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Abstract

To characterize microbiomes and other ecological assemblages, ecologists routinely sequence1

and compare loci that differ among focal taxa. Counts of these sequences convey information2

regarding the occurrence and relative abundances of taxa, but provide no direct measure of3

their absolute abundances, due to the technical limitations of the sequencing process. The4

relative abundances in compositional data are inherently constrained and difficult to inter-5

pret. The incorporation of internal standards (ISDs; colloquially referred to as “spike-ins”)6

into DNA pools can ameliorate the problems posed by relative abundance data and allow7

absolute abundances to be approximated. Unfortunately, many laboratory and sampling8

biases cause ISDs to underperform or fail. Here, we discuss how careful deployment of ISDs9

can avoid these complications and be an integral component of well-designed studies seeking10

to characterize ecological assemblages via sequencing of DNA.11

Introduction12

Ecological assemblages, particularly microbiomes, are routinely characterized by DNA se-13

quencing of marker loci, which are typically short and are chosen because they vary among14

focal taxa (Caporaso et al. 2012; Carini 2019; Goodrich et al. 2014)—portions of the ribo-15

somal RNA operon are particularly popular markers. Characterizing assemblages in this16

way is referred to as metabarcoding (Schmidt et al. 2013; Taberlet et al. 2012). Qualitative17

differences in the sequences obtained from a metabarcoding study can be used to generate18

hypotheses regarding the types of organisms present in an assemblage, but understanding19

the abundances of each of these organisms from sequence data alone has proven extremely20

challenging. This is because sequencing methods yield a platform-specific amount of data21

(i.e., reads), which are then parsed among samples and molecules within each sample. Thus,22

metabarcoding can only provide direct knowledge of the relative abundances of organisms,23

not their absolute abundances. The same technical challenges apply when performing other24
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types of sequencing, including shotgun metagenomics and transcriptomics (Chen et al. 2016),25

thus relative abundance data are ubiquitous across molecular ecology disciplines.26

Analyzing relative abundances is challenging for several reasons. First, biological insights27

often depend on knowledge of absolute abundances. For instance, in a study of the faecal28

microbiome of patients with Crohn’s disease, absolute abundance data (obtained through29

flow cytometry) revealed that bacterial load was associated with disease phenotype (Van-30

deputte et al. 2017)—an unobtainable result when using relative abundance data. More31

generally, dramatically different results were obtained from analyses of absolute versus rela-32

tive abundance data. For example, the use of absolute abundance data led to detection of 7633

covarying microbial genera, compared to detection of only 10 covarying genera when using34

relative abundance information. Relative abundance data were misleading about microbial35

richness, rank abundances, and associations of specific taxa with disease phenotype—thus36

demonstrating that relative abundance data are unsuitable for addressing many biological37

questions (for a similar example see Stämmler et al. 2016).38

The problems associated with relative abundances largely stem from their compositional39

nature (Aitchison 1982), that is, as one taxon increases within a sample, it does so relative40

to some other taxon (or taxa) that must decrease (Fig. 1). For over a hundred years,41

mathematicians have been aware of the numerous problems associated with the analysis42

of compositional data (Pearson 1897). Indeed, many of the standard multivariate tools43

useful for community ecology are inappropriate for compositional data (see Gloor et al.44

2017; Jackson 1997). Several sub-fields of ecology have developed rich literatures about45

these complications (Jackson 1997) with associated disciplinary names for the challenges of46

compositionality, such as the ‘Fagerlind effect’ (i.e. a term used in paleoecology to refer47

to the problems inherent to the analysis of compositional pollen data), which complicates48

cross-disciplinary transfer of relevant information (Davis 1963; Fagerlind 1952; Prentice and49

Webb 1986). Nevertheless, acknowledgement of the constraints imposed by compositional50

data is becoming more commonplace among ecologists, particularly those characterizing51

3



microbiomes via sequencing data (Gloor and Reid 2016; Weiss et al. 2017). Still, many52

studies do not adequately confront the problem of compositionality and are hampered by53

the limitations of relative abundance data.54

A variety of statistical transformations involving log ratios have been suggested to ad-55

dress the problems of compositionality, with perhaps the most common being the centered56

log ratio (clr) transformation (Aitchison 1982; Egozcue et al. 2003; Fernandes et al. 2014;57

Gloor et al. 2017). However, the benefits of the clr transformation are limited for high-58

dimensional, sparse data (data with many zeros, such as those describing assemblages with59

numerous rare taxa, which may not be observed at all in many samples), such as those char-60

acterizing microbial biodiversity. This is because logs of zero are undefined and thus, sparse61

data requires the addition of some constant to every element. The geometric mean of high62

dimensional, sparse data approaches this constant and thus ceases to provide a normaliza-63

tion benefit when used as a divisor (for more see Tsilimigras and Fodor 2016). Furthermore,64

the transformations alone do not allow for the conversion of relative abundance estimates to65

absolute abundances.66

A promising solution to these problems is the incorporation of an internal standard (ISD)67

into the DNA sequencing process (Chen et al. 2016; Hossain et al. 2020; Jiang et al. 2011;68

Smets et al. 2016; Tourlousse et al. 2017; Zemb et al. 2020). Colloquially, this process is re-69

ferred to as adding a “spike-in” of known quantity to samples. Similar approaches to spiking70

samples with an ISD have been applied in other disciplines seeking absolute abundances (e.g.71

paleoecology; Benninghoff 1962; Davis 1966; Davis and Deevey 1964; Giesecke and Fontana72

