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ABSTRACT 1 

 2 

The unprecedented scale of the 2019-2020 eastern Australian bushfires exemplifies the 3 

challenges that scientists and conservation biologists face monitoring the effects of 4 

biodiversity in the aftermath of large-scale environmental disturbances. After a large-scale 5 

disturbance there are conservation policy and management actions that need to be both timely 6 

and informed by data. By working with the public, often widely spread out over such 7 

disturbed areas, citizen science offers a unique opportunity to collect data on biodiversity 8 

responses at the appropriate scale. We detail a citizen science project, hosted through 9 

iNaturalist, launched shortly after the 2019-2020 bushfire season in eastern Australia. It 10 

rapidly (1) provided accurate data on fire severity, relevant to future recovery; and (2) 11 

delivered data on a wide range (mosses to mammals) of biodiversity responses at a scale that 12 

matched the geographic extent of these fires. 13 

 14 

Keywords: citizen science; fire ecology; iNaturalist; fire temperature; eucalypt forests, 15 

rainforests 16 
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INTRODUCTION 18 

 19 

The 2019-2020 eastern Australian bushfires garnered international attention, given their 20 

unprecedented scope, scale, and severity (Nolan et al. 2020), spanning ecosystems from 21 

southern Queensland to Kangaroo Island, South Australia, more than 1,700 km away. The 22 

fires represent one large-scale example of the impacts of climate change in a rapidly changing 23 

Anthropocene, with environmental disturbance predicted to increase in intensity, severity, 24 

and rate of occurrence in a warming climate (Enright et al. 2015). Other large-scale 25 

environmental disturbances predicted to increasingly impact biodiversity under climate 26 

change include more severe droughts (Fensham et al. 2015), more intense cyclones (Cheal et 27 

al. 2017), increased flooding (Milly et al. 2002) and increased warming of oceans (Hughes et 28 

al. 2018). Quantifying the impacts of these extensive disturbances on biodiversity can help 29 

develop effective policies and management for recovery and resilience of biodiversity 30 

(Hampe and Petit 2005). 31 

 32 

The Australian bushfires in the 2019-2020 season burnt more than 7 million hectares in the 33 

two most populous states of Australia alone (New South Wales (NSW) and Victoria) 34 

(www.rfs.nsw.gov.au; www.ffm.vic.gov.au), and an unprecedented 21% of the Australian 35 

‘temperate broadleaf and mixed’ forest biome (Boer et al. 2020). In NSW, 37% of all 36 

rainforest and entire distributions of many species, including those listed as threatened, were 37 

burnt (NSW DPIE 2020), while across Australia greater than one billion individual animals 38 

are estimated to have been affected (https://www.sydney.edu.au/news-39 

opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-40 

impacted.html). Inevitably, these bushfires will have large impacts on biodiversity given their 41 

size and severity. Understanding responses across the biodiversity spectrum requires a large 42 

http://www.rfs.nsw.gov.au/
https://www.sydney.edu.au/news-opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-impacted.html
https://www.sydney.edu.au/news-opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-impacted.html
https://www.sydney.edu.au/news-opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-impacted.html


4 

 

range of data sources, given the wide-ranging effects of bushfires. Recovery will vary from 43 

rapid to possibly not at all, depending on both the species and the severity and magnitude of 44 

the fires, highlighting the importance of a rapid assessment in relation to local effects of fires 45 

(Bradstock 2010). Such essential but complex information presents a major logistical 46 

challenge, traditionally reliant on professional scientists’ availability and budgets (Bakker et 47 

al. 2010), which are limited relative to the immense scale of the fires. This highlights a 48 

challenge for most government agencies around the world: an ill-preparedness for robust and 49 

timely quantification and monitoring of biodiversity impacts and responses to large-scale 50 

environmental disturbances. 51 

 52 

How can scientists surmount this challenge? Citizen science data, collected by collaborating 53 

volunteers and professional scientists (Jordan et al. 2011), are now widely used in 54 

biodiversity research, providing conservation information at broad spatial and temporal scales 55 

relevant for policy and management (Chandler et al. 2017). These citizen science data are 56 

also an increasingly valuable option for understanding rapid changes to biodiversity from 57 

landscape-scale environmental disturbances. Moreover, modern platforms can be rapidly 58 

utilized to respond to catastrophic events, although the data collected will rarely rival 59 

professional data for detail or rigor. There are many biases associated with citizen science 60 

projects, generally related to the level of structure of a project (Kelling et al. 2019), and such 61 

citizen data needs to be combined with other data sources to provide reliable information for 62 

biodiversity management (Kosmala et al. 2016; Burgess et al. 2017), but nonetheless it 63 

represents a new, scalable tool for responding to large-scale disturbance. 64 

 65 

Our rapid-response citizen science project, launched in response to the 2019-2020 Australian 66 

bushfires, provided data on the biodiversity response at a scale relevant to the unprecedented 67 
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size of the fires. We leveraged an existing data platform – iNaturalist – and social and 68 

mainstream media to successfully design and spread awareness of the citizen science project. 69 

