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2Swiss Institute of Bioinformatics (SIB), Switzerland

3Department of Biological Sciences, Southeastern Louisiana University, Hammond, United

States

1 Abstract

Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology

and macroevolution. In this article we describe the tripartite model used for Bayesian estimation of

time calibrated phylogenetic trees. The model can be readily separated into its component models:

the substitution model, the clock model and the tree model. We provide an overview of the most

widely used models for each component and highlight the advantages of implementing the tripartite

model within a Bayesian framework.
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2 Introduction

Phylogenetic inference, also known as phylogenetic tree inference or simply tree inference, is com-

mon in all facets of biology and estimating a phylogeny is a critical step in many comparative

analyses. The fact that tree inference is common can obscure the underlying complexity of the

task. When a researcher estimates a phylogeny, they are attempting to reconstruct evolutionary

events that potentially occurred millions of years ago. In modern phylogenetics, inferring trees is

often achieved by using an evolutionary model that ideally captures the generating processes that

underlie our data. Since no two datasets are exactly the same, in terms of evolutionary history or

taxon sampling, choosing the best approach to build a phylogeny requires deep knowledge of the

taxonomic group, as well as phylogenetic theory. In this review, we focus on the models commonly

used to infer phylogenies in macroevolution and paleobiology research.

The primary source of evidence used to infer evolutionary relationships are phylogenetic characters:

molecular sequences and morphology in the case of living species or morphology in the case of most

fossils. The number of differences observed between the species included in the phylogeny are used to

measure evolutionary distances and to group them together in the tree. This task, however, becomes

more challenging if we also need to date the inferred phylogenies. This is because phylogenetic

characters only contain information about how fast or how slow species evolve depending on the

measured evolutionary distance, which is relative time. Additional temporal evidence, which can

be given by geological events or the fossil record, is required to calibrate trees to geological time

(sometimes called absolute time). Otherwise, it is not straightforward to distinguish between rapid

evolutionary rates over short intervals versus slow evolutionary rates over long intervals. Fig.

1 provides a recap of the most important features of a phylogeny (tips, nodes, and branches,

which together comprise the tree topology) and shows an example of the output generated by

undated and dated phylogenetic trees. An undated phylogeny will typically have branch lengths

in units that reflect the overall number of molecular or morphological character changes that have

occurred between the two edges of a branch (i.e., between the ancestral node and the younger node

represented at the edges of this branch, respectively), while a dated tree will use units of calendar

time, such as years or millions of years.

Inferring time calibrated trees is often achieved by jointly estimating the topology and node ages. In

performing this analysis, researchers usually assume a tripartite model of evolution: one model that

describes the accumulation of differences in character data, a second that describes the distribution
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Figure 1: Undated versus dated phylogenetic inference. A phylogenetic tree is comprised of tips (indicated

with circles in panel A), which represent the taxa between which we aim to infer the evolutionary relationships. These

taxa are connected by branches. The branches are connected by nodes (indicated with triangles in panel A), which

reflect the most recent common ancestor between two given tips. The overall structure of the tree used to represent

phylogenetic relationships is referred to as the topology. In an undated phylogeny branch lengths are typically in

units that represent the overall amount of character change, indicated here by the scale bar. In undated model based

tree inference, the units usually represent the number of expected changes per character. A tree estimated with no

temporal information can be seen in panel A. In a time calibrated tree the branch lengths will be in units of calendar

time, often in years or millions of years. Panel B shows the same tree from panel A, but with branches in millions of

years, along with stratigraphic ranges (grey boxes).
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of evolutionary rates across the tree, and a third model describing the distribution of speciation

events (node ages) across the tree (Thorne et al., 1998; Kishino et al., 2001; Yang and Rannala,

2006; Drummond et al., 2006). This tripartite approach is a product of the history of phylogenetic

model development and reflects the way in which researchers have traditionally tried to break

down the problem of estimating evolutionary time from phylogenetic character data. While the

tripartite model may sound complex, it enables researchers to treat each component as a discrete

inferential module and provides them with the flexibility to combine different models that best suit

their data. Understanding the tripartite framework is therefore useful for tracing the history of

model development, making informed parameter choices, interpreting your results and diagnosing

problems with your analysis.

Within macroevolution and evolutionary biology, the tripartite framework has typically been ap-

plied to infer dated trees representing relationships among living species. Recent technical and

theoretical advances have allowed the tripartite framework to be applied to trees that also include

extinct representatives, i.e., fossil species (Stadler, 2010; Ronquist et al., 2012; Heath et al., 2014;

Gavryushkina et al., 2014; Zhang et al., 2016; Gavryushkina et al., 2017). This means the frame-

work can be applied to entirely extinct clades, or other datasets for which we rely on morphology,

rather than molecular data, to inform phylogenetic inference. The tripartite model has been used

to infer trees, times and evolutionary rates among Cenozoic canids (Slater, 2015), crown birds and

their Mesozoic relatives (Lee et al., 2014), Paleozoic echinoderms (Wright, 2017; Wright and Toom,

2017), Cambrian trilobites (Paterson et al., 2019), and Cambrian Cinctans (Wagner, Wright and

Wright in prep.).

We describe the components of the tripartite model in more detail and the processes they aim to

capture. We then explain how to perform this analysis with Bayesian methods and highlight some

of the advantages of using this statistical framework. Finally, we discuss how different aspects of

the tripartite model can be linked and how this can be used to test hypotheses in paleobiology.

3 A brief introduction to Bayesian inference in phylogenetics

In this review, we focus on divergence time estimation using Bayesian methods, which incorporate

prior information and researcher intuition about parameters in our model. Unlike some other

approaches, Bayesian methods estimate a sample of phylogenetic trees as well as a sample of values
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for the parameters of the underlying phylogenetic model. We can think of Bayesian inference as

having three important components: the model likelihood, the prior, and the posterior.

We will be discussing these methods in a Bayesian context for a few reasons. Perhaps the most

important is that Bayesian methods estimate a sample of plausible parameter values under a model.

A Bayesian method inherently provides an indication of the uncertainty associated with any inferred

model parameter. Since we are unlikely to be able to observe the true parameter values for an

event that occurred millions of years in the past, it is prudent to consider possible ranges for

parameters in our model, within which the true parameter is likely to be. Bayesian methods

also allow researchers to constrain the values an individual parameter can take. This is a desirable

property because we may have prior information from studies conducted by other researchers about

the numerical value of a parameter. In this way, Bayesian inference provides an intuitive approach to

accommodating uncertainty in other evolutionary and sampling parameters, and incorporating our

existing knowledge of parameter values. On a practical level, much of the widely-used divergence

time estimation software has also been written in a Bayesian context.

3.1 The model likelihood

We often think of statistical words in colloquial terms. For instance, we may think of “likelihood” in

our daily life as an event being likely or unlikely. This is different from statistics, when we calculate

the model likelihood, or probability, of the observed data given a particular model. A model is a

mathematical description of a phenomenon. Models are made up of parameters, which are thought

to represent key factors of that phenomenon. The relationship between parameters is described

through mathematical expressions. Many parameters of a model are treated as random variables.

