicates of samples representative of the342

biological variation present. Upon sequencing, the ISD should capture approximately the343

same proportion of reads in each of these replicates. Secondly, as mentioned above, we344
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advocate for using a mixture composed of at least three ISDs. Finally, when using a new345

ISD, or using an ISD in a new substrate, it is ideal to test for quantitative behavior through346

sequencing a dilution series; reads should increase proportionally to ISD concentration.347

At what laboratory step should an ISD be added?

One critical consideration when using a spike-in ISD is determining an appropriate time348

to add the ISD to samples. Most authors advocate adding the ISD before nucleic acid349

extraction (Jones et al. 2015; Smets et al. 2016; Tourlousse et al. 2017; Venkataraman et al.350

2018; Zemb et al. 2020). This allows an ISD to capture variation in extraction performance351

(as mentioned above; Fig. 1d). If samples come from the same substrate and are thus not352

expected to behave differently during nucleic acid extraction, then an ISD could be added353

after extraction but prior to normalizing DNA concentrations for PCR (Fig. 1a). If the ISD354

is added after equimolar normalization of input DNA, then the IDS functions as a constant,355

positive control for PCR and sequencing (Fig. 1b) of each sample, but does not provide a356

standard for calculating absolute abundances in the original samples (prior to normalization).357

Given that the efficacy of nucleic acid extraction is likely to vary among samples and358

sampling groups for many study designs, we suggest that incorporating an ISD into samples359

prior to extraction as the ideal. We note that measuring variation in extraction performance360

requires a cellular ISD (see above), however adding a nucleic acid ISD into samples prior361

to DNA extraction can be beneficial (Zemb et al. 2020). The benefit arises because the362

abundance of the ISD in the sample would track the expected and potentially variable loss363

of some DNA in extraction, such as would be caused by incomplete processing of all sample364

mass, variance during movement of supernatant and sample mass through the extraction365

protocol, or variable elution of nucleic acids from the solid-phase of columns used to isolate366

those acids.367
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Additional considerations when basing inference on microbial abun-368

dances369

Comparison of absolute abundances among taxa is potentially misleading

ISDs can account for among-sample variation when comparing the effects of treatment or370

ecological covariates on abundances (both relative and absolute) of a particular microbial371

taxon. They cannot however address all the concerns that complicate the comparison of372

abundances of different taxa among and within samples. This is because every step of the373

library preparation process has the potential to impose idiosyncratic, selective biases for374

and against the DNA sequences associated with different taxa in a sample (Fig. 2). For375

example, PCR primers do not match their target sequences equally well in all taxa, leading376

to preferential amplification of some taxa, and substantial differences in selectivity among377

different primers (Fouhy et al. 2016; Hong et al. 2009). Thus, if a primer pair is biased378

against a particular sequence, then the abundance within the sample will be underestimated379

and an ISD cannot remedy this error. Aside from primer pair, the type of polymerase, PCR380

cycle count, PCR reagents used (Nilsson et al. 2018; Pollock et al. 2018; Schori et al. 2013),381

GC content (Laursen et al. 2017; Risso et al. 2011), length of the amplicon (Oshlack and382

Wakefield 2009), and even sequencing platform (D’Amore et al. 2016), can all impose further383

biases that influence resulting sequence data. Thus, these procedural biases can cause false384

negatives in inferences about external determinants of assemblage composition and simply385

make it difficult to know true abundances.386

Estimates of abundances of taxa are further complicated by error that arises due to387

high copy number variation (CNV) among taxa in marker loci. For example, Lofgren et al.388

(2019) reported that fungal taxa can differ in ITS copy number by an order of magnitude389

or more. Even within a single fungal taxon, Suillus brevipes, ITS copy number ranged from390

72–156. While not quite as extreme as for fungi, CNV is also widespread among bacteria391

for the commonly used 16s marker (Kembel et al. 2012; Lee et al. 2009; Perisin et al. 2016;392
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Stoddard et al. 2015; Větrovský and Baldrian 2013). Of course, variation in ploidy-level393