The goal of our project was to rapidly understand the severity of the fires, the diversity of 70 

taxa affected, and their early postfire responses in eastern Australia. It highlighted the 71 

potential for rapid assessment and broad-scale ground truthing of biodiversity impacts using 72 

citizen science. Specifically, we: (1) summarized uptake of the citizen science project and (2) 73 

compared citizen scientist observations on bushfire severity to satellite-derived measures of 74 

bushfire intensity. We also identified how future citizen science research outputs can be made 75 

accessible (open-access) for rapid influence of conservation policy and management. 76 

 77 

METHODS 78 

 79 

iNaturalist project 80 

iNaturalist (www.inaturalist.org) is a global citizen science project, launched by the 81 

California Academy of Sciences, with >33 million observations of >250 thousand identified 82 

taxa globally. We created a ‘traditional project’, constrained to the Australian continent in the 83 

‘projects’ feature of iNaturalist, quickly launching our citizen science initiative, with 84 

reasonably wide media coverage, in response to the 2019-2020 Australian bushfires, across 85 

south-east Australia. Citizen scientists can manually join projects and add their data, in the 86 

form of geolocated photographs of biota, with ‘projects’ able to create their own observation 87 

fields. We developed five observation fields, three related to life history and biodiversity: 88 

plants (native reseeder, weed reseeder, native resprouter, weed resprouter, unsure); animals 89 

(native alive, feral alive, native dead, feral dead, track, scat, digging, feather, unsure) and; 90 

fungi and lichen substrate (soil, wood and leaf litter, rock, unsure). The final two observation 91 

fields related to landscape burn severity: tree burn height (not burnt, burnt at base, burnt 92 

http://www.inaturalist.org/
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between base and middle, burnt between middle and top, burnt to top) and tree leaves (no 93 

leaves scorched, <50% scorched, 50%-99% scorched, 100% scorched, 100% consumed). We 94 

set ‘na’ (not available) as the default for each observation field, as this required manual 95 

selection of appropriate categories and avoided applying incorrect fields to an observation. 96 

We interacted with participants through the project journal and species’ identification 97 

comment features. 98 

 99 

Hotspot data 100 

To examine how rapid citizen science compared with other rapid assessment methods, we 101 

used the Digital Earth Australia Hotspots data (https://hotspots.dea.ga.gov.au/). These data 102 

are part of a national bushfire monitoring system, using satellite sensors to provide spectral 103 

signatures of fire (i.e., hotspots). We downloaded spatiotemporal coordinates for sites aligned 104 

with citizen science biodiversity data, and associated hot spot measure of temperature above 105 

background. We used temperature as a proxy for the intensity of a fire, given its wide-spread 106 

availability, matching our citizen science observations, and its fundamental role in remotely-107 

sensed fire radiative power (Wooster et al. 2005). Our post-fire citizen science measure was 108 

categorical (i.e., burn severity), but nevertheless, we expected a correspondence between 109 

these two rapid measures. 110 

 111 

Statistical analysis 112 

We compared the categorical measure of burn severity reported by citizen scientists (i.e., no 113 

leaves scorched, <50% scorched, 50%-99% scorched, 100% scorched, 100% consumed) to 114 

the remotely-sensed temperature data. Both data sources included spatiotemporal coordinates; 115 

these were aggregated within buffers to produce a combination of thresholds at the spatial 116 

and fire severity level. We aggregated all points within specified buffer sizes, allowing for 117 

https://hotspots.dea.ga.gov.au/
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direct comparisons between the two datasets. We used a buffer size of 250 meters, the 118 

optimal spatial scale for R2 of model fit. In this analysis, we only included iNaturalist 119 

observations which provided a measure of burn severity (n=1,107 observations). We fitted a 120 

linear model with temperature as the response variable and our categorical burn severity level 121 

as the predictor variable. Effect sizes of pairwise differences among categories were extracted 122 

using the emmeans package. Because of the likely spatial autocorrelation in the citizen 123 

science observations, we also fitted two different spatial models (GLS and glmmfields) to 124 

ensure the robustness. Both these approaches confirmed our linear model results; we present 125 

only the linear model results here. Lastly, we mapped the area of national vegetation 126 

formations (Keith 2017) across south-eastern Australia, defined here as temperate to 127 

subtropical biomes within the south eastern states (Hobbs and McIntyre 2005; Hutchinson et 128 

al. 2005), that were burnt using the National Indicative Aggregated Fire Extent dataset, and 129 

compared it with our citizen science data. All data were processed in R software (R Core 130 

Team 2020). 131 

 132 

Data availability 133 

All data are available through the citizen science project: 134 

https://www.inaturalist.org/projects/environment-recovery-project-australian-bushfires-2019-135 