A random variable has an unknown value, for which candidate values will be tested as the inference

of the given parameters proceeds. Bayesian analyses typically sample large numbers of solutions

that explain how the data may have been generated under the specified model, with each sample

appearing in proportion to its probability. In the tripartite model for divergence time estimation,

all parts of the model (substitution model, clock model and tree model) will be represented in the

likelihood, as well as in the prior (Fig. 2).
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Figure 2: A tripartite model for Bayesian divergence time estimation. The top panel shows the key

ingredients required during inference. The data used to generate time calibrated trees: molecular or morphological

phylogenetic characters, and age information, typically fossil sampling times. The model includes the substitution

(site) model, which describes the evolution of characters, the clock model, which describes the distribution of evo-

lutionary rates across the tree, and the tree model, which describes the distribution of speciation events across the

tree. Bayes theorem is presented in the middle panel. The bottom panel illustrates how everything comes together

for the Bayesian estimation of divergence times. This figure is based on Fig. 1 in du Plessis and Stadler (2015).
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3.2 The prior

A prior specifies a probability distribution from which the value of a particular parameter may be

drawn. Importantly, the value of a parameter can fall outside the prior distribution. Priors can be

enforced with varying degrees of strength. If the data strongly support a value for a parameter that

is in conflict with the prior specified, that value can still be supported if the prior is not strongly

enforced. Priors can also be chosen to offer maximal flexibility in the potential values for the

parameter. For example, a weak intuition about the value of a parameter can be incorporated via a

vague prior. In biology, it is fairly common to use distributions such as the Gamma or Exponential

as priors, which can be very flexible depending on the centrality and/or shape parameters. An

example of the flexibility that can be achieved using alternative priors is shown in Fig. 4, in the

context of the clock model. Because reliable information with which researchers can inform prior

choice is often unavailable, this flexibility is considered desirable (Brandley et al., 2006).

Sometimes, the distinction between what we call a model and the prior can be difficult to see (See

Box ‘The likelihood, the prior and the posterior’ for more information). By constraining the values

a parameter can take, it is possible to steer estimation towards or away from certain sets of values,

without changing what facets of the generating process are being modeled. The priors, therefore,

are part of a model, as they can lead to the parameters of that model taking on different values.

3.3 The posterior

The posterior is the outcome of a Bayesian analysis and includes a distribution of plausible values

for all of the parameters specified in our models, including the tree topology and divergence times.

This component effectively combines the information from the prior with the likelihood. Fig. 2

provides a visual guide of how the prior and the likelihood come together to obtain the posterior.

We cannot easily compute the posterior probability due to the relative complexity of phylogenetic

models. The posterior is typically generated through what is referred to as Markov Chain Monte

Carlo (MCMC) sampling. Under this algorithm, values for parameters are proposed, and the

likelihood of the data under this model is scored. Then, the model parameters are changed, and

the data are re-scored under this new model. Generally, if the new parameter is an improvement,

it is kept, and used as the seed for the next set of changes. MCMC does not track what values have

already been scored, therefore a parameter that is a good fit may be returned to multiple times.
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Values for each parameter will appear in the posterior distribution in proportion to how probable

they are, given our model and priors. The highest point or points of the distribution represent

the most probable parameter estimates. The variance of the posterior distribution for a given

parameter reflects the uncertainty in that estimate. If the variance in our posterior distribution

is relatively high, this reflects lots of uncertainty in our parameter estimate. Conversely, if the

variance is relatively low the uncertainty in our estimate is low. Note that low uncertainty does not

necessarily mean a value is true, just that there is high support for it given the data and model.

In other words, even though the precision with which the parameter value has been estimated is

high (low uncertainty, small variance), this does not imply the inference has also been accurate. A

value could be estimated with low uncertainty but actually be very far from the true value. High

precision does not guarantee high accuracy. Similarly, high variance or uncertainty in the posterior

does not necessarily mean that the model is incorrect or that the analysis is bad. It simply means

that there is limited information in our data. It is also possible to have more than one peak in your

posterior sample. This indicates that multiple solutions are feasible given the model and the data.

From the posterior distribution of many standard model parameters (e.g., rate parameters) we can

construct credible intervals, which are the Bayesian analog to confidence intervals. We typically

use the 95% highest posterior density (HDP) interval, which is the spread of posterior values that

contains 95% of the posterior. The upper and lower limits of the of 95% HPD are an intuitive way of

communicating the uncertainty associated with parameters such as rates or node ages. Summarizing

a posterior distribution of trees, however, is altogether more tricky (Heled and Bouckaert, 2013;

O’Reilly and Donoghue, 2018). There are a variety of strategies for capturing the phylogenetic

relationships that are best supported by the posterior, which aim to summarise the estimated

trees. Support values for each node are typically based on the proportion of trees in the posterior

in which that node also appears. This is referred to as the posterior probability.

All approaches to producing summaries of the posterior have benefits and downsides (Heled and

Bouckaert, 2013), especially when there is high uncertainty associated with the tree topology

(O’Reilly and Donoghue, 2018). We emphasise that the posterior of a Bayesian phylogenetic tree

inference is really a distribution of trees and associated model parameters. We should be careful

to avoid placing too much confidence in any statistic or summary value from that distribution

(Warnock et al., 2017). Instead, it is important to understand the underlying models used to

generate your tree, and how these may result in uncertainty given the data you have.
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For more practical information about Bayesian phylogenetic inference we recommend Nascimento

et al. (2017).

4 A tripartite model for divergence time estimation

A model provides us with an expression for calculating the probability of observing our data,

given some underlying assumptions about the processes that generated the data. Perhaps the

most obvious thing we need to describe is the process of phylogenetic character evolution. This

is achieved by using the substitution model, which describes the probability of changing between

different character states. Substitution models are at the core of undated phylogenetic inference and

essentially provide a measure of evolutionary distance. We tend to measure evolutionary distance

or branch lengths in an undated phylogeny as the number of expected substitutions per character.

We say “expected” substitutions because models allow for hidden state changes, such that the

number of changes could be larger than the number we observe from our data. As noted above,

phylogenetic characters do not contain information about absolute time. Evolutionary distances

estimated using the substitution model actually represent a product of rate and time. Ultimately,

for a dated phylogeny, we need to be able to estimate the substitution rate in expected substitutions

per character per calendar unit time.

To extract information about rates and times from phylogenetic character data we need a modeling

framework that describes the relationship between these variables, in addition to the substitution

model. This is achieved with the addition of the two key model components required to date a

phylogeny: the clock model and the tree model. The clock model describes how the substitution rate

varies (or does not) across the tree. The tree model describes the process of speciation, extinction,

and lineage sampling that generated the tree. To tease apart rate and time, we either need to

know the average substitution rate or we need to calibrate the substitution rate using temporal

information from elsewhere. For macroevolutionary timescales, calibration information typically

comes from fossil sampling times or the age of biogeographic events, information incorporated into

the tree model. The tripartite approach to divergence time estimation is a hierarchical Bayesian

model, which means it links together different sub-models (i.e., the substitution, clock and tree

models); see Box ‘Hierarchical Models’.

Note that rate and time are often semi-identifiable, meaning that multiple combinations of param-
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eters can potentially generate the same probability of the observed data. In this case, we may be

unable to identify, or distinguish, the true parameter values. In practice, this means we need to put

strong prior information on the average substitution rate or speciation times (Dos Reis and Yang,

2013; Dos Reis et al., 2016). Consequently, the results will be very sensitive to these priors, so it

is very important for biologists and paleobiologists to understand each of the component pieces in

order to make good parameter choices.