2008). For high-throughput sequencing, the relevant ISD is a unique molecule (or cell, see73

below) that is added to all samples in a known absolute abundance (i.e., as measured in74

cells or moles). Through comparison to the ISD, the relative abundances of other sequenced75

features can be converted to units of absolute abundance (see below for an example; Fig. 1).76

ISDs are powerful tools that are rapidly gaining attention, particularly among microbial ecol-77

ogists, but they are still not routinely used. As ISDs become regarded as critical components78
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of a well-designed sequencing study (Chen et al. 2016; Jones et al. 2015), there is a need for79

understanding of the many commonly-encountered sampling scenarios and the laboratory80

biases that can undercut the efficacy of the standards. Here, we describe these considera-81

tions and suggest best practices for the design and use of ISDs. Much of our discussion relies82

on analogy to and examples from the microbial ecology literature, with specific application83

to metabarcoding, however our review is broadly relevant to characterization of absolute84

abundances of nucleic acids as required across sub-disciplines of molecular ecology using a85

variety of techniques (e.g., environmental DNA sequencing for metabarcoding of vertebrate86

taxa, metagenomics, qPCR, transcriptomics, etc.).87

Is an ISD needed?88

Prior to designing an ISD suitable for a particular study design, it is worth considering if an89

ISD is needed. For instance, if the sample can be homogenized to allow counting of target90

cells within an aliquot then an ISD will provide little additional benefit—though it could91

still act as a positive control and provide insight into technical variation. Counting cells92

may be possible for studies with few samples and can be accomplished through fluorescence93

microscopy (Amann and Fuchs 2008; Daims et al. 2001) or flow cytometry (Props et al.94

2017a,b). For example, Vandeputte et al. (2017) used flow cytometry to count cells within a95

series of faecal samples and used these counts to transform 16S data from relative to actual96

abundances (also see Frossard et al. 2016). Such approaches hold great merit because many97

of the concerns with ISD efficacy that we describe below would be obviated by having a98

cell count in hand. Unfortunately, optimizing flow cytometry protocols for experimental99

conditions may be impractical for many researchers, particularly those studying microbial100

assemblages living inside tissues of a host organism (Doležel et al. 2007). Moreover, flow101

cytometry requires specialized equipment and skill, and can increase the logistical burden of102

a study more than the use of a spike-in ISD.103

Quantitative PCR can also be used to estimate total copies of a genomic feature in a104
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sample (e.g., copies of 16S), which can then be used to convert relative abundance estimates105

for each taxon to absolute abundances (Bonk et al. 2018; Dannemiller et al. 2014; Higuchi et106

al. 1993; Jian et al. 2020; Lou et al. 2018; Zhang et al. 2017). Droplet digital PCR (ddPCR;107

Hindson et al. 2011), is a promising tool for this approach because it provides heightened108

accuracy and throughput compared to conventional real-time qPCR; most importantly, it109

estimates abundances directly and does not rely on comparison to a quantitative standard110

(Baker 2012; Hindson et al. 2011; Kim et al. 2015; Morella et al. 2018). Barlow et al. (2020)111

recently used such an approach to demonstrate that absolute abundances of gut bacteria112

shifted in mice eating a ketogenic diet, and that relative abundances of particular taxa gave113

misleading results compared to absolute abundances. At the time of writing, ddPCR is114

currently more expensive than qPCR and also operates over a smaller dynamic range. The115

use of qPCR, via ddPCR or traditional techniques, is a simple, elegant approach to estimate116

absolute microbial abundances, however many of the pitfalls affecting ISDs can also affect117

this technique (Bonk et al. 2018). Moreover, while qPCR is relatively inexpensive, costs118

can mount when analyzing many thousands of samples and, therefore, the use of an ISD119

may save time and money for large-scale sequencing studies. The benefits and drawbacks120

of qPCR versus ISDs are poorly characterized, however, Stämmler et al. 2016 suggested121

that cellular ISDs outperformed qPCR for conversion of relative abundances to absolute122

abundances. These authors were studying the faecal microbiome and it is unclear if their123

findings translate to other sample types.124

How does an internal standard work?125

The potential benefit of ISDs is that they allow the conversion of relative abundances into126

absolute abundances. To see why this is desirable and why relative abundances in composi-127

tional data are problematic, consider a hypothetical comparison of two microbiome samples128

(Fig. 1). The first sample contains two equally-abundant microbial taxa and the second129

sample contains the same two taxa, but their relative abundances have shifted such that130
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one is more abundant than the other. We could represent sequence data for these samples131

as vectors of proportions, with the first sample consisting of two equally abundant elements132

with proportions that sum to one ~p1 = [0.5, 0.5]. Whereas, the second sample has unequal133

elements, but the proportions also sum to one, e.g.: ~p2 = [0.7, 0.3]. The fact that both vec-134

tors must share the same sum (1 in this case) is referred to as the “constant sum constraint”135

of compositional data (Gloor et al. 2017) and is why neither of these vectors, nor the un-136

derlying sequence data, contain direct information regarding the absolute abundances of the137

microbial taxa being examined. For instance, it is impossible to know why, in sample two,138