(Pecoraro et al. 2011), or the number of nuclei in a cell (which can vary for fungi; Gladieux394

et al. 2014), can also influence copy number variation. A possible mitigation solution for395

bacteria and archaea is bioinformatic correction of CNV of focal taxa via comparison to the396

popular rrnDB database (Stoddard et al. 2015).397

When taken together, these biases suggest extreme caution is in order when interpreting398

sequence data with the intention of inter-taxa comparisons of abundance (Fig. 2), such as399

when analyses focus on description of overall shifts in community composition as defined400

by changes in rank order abundances among taxa. Unfortunately, many microbial ecology401

studies rely on a common suite of such analyses, including description of patterns in diversity402

entropies, ordination techniques, and PERMANOVA. If taxon-specific analyses are used403

instead, or in conjunction with these techniques, many of the biases we describe here become404

much less problematic. This is because most biases will affect a taxon in the same way405

across samples and, therefore, biases will not be confounded with experimental treatment(s)406

or ecological covariates of interest. Moreover, many ecological questions are better answered407

by quantifying the effect of treatment on specific taxa, rather than documenting shifts in408

overall assemblage composition.409

To learn about the biological causes of differences in taxon abundances among samples, it410

is helpful to partition variation that arises from replicated laboratory processes and biological411

variation among samples. As is the case for many experimental designs, statistical models412

for community composition can explicitly attribute variation to experimental and biological413

sources. In particular, hierarchical models for variation parameterize the mean frequency414

of taxa and variation among replicates, and mean frequency of taxa for each treatment415

(or sampling group) and variation among treatments. For instance, a hierarchical model for416

relative abundances of taxa in replicates and treatments can be specified with the multinomial417

and Dirichlet distributions (Coblentz et al. 2017; Fordyce et al. 2011; Harrison et al. 2020),418

with the additional benefit of providing robust estimates of familiar community ecology419
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statistics (sensu Harrison et al. 2020; Marion et al. 2018). One or more ISDs can be used420

to partition technical from biological variation. Assuming ISDs behave as do focal taxa421

(i.e., they are commutable), technical variation among replicates can be estimated for the422

ISDs and subtracted from estimates of variation for individual taxa to yield an estimate423

of biological variation. Bayesian hierarchical models make this partitioning of variation424

possible, in part because they fully use and formally describe the counts of DNA sequences425

(and differences in information among samples). This is in contrast to rarefaction methods,426

which discard observed data and information about technical and biological variation among427

samples (McMurdie and Holmes 2014).428

Conclusion

Sequencing is a powerful tool to measure abundance of organisms that are difficult to429

observe and count directly. We are growing increasingly aware of the challenges of using430

sequence data to measure abundances and the benefits provided by internal standards, but,431

as we have shown, their efficacy is dependent upon careful accounting during laboratory432

practices and potentially unrealistic assumptions of biological simplicity (e.g., in CNV).433

Nevertheless, ISDs liberate researchers from the constraints imposed by relative abundance434

data and we suggest that their use become a standard component of sequence-based microbial435

ecology studies (Jones et al. 2015; Stämmler et al. 2016; Tourlousse et al. 2017).436
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Figure 1: The addition of an internal standard (ISD) to samples can correct for the
problems posed by the compositional nature of sequencing data. This is because the ISD
can ensure the relative abundances of reads obtained from sequencing are proportional
to those in the original composition, thus allowing calculation of absolute abundances
for each sequenced feature. Here, we present data representative of four laboratory
scenarios that affect ISD efficacy. For each scenario, we present relative abundance
data for two samples, each of which contains three features that are shown in different
colors. The ISD is shown in orange and, for each scenario, a light orange box denotes
the step at which the ISD is added. a) Here, ISD is added prior to equimolar pooling
of nucleic acids for PCR and there is no variation in sample mass, or yield from nucleic
acid extraction, or other biases induced by laboratory-practice. In this case the ISD
performs as desired. b) If, however, the ISD is added after equimolar pooling of samples
then it is no longer effective. c) Similarly, if samples differ in yield from nucleic acid
extraction per unit of mass and the ISD does not reflect those differences, then the ISD
is no longer effective. d) If the ISD is added prior to nucleic acid extraction and reflects
variation in extraction yield among samples (i.e., as would be expected for a cellular
ISD), then the ISD can be used to back-calculate absolute abundances.
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Figure 2: Biases can be introduced throughout the process of obtaining DNA
sequence data from samples and will interfere with estimating abundances, de-
spite the use of an internal standard (ISD). These biases are organized chrono-
logically following the data generation process—from sampling to sequencing.
Colored boxes next to each source of bias denote whether it can affect relative
abundances or absolute abundances. All sources of bias interfere with com-
parisons across taxa. This catalogue of biases does not mean amplicon-based
sequencing with internal standards is doomed to fail, only that biases must
carefully considered when planning an experiment so that the most meaning
can be extracted from the resulting data.
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