5 Substitution models

The first component of the tripartite model is the substitution model. The substitution model,

sometimes called the site model, describes how phylogenetic characters in the dataset evolve.

These models are called substitution models because they were initially written to describe nu-

cleotide changes. These models describe how character change accumulates over time, leading to

the observed phylogenetic data. In the context of divergence time estimation, phylogenetic data

are typically either molecular or morphological data, although analyses that integrate both types

of data have also been conducted (Ronquist et al., 2012; Schrago et al., 2013; Wood et al., 2013;

Gavryushkina et al., 2017). While molecular and morphological data have very different properties,

as will be discussed below, similar methods have historically been used to infer phylogenies from

them.

Most data used in phylogenetic estimation has been discrete data. Discrete data can be broken into

non-overlapping categories. For example, nucleotide sequence data can be clearly separated into

four states: adenine, cytosine, guanine, and thymine. Morphological characters are often divided

into discrete states (De Queiroz, 1985). Most simply, these may correspond to an absence state

(usually coded as ‘0’) and a presence state (usually coded as ‘1’) (Watrous and Wheeler, 1981).

They may also correspond to more complex character diagnoses.

There are many models to describe how molecular sequence data evolve over time (Jukes and

Cantor, 1969; Kimura, 1980; Felsenstein, 1981; Hasegawa et al., 1985; Tavaré, 1986). Nucleotide

data tend to have well-defined and discrete properties. This allows a range of assumptions to be

made about what changes we are likely to see over evolutionary time. In most common nucleotide

substitution models, the probability of observing a change from one character state to another is

taken to be the product of the exchangeability between two nucleotides at equilibrium frequency of
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the starting nucleotide (i.e., the nucleotide that exists in the sequence, which will be substituted for

the other). The exchangeabilities refer to the probability of seeing a change from one particular state

to another. These are often based on biochemical features of the nucleotide base. For example, it is

unlikely to see a purine (two-ringed nucleotides, adenine and guanine) substituted for a pyrimidine

(one-ringed bases, cytosine and thymine). This is due to biochemical properties — we are less likely

to observe large changes, such as gaining a second ring of carbons on a structure, than smaller ones.

Equilibrium frequencies refer to the frequency that we would see each of our character states if we

allowed the evolutionary process to run infinitely long (i.e., until it reaches the equilibrium). This

is based on simple statistics: even if it is easy to change from one nucleotide to another, if the

starting nucleotide is rare, that change will be seldom observed. It may be easy to transition from

an adenine to a guanine but, if we have no adenines in our dataset, we are unlikely to observe this

change over time.

Making different combinations of assumptions has yielded a panoply of molecular models. The

simplest model of sequence evolution, the Jukes-Cantor model (Jukes and Cantor, 1969), assumes

only one parameter: the rate of evolution. The exchangeabilities of this model are equal between

all states. The equilibrium frequencies are also assumed to be equal. Therefore, under this model,

you are as likely to observe a change that adds a second carbon ring to a pyrimidine as you are to

observe changes from pyrimidines to other pyrimidines. On the opposite end of the spectrum, the

general time reversible model (GTR) (Tavaré, 1986) allows for six different exchangeabilities, and

for each molecular character to have its own equilibrium frequency, illustrated in Fig. 3. This is a

more complex model, but it is often supported as being the correct one for many datasets (Abadi

et al., 2019). Molecular characters are typically assumed to evolve approximately neutrally, which

means we can use relatively straightforward models of evolution.

Bayesian phylogenetics using morphological characters have historically used a more restricted set of

models than analyses of molecular data. While we may be able to divide a discrete morphological

character into multiple states, we may not be able to easily describe how states can transition

from one to another over evolutionary time. For instance, molecular models assume that the

biochemical properties of an adenine are the same today as they were in the past, and that all

adenines are the same in different locations in the dataset. What are the properties of an absent

morphological character? Does a change from state ‘0’ to ‘1’ at character ‘1’ imply the same

magnitude of changes as the same change of states at character ‘5’? The lack of consistent meanings
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Figure 3: Phylogenetic Q matrices. In this schematic, we have several representations of different types of

character change. For nucleotide data, we know that we are more likely to see certain types of change, such as two-

ringed bases (purines) transitioning to other two-ringed bases, and one-ringed bases transitioning to other one-ringed

bases. This is represented by thicker arrows connecting these bases. On the other hand, for morphological data,

character states do not carry common meaning across characters. At one character, changing, for example, from a

‘0’ state to a ‘1’ state may be a small change. At another, it may mean gaining a complex character. Therefore,

researchers have largely used the Mk model of Lewis (2001) to model these data. The schematic below shows the

assumption of equal change probability between states.

to character states has limited the assumptions that can be made about the process that generated

morphological data. Due to the limited number of morphological models available, model testing

has not become common in morphological phylogenetics yet (though see an example of empirical

model fitting in Bapst, Schreiber, and Carlson (2017) and Wagner, Wright and Wright in (prep.)),

and understanding the role of the morphological model in divergence time estimation is an active

area of scholarship (Klopfstein et al., 2019).

Because of the lack of common meanings between morphological character states, those working

with morphological characters have largely been confined to working with the Mk model (Lewis,

2001) for discrete character evolution. This model is a translation of the Jukes-Cantor model
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(Jukes and Cantor, 1969) of sequence evolution to morphological characters, also shown in Fig.

3. Therefore, it makes the same assumptions about the generating process: that exchangeabilities

are the same among all character states, and that all states have equal equilibrium character

frequencies. This is a fairly restrictive model but, in a Bayesian context, some assumptions can be

relaxed, allowing the user to make a variety of assumptions about the evolution of morphological

data (Nylander et al., 2004; Wright et al., 2016). For a more detailed review of these methods, see

(Wright, 2019). In addition, continuous morphological characters have recently been introduced in

phylogenetic inference (Goloboff et al., 2006; Parins-Fukuchi, 2017) and divergence time estimation

(Alvarez-Carretero et al., 2019). The evolution of these continuous characters can be modelled under

processes like Brownian motion (Felsenstein, 1973, 1985; Gingerich, 1993), Ornstein-Uhlenbeck

(Hansen, 1997; Butler and King, 2004; Beaulieu et al., 2012) or Lévy processes (Landis et al.,

2013), which allow for changes to accumulate continuously along a branch.

Discrete models are often adapted to take into account that characters (nucleotide or morpho-

logical) will evolve at different rates. Following Yang (1994), most researchers have modeled

among-character rate variation (ACRV) as being distributed according to a Gamma distribution.

A Gamma distribution can be manipulated to take a wide range of shapes. This distribution is

then discretized into different categories (commonly four, but more categories are possible) and the

median rate of each category is used as the rate of evolution for that category. This allows different

sites to evolve according to different evolutionary rates, thereby correcting for different rates across

sites. This practice is common for both molecular and morphological data, though some studies

have indicated that lognormal-distributed ACRV may be more appropriate for morphology (Wag-

ner, 2011; Harrison and Larsson, 2015). In particular, non-variable or parsimony-uninformative

characters are usually not collected by morphologists and the lognormal distribution potentially

provides a better fit for datasets that do not include a zero rate category. Not including these

invariant characters is known to inflate rates of character change along branches, and must be

corrected for in phylogenetic analysis (Lewis, 2001; Leaché et al., 2015).