the first microbe is greater in relative abundance compared to sample one. The difference139

could be due to the first taxon truly having a higher absolute abundance in sample two than140

in sample one. But it could also be due to a decrease in the second microbial taxon, or some141

combination of both possibilities, because the constant sum constraint of relative abundance142

data must be satisfied.143

This conundrum can potentially be resolved if a known quantity of a third microbial taxon144

is added to each sample as an ISD (Fig. 1, panels g and h). Continuing with the previous145

example, we could include an ISD as the third element of each sample. After adding the146

same number of cells of the ISD to both microbial samples and repeating the sequencing147

process, one might obtain a proportion vector for sample one of: ~p1 = [0.45, 0.45, 0.1], and for148

sample two of ~p2 = [0.7, 0.25, 0.05] (the proportion taken by the ISD, the third number, could149

take any non-zero value). Because the same cell count of ISD was added to each sample,150

calculating the ratio of microbial relative abundances to the relative abundance of the ISD151

transforms the relative abundances making them proportional to absolute abundances, with152

units of the ISD (Fig. 2). In the example, on the scale of the ISD, the absolute abundances153

in sample one are [4.5, 4.5, 1] and in sample two are [14, 5, 1]. Thus, for every unit of ISD154

observed there were 14 units of the first microbial taxon in sample two, but only 4.5 in155

sample one, indicating that the first microbial taxon is present at higher absolute abundance156

in sample two. The second microbial taxon also increased in abundance in sample two157
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compared to sample one, but did not do so as much as the first taxon. Absolute abundances158

in units of the ISD can be scaled appropriately to other units by knowing the amount of159

standard that was added (the number of cells, or the number of moles of a DNA molecule).160

If the log of the ratio between the ISD and each feature is taken then the aforementioned

calculation becomes a case of the ‘additive log ratio’ (alr) transformation (Aitchison 1982).

The alr is a popular transform in compositional data analysis and is expressed as:

alr(~x) = ~y =
[
ln

x1

xD

; ...; ln
xD−1

xD

]

where ~x is a simplex with D components. The alr maps the simplex onto the real numbers,161

thus allowing multivariate statistics to be applied, so long as those statistics do not assume a162

preservation of relative distances among the elements of the transformed vector (see Aitchison163

and Egozcue 2005; Gloor et al. 2017; Quinn et al. 2018, 2019; Tsilimigras and Fodor 2016,164

for more). The choice of denominator in this transform is arbitrary. We mention the alr,165

and point the reader to aforementioned citations, to provide an avenue to explore the rich166

field of compositional data analysis, while noting that the primary benefit of ISD use is to167

sidestep the problems of compositionality.168

What type of internal standard should be used?169

Two main approaches exist for using ISDs in sequencing studies. The first involves adding170

a foreign molecule (or cell) to samples to be sequenced; we will refer to this method as a171

“spike-in” ISD. Alternatively, invariant features already present within samples can be used;172

we will refer to this type of ISD as an “inherent” ISD.173

Researchers studying gene expression have long relied on inherent ISDs to facilitate com-174

parison of transcription levels across samples (reviewed by Eisenberg and Levanon 2013;175

Thellin et al. 1999). Inherent ISDs are chosen from among those genes that contribute to176
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the basic functioning of the cell (“housekeeping” genes) and are thus expected to be con-177

stitutively expressed. The idea is that these genes constantly produce the same number of178

transcripts, thus reads from them can be used as a baseline when comparing the expression179

levels of other genes among samples. Identifying housekeeping genes that are suitable for180

use as inherent ISDs is challenging and highly system-dependent because expressed genes181

differ among organisms and tissues, and the assumption of constitutive expression is often182

violated (Eisenberg and Levanon 2013; Jonge et al. 2007; Lun et al. 2017; Thellin et al.183

1999; Tricarico et al. 2002). These drawbacks eliminate inherent ISDs from consideration for184

molecular community ecology—clearly, no taxon is expected to exist at identical abundances185

among habitats.186

Molecular community ecologists thus must rely on spike-in ISDs. The development of187

spike-in ISDs has proven challenging, however, because the following assumptions must be188

satisfied: 1.) the ISD must behave similarly to template nucleic acids during laboratory189

practices, a characteristic referred to as “commutability” (Hardwick et al. 2017; Risso et190

al. 2014); and, 2.) there can be no chance that the ISD can be mistaken for a feature191

naturally occurring in samples. A third, practical consideration is deciding when the spike-192

in should be added during laboratory procedures and determining how much of it to add193

(as discussed below). Of these challenges, designing an ISD with sufficient commutability is194

the most daunting because ecological communities typically contain many taxa with vastly195

different traits—including variation in cell wall structure that influences cell lysability and196

thus DNA extraction yield. Similarly, even a pool of purified DNAs from various taxa will197

differ in primer affinity, sequence length, GC content, and so on, all of which can affect PCR198

performance (Bonk et al. 2018).199

Two broad types of spike-in ISDs have been developed for metabarcoding: cellular ISDs200

and DNA ISDs. Cellular ISDs consist of adding cells of a foreign taxon to each sample,201

while DNA ISDs consist of DNA that has been extracted from an organism or synthesized.202

Both types of ISDs provide unique benefits for solving the commutability problem, but,203