6 Clock models

Both the clock and tree models are required to tease apart rate and time, as well as to transform

branches in units of time. The function of the clock model is to describe the way the rate of character
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change varies, or does not vary, across the tree. Individual models make different assumptions

about how rate variation is distributed among branches. These range from every branch having

the same rate of evolution to every branch having its own rate. Each of these models implies

specific evolutionary dynamics. Below, we review some common clock models, which can apply to

molecular or morphological data.

6.0.1 Strict Clock

Under the strict (or global) clock model, we assume that the rate of character change is constant

across time and that the same rate applies to all branches in the tree (Zuckerkandl and Pauling,

1962, 1965). This model adds one parameter to the overall model, describing the conversion between

the rate of character change and absolute time. Different values for this conversion are typically

still sampled via MCMC in Bayesian analysis.

6.0.2 Uncorrelated Clock

Most clades, however, do have variation in the rate of evolution over time. A wide variety of

clock models have been developed to describe how this variation manifests. One common family

of clock models is the uncorrelated relaxed clock model. ‘Relaxed’ refers to the clocks not being

strict: any model that is relaxed will allow rate variation across the tree (Drummond et al., 2006;

Drummond and Rambaut, 2007). ‘Uncorrelated’ means that the rate of evolution on a particular

branch is not dependent on the rates of evolution of its neighbors or ancestor. In this family of

models, rates are typically assumed to be drawn from some distribution; the uncorrelated lognormal

clock (UCLN) model being the most commonly used. Under this model, the rate of any particular

branch is assumed to be drawn from a lognormal distribution indepedently of other branches (see

an example in Fig. 4). The lognormal is a popular distribution in this type of analysis, as it implies

most branches will have low, but typically non-zero, rates of evolution. Because each branch has

an independent draw from this distribution, meaning that the rate of a particular branch may be

very different from its neighbors. The parameters of the lognormal distribution can be fixed, or

can be estimated themselves (i.e., are hyperparameters). Nevertheless, other distributions, such

as the exponential distribution, can also be used in these type of uncorrelated clock analyses. An

exponential distribution, as seen in Fig. 4, implies some branch rates are very close to zero.
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Figure 4: A schematic showing different clock models, and what they mean for the distribution of evolutionary

rates across the tree. For each clock type, a set of sample distributions are shown. These distributions demonstrate

how the distribution will look if a different prior is selected for its underlying parameters. An arrow indicates which

distribution was used to simulate the rates shown on the sample tree. Row one shows an uncorrelated clock, with

branch rates drawn from the exponential distribution. Because this clock is uncorrelated, a descendent may have a

very different rate of evolution than its ancestor. In the second row, an autocorrelated clock, rates of evolution in the

ancestor and descendant are expected to be more similar. As can be seen in the set of sample distributions, low values

for the exponential rate parameter or the lognormal log variance parameter result in very wide distributions, implying

that there can be a wide range of evolutionary rates across the tree. When the rate or log variance parameters are

high, the rates are more constrained. The third row shows Dirichlet-distributed rates. This is a biologically agnostic

clustering method for assigning branch rates. As can be seen in the distributions for this parameter, a high shape

parameter implies a strong central tendency, and low values imply more variation in rates. Code to reproduce this

figure is provided in the supplement.
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6.0.3 Autocorrelated Clock

The idea of a lineage’s rate of evolution being independent of its ancestor’s rate may strike some

as odd. Much of the literature on clock models is focused on molecular data and molecular clocks.

Molecular clocks are influenced by a variety of factors, such as generation times, population sizes,

and metabolic rates (Bromham et al., 1996; Gaut et al., 1992; Thomas et al., 2006; Bromham et al.,

2015). Morphological clocks are potentially impacted by the same variables, as well as other factors,

such as developmental constraint (King et al., 2016). It would be reasonable, then, to expect that

close relatives have similar evolutionary rates if they share these traits.

In autocorrelated rate models, the rate of a descendent branch is drawn from a probability dis-

tribution (Aris-Brosou and Yang, 2002) centered on the rate of the ancestor’s branch. Different

distributions can be assumed to allow the descendent’s rate to be more different, or to force it to

be more similar.

Autocorrelated clock models can also be continuous. A continuous autocorrelated clock model

assumes that, again, the distribution from which the rate of a descendant is drawn is centered

on the rate of evolution of the ancestor. Under these models, however, the variance is typically

proportional to the the length of the branch. More sophisticated assumptions can be made under

these continuous autocorrelated relaxed clock models, such as the variance in rates evolving across

the tree (Thorne et al., 1998; Kishino et al., 2001; Thorne and Kishino, 2002; Aris-Brosou and

Yang, 2002, 2003).

6.0.4 Local Clocks

Random local clocks behave in some ways like a strict clock, and in some ways like a relaxed clock.

A random local clock allows a subtree to have its own rate of evolution (Yoder and Yang, 2000).

The branch subtending the subtree is the position of the shift between one clock rate and a new

clock rate. Generally, the new clock rate applies to the whole subtree, without relaxation. The

number of local clocks can vary between zero (one strict clock) to the number of branches on the

tree (a fully relaxed clock). Both the number of clocks that describe the tree and the location of the

shifts from one clock to another are sampled during the MCMC in implementations of this model

(Drummond and Suchard, 2010). MCMC variants that allow different numbers of parameters in

different parts of the tree are called ‘reversible jump MCMC’.

16



6.0.5 Other Models of Evolutionary Rate Variation

As described above, breaking up the branches of a tree into separate rate classes can be accomplished

in many ways. Some have more straightforward biological interpretations, some have less. Another

approach is to use a mixture model. Mixture models assume that there is substructure in a

population of data. In this case, our population of data are branches that evolve under different

rates. While the biological causes for those rates being different may not be the same, branches

evolving under similar rates can be modeled together. Under a mixture model, the branches can

be broken up in to n categories. In the case that a strict clock is favored, n will be one category,

or it can be many more under other circumstances.

Mixture models may be finite or infinite. In a finite mixture model, the number of different rates is

specified a priori. In this case, while there is a defined number of categories, which branches belong

to which categories is something that needs to be estimated. On the other hand, a mixture model

may be infinite. In this case, the researcher does not specify a number of categories a priori, this

is estimated during the phylogenetic inference (Heath, 2012). In these models, a Dirichlet Process

Prior (DPP) is used to sample both the number of categories, the average rate for each category,

and which branches belong to each category. A DPP can be more concentrated (assumes fewer rate

categories) or more diffuse (assuming more categories). Therefore, without assuming an explicit

biological mechanism, they can be compatible with a number of biological scenarios.

7 Tree models for time-calibrated tree inference

Tree models incorporate assumptions about the tree generating processes and provide us with an

expression for describing the probability of observing a given time-calibrated tree (see Fig. 2). This

allows us to obtain a distribution containing the most likely trees, in terms of tree topology and

branch durations, separate to any information we gain from the molecular or morphological charac-

ter data. They also provide a framework for incorporating temporal evidence into our analyses —

that is, we use the tree model to propose a plausible range of ages for the nodes in our phylogeny.

In contrast to the substitution and clock models, only the tree model incorporates age information.

This information is used to calibrate the substitution rate in combination with the substitution and

clock model components.

Approaches to calibration can be placed into two useful categories: node-dating and tip-dating.
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These broadly reflect major differences in how age information is combined with or incorporated

into the tree model. Briefly, node-dating assumes that our tree represents the relationships between

living (extant) species only, and we constrain the ages of internal nodes using information from the

geological record, without directly considering extinct or fossil samples as being part of the tree. In

contrast, tip-dating directly considers fossil samples as part of the tree. In this section we provide

an overview of popular tree models and describe how they are used in both node- or tip-dating

scenarios.

The tree model is often referred to as the tree prior, and in combination with the calibration in-

formation, researchers often talk about the resulting prior distribution on node ages. Some of the

inconsistency in terminology can be attributed to the history of different models used for phyloge-

netic dating and whether we consider age information used during inference (e.g., fossil sampling

times) as data. Under the node-dating approach, fossil sampling times are used to constrain the

age of a node. In this framework, they are not data because the generating process is not explicitly

modeled. Instead, the fossil times are used to bound the age of a node. Alternatively, if we model

the process of fossil recovery explicitly, it becomes clear that the fossil ages are actually data, in

addition to the morphological characters. The terms process- and prior-based have also been used

to distinguish between approaches that explicitly model the process that generated the temporal

evidence used in our analysis and those that do not (Landis, 2017). Here, we use the term tree

model to refer to all the models that underlie these different approaches. Tree models are a large

and important family of models used in Bayesian divergence time inference. The tree model and/or

the calibration information combined with the tree model can have a major impact on Bayesian

estimates of node ages using both node- and tip-dating (e.g., Ho and Phillips, 2009; O’Reilly et al.,

2015; Warnock et al., 2015; Matzke and Wright, 2016; Matschiner et al., 2017).

7.0.1 Models of speciation, extinction and sampling

The most intuitive models are those that capture the processes we believe gave rise to our data

and include parameters with tangible, biological meaning. An advantage of process-based tree

models is that they can provide a better description of our data and also allow us to quantify other

key parameters of interest, such as speciation (birth) and extinction (death) rates, in addition to

the tree topology and divergence times. The most widely used tree models in macroevolution are

birth-death process models, which refer to a huge family of models, at the heart of which are the
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speciation and extinction processes (together, known as diversification processes).

The simplest model, the pure-birth model, assumes speciation is constant over time, that we have

no extinction, and that we sample a representative of every individual lineage (Yule, 1925). Under

a pure-birth model with speciation rate λ, a single lineage splits in two with rate λ (with the

expected time between events = 1/λ). Then, you have two lineages, each associated with rate λ,

meaning you go from two to three lineages with rate 2λ. For any given number of lineages n, the

rate of going from n to n+1 will be nλ. The most straightforward extension incorporates extinction

(Kendall, 1948). Similar to the birth process, a single lineage goes extinct with rate µ, meaning

going from n to n− 1 lineages occurs with rate nµ.

Restrictive assumptions, such as no extinction or constant rates of speciation may be reasonable in

small and recent clades, but are not likely to occur over long time intervals and for large groups.

In reality, we hardly ever reach complete species sampling, especially in paleobiology. Some of the

most important model developments in this area have therefore aimed to relax the assumption of

complete sampling, both at the present and in the past. Sampling living species at the present

and sampling either living or extinct species from the fossil record are typically treated as distinct

processes. In particular, it is useful to think of extant species as being sampled in the present

(t = 0) with a given probability ρ, which could be anywhere between zero and one, depending on

the taxonomic scope of the study. In contrast, we tend to model fossil recovery as a continuous

process, with an associated rate parameter ψ. Like the birth and death processes, a new fossil is

recovered with rate nψ.

Tree models capture the underlying processes (speciation, extinction and sampling) that result in

the complete tree, including sampled and non-sampled lineages. But to calculate the probability

of observing the reconstructed tree (the tree representing the relationships between sampled indi-

viduals only), we need to account for the fact that we only sample some subset of lineages. For

example, if we only sample living species, but assume both speciation and extinction have occurred,

we need to use the expression for the probability of observing our tree, given we only sample species

at the present and none in the past (Thompson, 1975; Gernhard, 2008; Stadler, 2009). Similarly,

if we only sample a subset that does not include all living species, we need to use a model that

incorporates incomplete extant species sampling (Yang and Rannala, 1997; Stadler, 2009). Figure

5 shows examples of the complete versus the reconstructed tree for different birth-death process

models.
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The complete outcome 
of the diversification and 

sampling processes
The reconstructed tree Model parameters 

40 0 40 0

speciation (λ) = 0.1
extinction (μ) = 0.05

extant sampling (ρ) = 0.6
fossil recovery (ψ) = 0.05

speciation (λ) = 0.1
extinction (μ) = 0.05

extant sampling (ρ) = 0.6

speciation (λ) = 0.1
extinction (μ) = 0.05

speciation (λ) = 0.1

Pure birth process

Birth-death process

Birth-death sampling process

Fossilized birth-death process

Figure 5: The complete versus reconstructed trees under birth-death process models. The assumptions of

four different models are captured in each row. The first column shows an example outcome of the joint diversification

and sampling processes (i.e., the complete tree), where diamonds represent extant or fossil samples. The second

column shows the tree that contains sampled lineages only (i.e., the reconstructed tree). The third column shows the

parameters and the name commonly applied to model used to described the probability of observing the reconstructed

tree shown in column two, given we assume the generating processes shown in column one. In all cases we assume

constant speciation, extinction and fossil recovery, and uniform extant species sampling. Trees and fossils were

simulated and plotted using the R packages TreeSim (Stadler, 2011) and FossilSim (Barido-Sottani et al., 2019b).

Code to reproduce this figure is provided in the supplement.
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The assumptions made by different tree models are important because they can result in very

different distributions of plausible trees. Different combinations of the speciation, extinction and

sampling parameters give rise on average to different tree shapes, which determine the most probable

waiting times between ancestor and descendent nodes in the reconstructed tree. For example, a

reconstructed tree representing the relationships among a set of living individuals (i.e., the tree

includes no extinct samples) is more likely to have shorter internal non-terminal branches and

more evenly distributed speciation events if extinction is low relative to speciation. Conversely,

the reconstructed tree is more likely to have longer internal branches and on average older node

ages if extinction is high. More speciation events are missing from the reconstructed tree because

extinct species are absent and there is a higher chance we have to go further back in time to find

the speciation event linking any of our extant samples.

Note that we do not have to fix the speciation, extinction and sampling parameters. Indeed, since

different parameter combinations result in distinct distributions of trees and not all combinations

are equally likely to result in the same tree shape, phylogenetic data allows us to estimate these

parameters if they are explicitly part of the tree model. We typically use priors to constrain these

parameters.

In the node-dating scenario, the tree represents the relationships between living samples and we

typically use a tree model that includes extant species sampling only, excluding the process of fossil

recovery. Temporal information from the fossil record is instead incorporated through the use of

node calibrations. For one or more internal nodes in our phylogeny we may have information about

the age of the speciation event based on fossil or other geological evidence. For example, for a

given pair of lineages, the age of the first appearance of either one of these lineages represents a

minimum (i.e., younger) bound for the age of the node separating them (Parham et al., 2012).