9



unfortunately, both also have drawbacks, as we will discuss.204

To our knowledge, cellular ISDs were the first to be used for metabarcoding (Jones205

et al. 2015; Stämmler et al. 2016); for example, in a seminal paper Stämmler et al. 2016206

suggested using cells of several halophilic bacterial taxa and one bacterial taxon that occurs207

in the plant rhizosphere as ISDs for studies of the mammalian faecal microbiome. Because208

cellular ISDs were added prior to extraction, they allowed for measurement of variation in209

extraction yield among samples, at least to some extent. Indeed, since cells can drastically210

differ in amenability to DNA extraction (e.g., Gram positive versus Gram negative cells) and211

the sample matrix can also affect extraction performance, well-chosen cellular ISDs could212

potentially improve commutability for many studies.213

The downsides to cellular ISDs are two-fold: first, choosing a cellular ISD can be challeng-214

ing because it must have similar traits to focal organisms (so that behaves similarly to those215

organisms during extraction and PCR), be easily cultured (or available commercially), and216

cannot occur in the biological samples. Second, a non-clonal culture of a cellular ISD could217

possess copy number variation (CNV) in marker loci that must be measured and accounted218

for, else the ISD will not provide consistent and accurate absolute abundance estimates219

(Kembel et al. 2012). Even for clonally propagated ISDs, CNV for marker loci still must be220

determined to ensure accurate estimation of absolute abundances. For well-known taxa, esti-221

mates of CNV for marker loci could be obtained from published genomic resources (Langille222

et al. 2013; Perisin et al. 2016; Stoddard et al. 2015) or, for less studied taxa, quantitative223

PCR (qPCR) could be used to estimate copy number per cell. For those ecologists interested224

in non-microbial assemblages, determining suitable cellular ISDs is particularly challenging225

because culturing cells that are commutable with focal taxa may not be possible.226

An alternative approach to cellular ISDs is the use of DNA molecules. Many microbial227

ecologists have advocated DNA ISDs, either in the form of extracted genomic DNA from228

organisms not likely to be present in samples or as synthetically designed molecules (Hard-229

wick et al. 2016, 2018; Lin et al. 2019; Smets et al. 2016; Tkacz et al. 2018; Tourlousse230
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et al. 2017; Venkataraman et al. 2018; Yang et al. 2018; Zemb et al. 2020). We suggest231

that synthetic sequences are superior to biologically-derived DNA for several reasons. First,232

and most obviously, there is no chance a synthetic sequence will occur naturally in samples,233

regardless of sample type. Second, reference DNA that is isolated from the genome could234

correspond to a variable number of genomic loci (CNV; as would actual cells; see above)235

and accounting for this potential variation among different isolates of a standard would re-236

quire additional laboratory work, such as qPCR. Third, the nucleotide composition of an237

extracted DNA sequence is fixed and will likely only be commutable to a subset of focal taxa.238

By comparison, a synthetic ISD’s DNA sequence can be specified such that it is comparable239

to the nucleotide composition of any organism (e.g., in length, GC content, repeat density,240

etc.) and thus could be tailored to fit the specific needs of a study.241

The design of a synthetic ISD is fairly simple. The primary requirements are that the242

sequence cannot match any known organisms and is long enough that it will not be removed243

during PCR clean up (e.g., when using size selection to remove excess primer molecules).244

If a generic ISD is desired, then the sequence should minimize homopolymers and internal245

complementarity, have balanced GC content, and be approximately the same length as the246

focal metabarcoding locus. Alternatively, the sequence(s) could be designed to mimic focal247

taxa even if emulation could produce less than ideal sequence characteristics, thus potentially248

improving commutability during PCR and sequencing. After designing the ISD sequence,249

it must be bracketed by the preferred primer pair, with the complement of the forward250

primer at the beginning of the read and the uncomplemented reverse primer appended to251

the read (assuming single stranded synthesis). A variety of ISD designs are present in252

the literature (Table 1). Designs range from fully synthetic to hybrids between synthetic253

and biological sequences. For example, (Tourlousse et al. 2017) interject non-biological,254

synthetic sequences into the full-length 16S sequence of Escherichia coli and several other255

bacteria, thus allowing ISD sequences to be differentiated during analysis, but ensuring256

that they mimic many aspects of the 16S architecture. Hardwick et al. 2018 describe an257
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elegant approach to ensure ISDs emulate focal taxa during laboratory preparation through258

preserving sequence composition characteristics (e.g., GC content, etc.). These researchers259

suggest simply reversing the portion of the genome of the focal taxon under consideration260

(e.g., the portion of the rRNA operon commonly used for molecular metabarcoding). The261

approach of Hardwick et al. 2018 was suggested for shotgun metagenomics. Notably, if such262

a technique is used for single-locus, metabarcoding, correct-sense primer sequences must be263

appended to the reversed sequence to ensure amplification.264

Trade-offs exist with all ISDs such that a general statement regarding the superiority of265

any approach would be misleading. However, we suggest that actual microbial cells should266

be used as ISDs for studies involving samples that are likely to vary in nucleic extraction267

yield and for which certain focal taxa are known, such that a commutable ISD(s) could be268

chosen. We acknowledge that for many experimental designs commutable cellular ISD(s)269

could be difficult to choose. In such a situation, synthetic DNA ISDs could be simpler to use270

and thus preferable. Synthetic DNA ISDs could also be used for studies where samples are271

not likely to vary systematically in extraction performance (e.g., leaves from the same plant272

taxon; aliquots of similar soils). We do not advocate the use of extracted genomic DNA as273

an ISD unless CNV for focal loci is known.274

The benefits of ISD mixtures275

Regardless of whether a study design dictates the use of a cellular or synthetic ISD, re-276

searchers should consider the benefits of using a mixture of multiple ISDs as opposed to a277

single sequence or taxon. By adding a known amount of multiple ISDs to each sample, the278

failure of any one ISD to act as a true standard can be detected (Ji et al. 2020). For instance,279

if three ISDs were added to each sample in equal abundance and the relative abundance of280

the ISDs in the data obtained from the sequencer for a particular sample were 1:2:1, then it281

is clear that the second ISD was over-represented and should be omitted from consideration282

for that sample. Identification of a single malfunctioning standard is possible when using283
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three (or more) standards, whereas if only two standards were used it would not be possible284

to determine which of the two ISDs had failed.285

Another benefit of a mixture of ISDs is that it may lead to increased robustness to286

technical variation. For instance, Tourlousse et al. 2017 created 12 synthetic ISDs and287

reported that each responded slightly differently to laboratory practices. Accordingly, they288

reported an improvement in the accuracy of absolute abundance calculations when summing289

read counts across ISDs. The same result was reported by Stämmler et al. 2016, who used290

several cellular ISDs.291

A final benefit of an ISD mixture is that sequences (or cells) emulating a variety of taxa292

can be included; thus, providing insight into the effects of laboratory practices across taxa293

akin to using a mock community as a positive control (Goodrich et al. 2014; Nguyen et294

al. 2014). Clearly, as ISD mixtures become more complex, they demand more sequencing295

depth—saying nothing of the time spent on their design. Until a sufficient breadth of ISD296

mixtures becomes commercially available, we suggest that researchers strike a balance be-297

tween commutability and logistical cost by choosing a handful of sequences (or cells) that298

emulate those of focal taxa.299

Considerations when deploying an ISD300

The primary reason ISDs can fail to act as a standard is when the ratio of focal cells (or301

sequences) to the ISD shifts among samples in unexpected and unmeasured ways (Fig. 2, 3).302

A simple way this can happen is if there is unmeasured and unaccounted for variation303

among samples in input mass. To see why this is problematic, consider the situation in304

which two samples have identical microbial assemblages, but one sample has half the input305

mass of the other sample and therefore contains half as much DNA (Fig. 2c). If the same306

amount of ISD were added to each sample and normalization calculations performed as307

described above without accounting for sample mass differences, then it would appear as if308
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microbial abundance was twice as high for one of the samples. While the two samples truly309

differ in microbial abundance, the difference is driven by differences in input mass among310

samples, not by differences in the microbial density in the source material. Consequently,311

laboratory methods typically involve standardization of the input mass of samples. However,312

imprecision in mass measurements made prior to nucleic acid extraction is rarely accounted313

for during data analysis and can add misleading variation to absolute abundance estimates.314

Problematic confounding could arise if sample mass were to differ systematically by substrate,315

experimental treatment, or among other batches. Fortunately, if input mass or volume varied316

among samples but was recorded, researchers can transform absolute abundances to absolute317

densities, on a scale of units of the ISD per unit of input mass (or volume).318

A more insidious problem is when samples possess similar total masses but differ in the319

amount of target substrate present. For instance, if samples differ in hydration, then vari-320

ation in the amount of water present could obscure differences in extractable mass among321

samples. Therefore, samples should be well dried prior to weighing and ISD incorporation.322

Variation in the amount of inorganic substrate present is particularly challenging for soil sam-323

ples, which often differ in mineral composition, and hence density. In such cases, researchers324

should consider if volume is a more appropriate unit by which to standardize samples. The325

problem becomes amplified by comparisons across different substrates with fundamentally326

different characteristics and varying mixtures of potential microbial ‘habitats’ (e.g., compar-327

isons across water, soil, and plants, or even different soils containing assemblages derived328

from communities within pore water, organic, and inorganic matter pools). Two soils could329

have identical water masses and contain the same microbial taxa, but varying soil matrices330

and associated microbial masses, which could alter the final homogenized samples if normal-331

ized by total volume or mass. In such cases, samples may require separation to better allow332

normalization of the target fraction (e.g., the organic portions of soil samples).333

Time represented by the sample may also be important (e.g., duration of water filtra-334

tion or sediment accumulation) because, all else being equal, more biological cells are likely335
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contained within samples that encompass greater time and thus been subject to greater336

cellular deposition. Variation in the time captured by a sample could be particularly prob-337

lematic when attempting to quantitatively compare assemblages via environmental DNA,338

such as when using cells in lake sediment to characterize aquatic invertebrate and vertebrate339

assemblages (Thomsen and Willerslev 2015; Turner et al. 2015).340

ISD efficacy can also be undercut by variation in nucleic extraction performance among341

samples (Fig. 2c). For instance, if samples differ in physical toughness, such as what could be342

expected among tissue types of plants (i.e., stems versus leaves), more DNA will be obtained343

from samples with cells that are easier to lyse and the ratio of ISD to template DNA obtained344

will shift among samples, leading to inaccurate absolute abundance calculations. The same345

problem could occur if samples differ in the presence of compounds that inhibit extraction346