We can represent the uncertainty in the age of this node using a probability distribution. This

information is combined with the tree model to produce a distribution of trees that have branch

lengths in units of absolute time. This approach is somewhat less biologically intuitive than an

explicit model of diversification and fossil recovery, since it does not consider the process that gave

rise to the data (i.e., the fossil sampling times). This leads to technical challenges combining node

calibrations with the tree model and in interpreting the resulting distribution on node ages (Heled

and Drummond, 2012; Warnock et al., 2015). It also requires assigning a fossil age to a fixed node

in the extant species tree, ignoring the potential for phylogenetic uncertainty in the placement of
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the fossil species.

In tip-dating we consider extinct samples explicitly as being part of the tree and the temporal

evidence used to constrain the age of the tree comes from the age of the extinct tips (Ronquist

et al., 2012). To include fossil samples as part of the tree, we need to account for sampling through

time and ideally we want to use a tree model that incorporates the process of fossil recovery. The

fossilized birth-death (FBD) process is an extension of the models described above that incorporates

the fossil recovery process and provides an expression for the probability of observing a tree with

samples recovered along internal branches (Stadler, 2010; Heath et al., 2014; Gavryushkina et al.,

2014). Extinct samples can either occur on terminal branches (i.e., tips) or along branches leading

to other sampled descendants, referred to as sampled ancestors.

When we consider fossil samples as being part of the tree generating process, it becomes important

to consider what each sample in our tree actually represents (Hopkins et al., 2018). In the fossil

record, a species will be represented by one or more fossil occurrences. An occurrence could

represent a single specimen or multiple specimens from the same locality. Further, the age of each

occurrence will be associated with an age range, reflecting imprecision in dating techniques, which

can be referred to as the stratigraphic age of an occurrence. This uncertainty can be accounted

for by placing a prior distribution on the age of the fossil, instead of treating the age as a known

variable (Drummond and Stadler, 2016; Barido-Sottani et al., 2019a). However, this is distinct from

the observed duration of a species over geological time, beginning with the first (oldest) appearance

of the species in the fossil record and terminating with the last (youngest) appearance, known as

the stratigraphic range of a species. The FBD range process is more appropriate for incorporating

information about species through time (Stadler et al., 2018). Birth-death process models have

been extended in many ways, and of particular relevance to paleobiology, there are models that

relax the assumption of uniform diversification or species sampling (Höhna et al., 2011; Stadler

et al., 2013; Gavryushkina et al., 2014; Zhang et al., 2016; Kühnert et al., 2016; Barido-Sottani

et al., 2018b).

7.0.2 The uniform tree model

Uniform tree models make the assumption that for a given set of taxa all possible trees are equally

likely, and are available for both unconstrained and constrained (time-calibrated) tree inference

(Huelsenbeck and Ronquist, 2001; Ronquist et al., 2012). For timetrees this model is used for
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tip-dating rather than node-dating (Ronquist et al., 2012). Fossil species are treated as extinct tips

and sampled as part of the tree. Age information is incorporated through the fossil ages and an

upper bound is applied to constrain the maximum age of the root. Internal node ages are drawn

from a uniform distribution, satisfying the age constraints imposed by the root and tip ages. An

advantage of this model is that it makes fewer explicit assumptions about the diversification, and

the fossil and extant species sampling processes. In this sense, the uniform tree model is more

straightforward, but has the disadvantage that it cannot be used to co-estimate diversification or

sampling parameters.

In theory, given we have sufficient character data, the morphological data in combination with

the terminal fossil ages should be informative about the substitution rate, and we should be able

to recover the correct branch lengths, irrespective of the root constraint (Ronquist et al., 2012;

Klopfstein et al., 2019). In reality, morphological datasets tend to be very small and this can

result in the root constraint having a large impact on the results (Matzke and Wright, 2016). If

the character data are not sufficiently informative about the substitution rate, we tend to observe

that the older the root constraint, the older the node ages we recover, reflecting the uncertainty

associated with the rate parameter. Although uniform tree models are sometimes referred to as

uninformative tree priors, this is somewhat misleading if we consider the influence of the root

constraint and the potential impact of ignoring sampled ancestors (Gavryushkina et al., 2014).

7.0.3 Coalescent tree models

Another large family of tree models used to describe the generation of timetrees are coalescent

models. These are typically used to model the evolution of genes within a population, though

they are also used in phylogenetic and phylogenomic estimation (Liu, 2008; Song et al., 2012;

Mirarab et al., 2014). In this context, the tree typically represents a succession of non-overlapping

generations and each branching point represents a coalescence event, which is the point at which two

genes in a population last shared a common ancestor (Kingman, 1982). In contrast to birth-death

models, which are forwards-time processes, coalescent models are backwards-time processes. Time

to coalescence will be a function of population size over time — the larger the population, the more

likely you have to go further back to recover the ancestor of two individuals. Similarly to birth-

death models, coalescent models have also undergone an enormous amount of development and

provide flexible options for describing population growth (Beerli and Felsenstein, 2001; Drummond
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et al., 2005; Mashayekhi and Beerli, 2019).

Although coalescent models can incorporate extinct tips, we do not tend to use these directly

to describe the evolution of species, but they can be important in estimating species trees and

divergence times from genetic data. Trees based on individual genes can be quite different from the

true underlying species history. This occurs when coalescence events between individuals belonging

to populations of different species are older than the speciation event. This scenario is known as

incomplete lineage sorting and can lead to a mismatch between gene and species trees. Following

speciation, it takes time for genes to become sorted across distinct species populations, such that

gene trees eventually reflect the species tree (Maddison and Knowles, 2006). This interval of time

depends on several factors, including population size, and can be extremely long (e.g., populations of

humans and chimpanzees still share genetic differences). However, the mismatch between gene and

species trees can actually persist forever if genes do not become sorted before subsequent speciation

events (Xu and Yang, 2016). Mismatch is most likely to occur when the branches separating

speciation events are very short, irrespective of the time since speciation (i.e., whether the events

are geological recent or not). This scenario creates a huge challenge when inferring the species

tree. Discerning the relationships between the major lineages of birds is a good example of this

issue — these events happened almost 66 myr, but the internal branches in this portion of the tree

are extremely short. As a consequence, different gene trees produce conflicting topologies (Jarvis

et al., 2014). In the face of considerable conflict, identifying a consensus is not straightforward. One

solution is to explicitly model the evolution of genes, in combination with the speciation process,

under the multi-species coalescent model (Heled and Drummond, 2010). In this framework, we

can apply a separate coalescent model to each gene in our dataset, and we model the speciation

process using a birth-death model. We effectively assume that the gene trees are embedded within

the species tree. We can use the FBD model for the species tree, meaning we can also incorporate

extinct species, with or without molecular and/or morphological data (Ogilvie et al., 2018). If we

also have morphological characters and assume that morphology follows the species tree history,

rather than being described by a coalescent model, we can use the species tree model for the

morphology. This is a good example of the hierarchical and extendable nature of phylogenetic tree

models, but also showcases a level of complexity that will not always be necessary to recover the

correct tree.
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7.0.4 Biogeographic dating

Temporal evidence for the age of a node can also come from the geological events linked to speciation

(Ho et al., 2015; De Baets et al., 2016). For example, the current biogeographic distribution of living

taxa may indicate that species divergence is tied to specific tectonic events that likely resulted in

genetic isolation, such as island formation or the break up of continents that previously existed

in Earth’s history. This approach is especially useful for taxonomic groups with a sparse or non-

existent fossil record. Age information can be incorporated using a node dating approach, where

the timing of biogeographic events are used to inform the calibration distributions, and the tree

generating process can be described using a birth-death model. One challenge to this approach is

establishing a definitive causal link between tectonic and speciation processes, especially if events

happened a long time ago (e.g., the breakup of Gondwana) (De Baets et al., 2016).