effectiveness (e.g., phenols in plants; Wilson 1997).347

Variation in extraction yield is particularly difficult to measure for researchers interested348

in endosymbiotic microbial assemblages. This is because the recalcitrance of samples is349

defined by the traits of the host cells within and among which focal microbes reside (e.g.,350

cell wall thickness can vary among plant taxa and tissue type) and a microbial cellular ISD351

will not emulate these traits. A possible solution for this problem is suggested through352

recent work by Karasov et al. (2019) who show that host-derived DNA can function as an353

inherent ISD when examining microbial symbiont assemblages. These researchers suggest354

estimation of microbial load as the ratio of host to bacterial reads obtained from shotgun355

metagenomic sequencing (also see Guo et al. 2019; Humphrey and Whiteman 2020; Karasov356

et al. 2018, 2019; Regalado et al. 2019). A possible benefit of this approach, as stated, is357

that metagenomic sequencing is a less biased way to estimate total host and bacterial load358

than amplicon sequencing.359

Unfortunately, nucleic acid extraction methodology is not the only laboratory technique360

that can influence the effectiveness of an ISD. Compounds that can inhibit or facilitate361

PCR (Rossen et al. 1992; Wilson and Carroll 1997) may also cause problems. Consider362
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the case when variation in amplification has occurred across samples that differ only in363

the presence of inhibiting or facilitating compounds (reviewed by Schrader et al. 2012).364

Assuming commutability, an ISD could account for these effects. However, Huggett et al.365

2008 report variation in inhibition across PCR reactions. The drivers of this inhibition were366

unclear, but the authors suggested variation in amplicon GC content and primer melting367

point were two possible causes. Opel et al. 2010 reported similar sequence-specific inhibition368

and found that the mode of action varied markedly among compounds. These studies confirm369

that inhibitors can act in a sequence-specific way, which would undercut the commutability370

of ISDs for some portion of the amplicon pool they represent.371

We are unaware of any studies or software that model the sequence qualities (e.g., length,372

GC content, etc.) that could lead to PCR inhibition in the presence of various compounds.373

We suggest that understanding the effect of PCR inhibitors on taxa of particular biological374

interest (e.g., important pathogens) and within oft-studied substances (e.g., blood, urine,375

tissues of model organisms) is a pressing need. Because of the looming issue of PCR in-376

hibitors, we suggest that nucleic acid extraction protocols be preferred that consistently377

remove problematic compounds at the outset—a stated benefit of many commercially avail-378

able extraction kits (e.g., the Qiagen PowerSoil kit removes humic acid; Mahmoudi et al.379

2011). Similarly, we suggest that compounds known to block the action of inhibitors be380

considered as additions to PCR recipes (e.g., bovine serum albumin; Opel et al. 2010) and381

that modern polymerases (e.g., the Thermo-Scientific Phire and Phusion polymerases) be382

employed as they can bind to DNA more strongly than earlier commercialized versions of383

the polymerase enzyme (Flores et al. 2012; Videvall et al. 2017).384

Given the many ways an ISD can fail, we suggest researchers incorporate several control385

measures into sequencing studies to ensure ISDs perform as expected. At the minimum, ISDs386

should be added to technical replicates of samples representative of the biological variation387

present. Upon sequencing, the ISD should capture approximately the same proportion of388

reads in each of these replicates. Secondly, as mentioned above, we advocate for using a389
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mixture composed of at least three ISDs. Third, when using a new ISD, or using an ISD390

during sequencing of an unfamiliar substance, it is ideal to test for quantitative behavior391

through sequencing a dilution series; reads should increase proportionally to ISD concentra-392

tion. Fourth, the possible confounding effects of inhibitors should be kept in mind, and, if393

possible, explored for the experimental system under consideration. Finally, we suggest that394

PCR cycles be kept to a minimum to avoid allowing PCR to continue until the stationary395

phase (Kelly et al. 2019).396

At what laboratory step should an ISD be added?397

To ensure spike-in ISDs perform properly, they must be added to samples at an appropriate398

time. Most authors advocate adding the ISD before nucleic acid extraction, and we concur399

(Jones et al. 2015; Smets et al. 2016; Tkacz et al. 2018; Tourlousse et al. 2017; Venkataraman400

et al. 2018; Zemb et al. 2020). This allows an ISD to capture variation in extraction perfor-401

mance (as mentioned above; Fig. 2b). Tkacz et al. (2018) added ISDs to soil samples both402

before and after DNA-extraction and report superior performance when ISDs were added403

before extraction. We note that measuring variation in extraction yield is best achieved via404

a cellular ISD that mimics traits of focal taxa (see above), however adding a DNA ISD to405

samples pre-extraction is also be beneficial (Zemb et al. 2020). The benefit of the latter406

approach arises because the abundance of the ISD in the sample would track the expected407

and potentially variable loss of DNA in extraction, such as would be caused by incomplete408

processing of all sample mass, variance during movement of supernatant and sample mass409

through the extraction protocol, or variable elution of nucleic acids from the solid-phase of410

columns used to isolate those acids.411

If samples come from the same substrate and are thus not expected to behave differently412

during nucleic acid extraction, then an ISD could be added after extraction but prior to nor-413

malizing DNA concentrations for PCR (Fig. 2a). Though we acknowledge that adding an414

ISD at this step is less than ideal, given potentially unknown characteristics of samples that415
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could have affected extraction yield. Notably, if an ISD is added after equimolar normaliza-416

tion of input DNA, then it will not be possible to accurately estimate absolute abundances in417

the original samples (Fig. 2d) because there will be no variation in the ISD among samples.418

However, even in this limited case, the ISD could still perform a useful role as a constant,419

positive control for PCR and sequencing.420

How much ISD should be included in samples?421

Choosing how much ISD to add to each sample can be challenging. Of course, it is important422

that the ISD be added in such quantity that it is detectable in all samples after sequencing,423

but it is also important to avoid adding so much ISD as to waste sequencing bandwidth. The424

majority of studies we considered showed expected quantitative behavior of ISDs throughout425

a wide range of input concentrations (e.g., Stämmler et al. 2016; Tourlousse et al. 2018),426

including quite low ISD input (~0.1% of the expected focal DNA mass present, see Smets427

et al. 2016). However, we acknowledge that for many substrates, homogenization of the428

sample prior to extraction is challenging and it is likely that some ISD will be bound up429

in unextracted material. Therefore, we suggest sacrificing some sequencing bandwidth to430

ensure the ISD is present in all samples. We suggest that 1–3% of the expected DNA yield431

is a reasonable target concentration for ISD addition (following Lin et al. 2019; Piwosz et432

al. 2018). We note that if extreme sequencing depth is employed, such as what can be433

obtained through the Illumina NovaSeq platform, it may be possible to use much less ISD434

and still achieve satisfactory results. We also suggest that a modeling approach to estimate435

proportions from count data for all sequenced features should allow much lower input of436

ISD than would estimation of proportions following rarefaction, because accurate estimates437

of proportions can be modeled given few observations (Harrison et al. 2020). Also, we note438

that if a cellular ISD is used for metabarcoding studies it is wise to consider the CNV of the439

focal loci when performing concentration calculations prior to ISD addition (see Stämmler440

et al. 2016).441
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ISDs are not a panacea for all the ills of sequencing442

ISDs can account for among-sample variation when comparing the effects of treatment or443

ecological covariates on abundances (both relative and absolute) of a particular taxon. They444

cannot however address all the concerns that complicate the comparison of abundances of445

different taxa among and within samples. In part, this is because no ISD, or mixture of446

ISDs, is perfectly commutable with each taxon in a complex ecological assemblage. It must447

be remembered that every step of the library preparation process has the potential to impose448

idiosyncratic, selective biases for and against the DNA sequences associated with different449

taxa in a sample (Fig. 3; Nilsson et al. 2018). For example, PCR primers do not match450

their target sequences equally well in all taxa, leading to preferential amplification of some451

taxa, and substantial differences in selectivity among different primers (Fouhy et al. 2016;452

Hong et al. 2009). Thus, if a primer pair is biased against a particular sequence, then the453

abundance within the sample will be underestimated and an ISD cannot remedy this error.454

Primer bias is a well known issue, but nearly every other aspect of PCR can also impose455

unwanted biases—including the type of polymerase and reagents used (Nilsson et al. 2018;456

Pollock et al. 2018; Schori et al. 2013), cycle count (Kelly et al. 2019; Silverman et al. 2019),457

GC content (Laursen et al. 2017; Risso et al. 2011), and length of the amplicon (Oshlack and458

Wakefield 2009). Aside from PCR, even the choice of sequencing platform can impose bias459

(D’Amore et al. 2016). Thus, these procedural biases can cause false negatives in inferences460

about external determinants of assemblage composition and simply make it difficult to know461

true abundances.462

Estimates of abundances of taxa are further complicated by error that arises due to463

high copy number variation (CNV) among taxa in marker loci. For example, Lofgren et al.464

(2019) reported that fungal taxa can differ in ITS copy number by an order of magnitude465

or more. Even within a single fungal taxon, Suillus brevipes, ITS copy number ranged from466

72–156. While not quite as extreme as for fungi, CNV is also widespread among bacteria467

for the commonly used 16S marker (Kembel et al. 2012; Lee et al. 2009; Perisin et al. 2016;468
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Stoddard et al. 2015; Větrovský and Baldrian 2013). Of course, variation in ploidy-level469

(Pecoraro et al. 2011), or the number of nuclei in a cell (which can vary for some multi-470

cellular fungi; Gladieux et al. 2014), can also influence copy number variation. A possible471

mitigation solution for bacteria and archaea is bioinformatic correction of CNV of focal taxa472

via comparison to the popular rrnDB database (Stoddard et al. 2015).473

A special, but similar, problem exists for researchers studying environmental DNA to474

characterize assemblages of multi-cellular organisms, as taxa shed different numbers of cells475

(e.g., due to variation in body size or in germ cell production) and live for different amounts476

of time (Thomsen and Willerslev 2015). Thus one individual of an organism could, over its477

lifetime, shed many more cells than multiple individuals of organisms with different traits478