More recently, process-based models have been introduced for biogeographic dating and tree in-

ference (Landis, 2017; Landis et al., 2019). This approach is conceptually similar to birth-death

models that incorporate the fossil recovery process in that they explicitly incorporate a model of

the evolution of biogeography. In this setup, we have information about the distribution of living

species at the tips of our tree, and a model of tectonic history that incorporates age information.

Species are allowed to disperse between areas with a given rate, which can depend on the current

state of the tectonic configuration. For example, a species cannot disperse to an island before the

island exists. Similarly, the potential for dispersal between two continents will depend on their

connectivity. Thus, the probability of the tree and divergence times is linked to the biogeographic

model. An advantage of this approach is that we do not need to make fixed assumptions about

the link between biogeographic scenarios and speciation. Instead, we can use this approach to test

among biogeographic hypotheses — not all histories will be equally likely to have produced the

current distribution of living species. So far this approach has been used to date trees of extant

species only, however, future extensions could potentially account for the biogeography of extinct

and fossil samples. In principle, we could even combine models of biogeographic processes with

models of diversification and fossil recovery.
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8 Expanding the potential of the tripartite model within the Bayesian

framework

Bayesian priors incorporate our pre-existing knowledge about parameter values. We tend to think

about the role of priors as being restricted to constraining the range of possible values a given

parameter can take, e.g., the clock rate or speciation rate, or to express which values are most

probable based on what we already known. However, we can use priors to manipulate the parameter

space in much more sophisticated ways than we are currently used to doing. We can expand the

range of assumptions we are able to make about the underlying biological processes and take

advantage of Bayesian approaches to model testing. The development of more flexible Bayesian

software, such as RevBayes (Höhna et al., 2014; Höhna et al., 2016) and BEAST2 (Bouckaert

et al., 2019), alongside resources for understanding the underlying models (Barido-Sottani et al.,

2018a), make complex inference much more accessible to everyday users. Here, we provide examples,

ranging from simple to complex.

A tripartite model enables nearly endless combinations of substitution, clock, and tree models to

be assembled into a complete model. For example, in molecular genetics, partitioning (defining

subsets of the data) by gene and applying an appropriate model of sequence evolution to each gene,

is strongly supported as being important to inferring a correct phylogeny (Brandley et al., 2005).

Likewise, different models of morphological evolution can be used interchangeably. For example,

the assumption made by the Mk model that a character is equally likely to change state as to

reverse that state change may seem unrealistic. In this case, a model that allows asymmetrical

rates of change (Ronquist et al., 2004) could be substituted. This alternative model puts a prior on

character state frequencies, allowing them to be unequal, which increases the probability of certain

types of character change. For example, many changes are likely to be observed from a common

character state to other states. Character change asymmetry has recently been shown to affect

divergence time estimation based on discrete character data (Klopfstein et al., 2019), as well as

tree inference (Wright et al., 2016). If a researcher believes this to be the correct model for their

data, it can be substituted for a traditional Mk model, without necessarily needing to alter the

clock or tree models.

Depending on our parameters of interest, we can change the way our models are parameterized.

For example, we may be more interested in diversification (d) and turnover (r) than speciation (λ)
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and extinction (µ). If we use a birth-death process tree model, we cannot eliminate speciation and

extinction from the calculation, but we can reparameterize our analyses, such that we can place

priors directly on the diversification and turnover parameters and sample these during MCMC.

We can recover the speciation and extinction rates via transformation (Heath et al., 2014). The

relationship between the parameters can be expressed simply as,

d = λ− µ, r =
µ

λ
and

λ =
d

(1 − r)
, µ =

rd

(1 − r)
.

Although in principle we can recover diversification and turnover from estimates of speciation and

extinction without reparameterizing the model, this would give us less control over our parameters

of interest. While this is a relatively straightforward example, this illustrates how parameters

that are not explicitly part of the model can still be used to constrain the underlying model in

our analysis. For instance, if other biological or environmental variables can be linked to model

parameters via transformation, we have the potential to take advantage of this additional data.

We can also manipulate the relationship between independent parameters within a model through

the use of priors. For example, we can link different parameters of the tree model in different ways.

The FBD skyline model can incorporate variation in the speciation, extinction and fossil recovery

rates over time (Gavryushkina et al., 2014; Zhang et al., 2016). By default, model parameters

are treated as independent. However, our prior assumption may be that parameters in adjacent

time intervals, such as diversification rates, are more likely to be similar. To incorporate this

expectation, the rate of diversification in a time interval could be parameterized according to the

rate of diversification in the previous time interval, much like the relationship between descendant

branches under the autocorrelated relaxed clock model. In effect, this allows for distinct time

intervals to have semi-independent model parameters. Alternatively or in addition, if we have

reason to believe that different model parameters are linked, we can also manipulate the priors to

specify this expectation. For instance, we may have reason to believe that rates of diversification

are linked to the rate of fossil sampling (Holland, 1995; Peters, 2005).

However, we may very well believe that parameters in different sub-components of the model are

linked. If we believed the rate of speciation to be related to the rate of character change, this

could be achieved by using a prior that specifies a distribution for one parameter, centered on the

other. For example, if we thought that periods of high speciation would correspond to periods with
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lots of character change, we could create an FBD skyline model in which the per-interval prior on

speciation rate is linked to the average substitution rate during that interval.

Within a Bayesian framework, we can propose any model we would like, and use modeling tests

to compare competing models, in which parameters are either linked or not. Bayesian methods

have a suite of well-developed statistical approaches for evaluating the fit of both the model and

the priors to the data. For instance, Bayes Factors (Xie et al., 2011) are metrics that describe the

support for one model, and all its associated priors, over another model. This approach weighs

the posterior evidence of two models against one another. It is worth noting, however, that the

Bayes Factor can only provide evidence in favor of one model. It cannot tell a researcher if the

model is adequate; that is, capturing important facets of the process of evolution. Other methods,

such as posterior predictive model assessment can be used to assess model adequacy (Brown and

ElDabaje, 2009; Brown, 2014; Duchêne et al., 2015; Hoehna et al., 2017). With these methods, it

is important to consider what the data are. Node calibration methods, for example do not truly

incorporate fossils as data. Instead, the fossils are used as priors to bound the age of nodes. In

this case, their placement is part of the model, and methods have been proposed to evaluate these

priors with Bayes Factors (Andújar et al., 2014). In the case of an FBD tree model, they are data,

thus Bayes Factor model fitting cannot be used to evaluate the placement of fossils.

Many of the more complex model and prior options we describe here have yet to be explored

using paleobiological data, despite their increasing feasibility. To extend the tripartite model, we

must understand how it works under a variety of empirical conditions. Much of what we know

about both divergence time estimation and phylogenetic analysis comes from simulation studies

and mathematical modeling. While both of these are useful tools, it can be difficult to understand

how the behavior of any particular method will stand up to empirical conditions. Limited data sizes,

biased missing data, and violations of model assumptions can all lead to unpredictable analytical

behavior. Therefore, it is critical for empiricists and theoreticians to collaborate to understand the

challenges faced by researchers at the forefront of collecting data, and improve our methods to meet

them.

Here, we focused on the scenario in which we have both phylogenetic character data as well as

temporal evidence of speciation, and where the goal is to estimate divergence times or to co-estimate

divergence times and topology. The inclusion of molecular or morphological characters requires both

the substitution and clock model. We cannot infer the topology without phylogenetic characters,
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however, in principle, the tree model could still be used to infer the divergence times for a tree

topology obtained using other evidence. For example, phylogenies based on taxonomic classification

have been shown to be valuable in phylogenetic comparative analyses (Soul and Friedman, 2015).

In this context, the tree may not be fully resolved but the timing of key divergence events can

still be estimated under the tree model, taking into account the uncertainty at unresolved nodes.

Similarly, since fossil sampling times are informative about the speciation, extinction and fossil

recovery rates, the FBD (Warnock et al., 2020) and related birth-death models (Silvestro et al.,

2014) can be used to recover these parameters, even without any knowledge about the underlying

phylogeny .

9 Conclusions

Bayesian divergence time estimation is commonly performed in a tripartite framework. One model

describes the process the researcher believes generated the character data. Another model describes

the manner in which the researcher believes rates of evolution are distributed across the tree. The

final model describes the extinction, speciation and sampling events that potentially led to the

observed tree. Each of these components has its own parameters, which are believed to describe

the process that generated the data. Each component model’s parameters can have priors too,

which describe the distribution of values we expect a parameter to take.

This framework enables nearly endless combinations of assumptions that a researcher can make

about their data. The goal of this review has been to explain some common assumptions, and

what they mean. It is by no means exhaustive. There are more assumptions that could be made

and modeled by researchers. This tripartite framework can be improved by a close collaboration

between geologists, organismal experts, and phylogenetic methods specialists. We hope that, in

explaining some of these common assumptions, researchers will feel empowered to look at their own

data and see where methods can be improved, and to seek collaborations to create a new generation

of process-driven methods. The challenge for both empirical researchers and method developers

will be to identify important model violations, and to gauge the level of complexity required to

obtain reliable and meaningful results.
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The likelihood the prior and the posterior

It can be confusing in the beginning to understand what the model likelihood, the prior, and

the posterior truly mean. In plain language, the model likelihood is the probability of the data

given a model. Without a model, there can be no calculation of the model likelihood.

Priors can be set on parameters in the model, specifying distributions from which the value

is thought to be drawn. These distributions are often based on the researcher’s intuition, and

on information from prior studies. The posterior distribution is a set of plausible solutions

given the model likelihood and the prior. During Bayesian estimation, different values will be

sampled for model parameters. Their probability will be evaluated according to the likelihood

and the prior. Therefore, the posterior is proportional to the likelihood and the prior. A good

solution will often appear in the posterior sample many times.

In phylogenetics, we often refer to our models as continuous-time Markov chains. ‘Continuous-

time’ refers to models allowing change between character states to occur instantaneously at

any point in an evolutionary history. Changes in the character state are not confined to the

node; instead, branch lengths on a phylogeny are proportional to the number of expected

changes per character along that particular branch. In this context, ‘Markov chain’ refers to

the joint probability distribution including all the parameters for the model of morphological

substitution, the model of molecular substitution, and the tree and clock models. In practice,

this is the computer model that we use to estimate the posterior (Höhna et al., 2016).

Hierarchical Models

The tripartite approach to divergence time estimation is what is termed a hierarchical model.

Hierarchical models are models in which variation may be described by different submodels. In

the case of divergence time estimation, the character data (molecular and/or morphological) is

described by one model, such as the Mk model. The distribution of evolutionary rates across

branches is described by the clock model. Finally, the distribution of speciation, extinction

and fossil sampling is described by the tree model. Together, these three components are used

to estimate a tree, branch lengths in units of time, and other relevant model parameters.

This term may be confusing, as model components may have a hierarchy of priors. For example,

if we placed a lognormal distribution with shape parameter 10 on the mean clock rate, this is
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a prior. If instead, we placed an exponential prior on the shape parameter of the lognormal

distribution, that exponential prior is called hyperprior. This, while a hierarchy of priors, is

not a hierarchical model in the same way that the complete tripartite model for divergence

time estimation is hierarchical.

See Heath (2012) for a nice example of the hyperprior approach to modeling uncertainty in the

parameters associated with fossil calibration densities.

Maximum Likelihood and Bayesian Estimation

As discussed in the section ‘The Likelihood’, the probability of the data is calculated given

a model. In maximum likelihood estimation, models are proposed, and the likelihood of the

data is calculated given each of those models. The model that gives the highest likelihood

is considered to be ‘the best’. This is generally a point estimate returning one tree, one set

of branch lengths, and one set of other model parameters. See Holder and Lewis (2003) and

Yang and Rannala (2012) for more information on the details and history of these different

approaches.

Inference of undated trees from molecular and/or morphological data can be accomplished

in many pieces of maximum likelihood software, such as PAUP (Swofford, 2003), RAxML

(Stamatakis, 2014), IQTREE (Nguyen et al., 2014), and GARLI (Zwickl, 2006). Estimation of

dated trees incorporating molecular and/or morphological data has mostly been accomplished

in a Bayesian context, using software such as MrBayes (Huelsenbeck et al., 2002; Ronquist

and Huelsenbeck, 2003), BEAST (Suchard et al., 2018), BEAST2 (Bouckaert et al., 2019),

MCMCTree (Yang, 2007), and RevBayes (Höhna et al., 2014; Höhna et al., 2016). While

there is no reason models such as the FBD cannot be estimated using maximum likelihood, in

practice, it is not straightforward to incorporate the uncertainty associated with parameters

within a maximum likelihood framework.
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Andújar C, Soria-Carrasco V, Serrano J, Gómez-Zurita J (2014) Congruence test of molecular clock

calibration hypotheses based on bayes factor comparisons. Methods in Ecology and Evolution

5:226–242

Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates

with special reference to the metazoan 18s ribosomal rna phylogeny. Systematic Biology 51:703–

714

Aris-Brosou S, Yang Z (2003) Bayesian models of episodic evolution support a late precambrian

explosive diversification of the metazoa. Molecular Biology and Evolution 20:1947–1954

Bapst DW, Schreiber HA, Carlson SJ (2017) Combined Analysis of Extant Rhynchonellida (Bra-

chiopoda) using Morphological and Molecular Data. Systematic Biology 67:32–48

Barido-Sottani J, Aguirre-Fernández G, Hopkins MJ, Stadler T, Warnock RC (2019a) Ignoring

stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the

fossilized birth–death process. Proceedings of the Royal Society B 286:20190685
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