(Cristescu and Hebert 2018).479

When taken together, these biases suggest extreme caution is in order when interpreting480

sequence data with the intention of inter-taxa comparisons of abundance (Fig. 3), such as481

when analyses focus on description of overall shifts in community composition as defined by482

changes in rank order abundances among taxa. Unfortunately, many ecology studies rely483

on a common suite of such analyses, including description of patterns in diversity entropies,484

ordination techniques, and PERMANOVA. If taxon-specific analyses are used instead, or485

in conjunction with these techniques, many of the biases we describe here become much486

less problematic. This is because most biases will affect a taxon in the same way across487

samples and, therefore, biases will not be confounded with experimental treatment(s) or488

ecological covariates of interest (McLaren et al. 2019; Morton et al. 2019). Moreover, many489

ecological questions are better answered by quantifying the effect of treatment on specific490

taxa, rather than documenting shifts in overall assemblage composition. We note that if491

inter-taxon analyses are required, that conversion to absolute abundances removes at least492

some of the challenges imposed by compositionality that confound such inferences. Indeed,493

a primary benefit of ISDs are that they allow many popular community ecology statistics to494

be employed—many statistical techniques are inappropriate for compositional data (Gloor495
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et al. 2017; Jackson 1997).496

To learn about the biological causes of differences in taxon abundances among samples, it497

is helpful to partition variation that arises from replicated laboratory processes and biolog-498

ical variation among samples. Assuming commutability of ISDs, technical variation among499

replicates can be estimated for the ISDs and subtracted from variation for individual taxa500

to yield an estimate of biological variation for each taxon (Ji et al. 2019; Risso et al. 2014).501

Ji et al. (2019) recently used such an approach to isolate spatial, temporal, and technical502

variation in absolute abundances of gut microbes. The bulk of the variation they observed503

was assigned to technical causes. We suggest that Bayesian models are an exciting possibility504

for partitioning variation in sequence data, in part because they make full use of the data505

and can incorporate hierarchical model structures to share information among all replicates506

within a sampling group (sensu Fordyce et al. 2011; Harrison et al. 2020). This is in contrast507

to rarefaction methods, which discard observed data and thus provide potentially misleading508

information about technical and biological variation among samples (McMurdie and Holmes509

2014).510

Conclusion511

Sequencing is a powerful tool to measure abundance of organisms that are difficult to observe512

and count directly. As a research community, we are growing increasingly aware of the513

drawbacks of compositional sequencing data and the benefits provided by ISDs. But, as we514

have shown, the efficacy of ISDs is dependent upon careful accounting during laboratory515

practices and potentially unrealistic assumptions of biological simplicity (e.g., in CNV).516

Notwithstanding these challenges, ISDs liberate researchers from the constraints imposed517

by relative abundance data and we suggest that their use become a standard component of518

sequence-based study of ecological assemblages.519
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Figure 1: The problem of compositionality and how an internal standard (ISD) can help.
Panels a and b show the absolute and relative abundances of two hypothetical samples
that are each representatives of differing experimental conditions—say from a treatment-
control experimental design. Each sample contains two taxa (shown in blue and orange
respectively). Panels c–f demonstrate the many different absolute abundances for sample
b that could give rise to the same relative abundance profile. One taxon could increase
(c); or decrease (d); or both taxa could decrease, but one more so than the other (e); or
both taxa could increase, but one more so than the other (f). Thus, it is not possible
to determine shifts in absolute abundances from relative abundance data. However, if
a consistent amount of an ISD is added to each sample (panel g), then division by the
ISD (panel h) can convert relative abundance data into ratios that are proportional to
the absolute abundances present in each sample. Estimation of absolute abundances is
possible upon multiplication of proportions by a constant that encompasses variation
in extracted mass while accounting for copy-number variation (if appropriate, see main
text).
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Figure 2: The addition of an internal standard (ISD) to samples can correct for the
problems posed by the compositional nature of sequencing data, but the ISD must be
added at the correct time during sample processing. Here, we present data representative
of four laboratory scenarios that affect ISD efficacy. For each scenario, we present
relative abundance data for two samples, each of which contains three features that are
shown in different colors. The ISD is shown in orange and, for each scenario, a light
orange box denotes the step at which the ISD is added. a) Here, ISD is added prior to
equimolar pooling of nucleic acids (a common practice prior to PCR and sequencing)
and there is no variation in sample mass, or yield from nucleic acid extraction, or other
biases induced by laboratory-practice. In this case the ISD performs as desired. b) If
the ISD is added prior to nucleic acid extraction and reflects variation in extraction yield
among samples (i.e., as would be expected for a commutable cellular ISD), then the ISD
can be used to back-calculate absolute abundances. c) However, if the ISD is added after
extraction, or is not commutable to focal taxa during extraction, and samples differ in
extraction yield, then the ISD will not perform as expected. d) Similarly, if the ISD is
added after equimolar pooling of samples then it is no longer effective.
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Figure 3: ISDs are useful tools, but cannot correct for all biases associated
with sequence-based characterization of ecological assemblages. We present
here a selection of biases that are organized chronologically following the data
generation process—from sampling to sequencing. Colored boxes next to each
source of bias denote whether it can affect relative abundances or absolute
abundances. It is likely that many of the biases mentioned here act in a taxon-
specific manner, thus inter-taxa comparisons of abundance are fraught (i.e.,
comparing taxa in terms of cell count within or among samples or sampling
groups). Biases can affect many analyses. For instance, differential abundance
analysis among sampling groups of relative or absolute abundance data will be
misleading if biases affect accurate estimation of either type of abundance. This
catalogue of biases does not mean sequence-based characterization of ecological
assemblages is doomed to fail, only that biases must be carefully considered
when planning an experiment so that the most meaning can be extracted from
the resulting data.
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