2020. Code and data pertaining to our analyses are available on GitHub: 136 

https://github.com/cornwell-lab-unsw/aus_fires_data. The National Indicative Aggregated 137 

Fire Extent Dataset is available here: 138 

http://www.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B9ACDC139 

B09-0364-4FE8-9459-2A56C792C743%7D 140 

 141 

 142 

https://www.inaturalist.org/projects/environment-recovery-project-australian-bushfires-2019-2020
https://www.inaturalist.org/projects/environment-recovery-project-australian-bushfires-2019-2020
https://github.com/cornwell-lab-unsw/aus_fires_data
http://www.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B9ACDCB09-0364-4FE8-9459-2A56C792C743%7D
http://www.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B9ACDCB09-0364-4FE8-9459-2A56C792C743%7D
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RESULTS 143 

 144 

A total of 3265 observations, from 240 unique users, were submitted to the iNaturalist citizen 145 

science project (30 January 2020-16 March 2020), covering nearly 51 million ha (Figure 1, 146 

minimum convex polygon). Of these observations, 51.1 % of users added extra fields to the 147 

citizen science observations. The observations included plants (73.7%), animals (21.5%), and 148 

fungi (4.6%), totalling 688 identified species, 255 families, and 98 orders (Figure 2). Of the 149 

610 animal observations, 376 were vertebrates and 234 were invertebrates. Of the animals, 150 

the most commonly reported taxa were insects (208), mammals (143), and birds (136). For 151 

plants, Myrtales (674, i.e., Eucalyptus and Melaleuca), Asparagales (214, i.e., orchids and 152 

grass trees), and Proteales (216, i.e., Banksia and Hakea) were the top three most commonly 153 

reported taxa. Among the rest of 132 observations, there were 36 Ascomycota, 94 154 

Basidiomycota, and 2 slime molds.  155 

 156 

Our categorical citizen science measure of burn severity correlated well with the continuous 157 

measure of remotely sensed temperature of the fires (Figure 3). Pairwise effect sizes showed 158 

that ‘trees 100% scorched’ had larger effect sizes than all other categories, followed by ‘trees 159 

100% consumed’, whereas trees ‘no leaves scorched’ had the smallest pairwise effect size in 160 

all instances (Table S1). 161 

 162 

We found that Wet Sclerophyll forests had the highest percentage of burnt habitat in south-163 

east Australia (31.48%), followed by Dry Sclerophyll forests (19.85%) (Figure 4). 164 

Importantly, fire sensitive vegetation types also had a high percentage of burnt area, 165 

including Rainforest (15.63%), followed by Freshwater wetlands, including swamps, (7.4%). 166 

The distribution of iNaturalist observations across vegetation formations did not adequately 167 
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reflect the vegetation communities burned and was dominated by those in Dry Sclerophyll 168 

Forest (n = 1502), followed by Temperate subhumid woodlands (n = 400) and Wet 169 

Sclerophyll Forest (n = 349). Among the fire sensitive vegetation formations, observations 170 

were relatively few and similarly unrelated to percentage of burnt area with Freshwater 171 

wetlands (n = 136) having more than 4 times the number of observations as Rainforests (n = 172 

29). 173 

 174 

DISCUSSION 175 

 176 

The enormous scale of the 2019-2020 fire season in eastern Australia presents a challenge for 177 

scientists, including conservation biologists, policy-makers, and managers. Informed 178 

decisions about prioritising management or conservation needs to be based on the best 179 

available evidence, and usually quickly, for a rapid and effective recovery response 180 

(Kooyman et al. 2020). However, the scale of the 2019-2020 bushfires, and many other large-181 

scale disturbances likely to increase in frequency in the future, was simply too big for a rapid 182 

response using conventional biodiversity monitoring methods, with on-the-ground 183 

observations by trained professionals, given resourcing constraints (human and 184 

financial). These more detailed approaches are needed for more targeted learning and 185 

management planning.  186 

 187 

Citizen science will play a key role in biodiversity monitoring for these and future fires of 188 

this magnitude. Because citizen scientists were already spread out across the impacted areas, 189 

they could be mobilized without logistical constraints and sample disparate parts of the 190 

firegrounds, producing large-scale datasets quickly (Figure 1). These provided both fire 191 

severity information but also basic occurrence data on the recovery of a wide range of biota. 192 
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However, as with all citizen science projects, effort was generally haphazard in spatial and 193 

temporal sampling: the sampling is not complete, and spatially and temporally biased. These 194 

are limitations that can be offset by targeted investments in more systematic monitoring 195 

projects (Legge et al. 2018). But most importantly, citizen science occurred at the scale 196 

commensurate with the fires. It is possible for scientists to collaborate and cross-validate and 197 

gap-fill these data to ensure a robust and comprehensive sample of the event and associated 198 

phenomena. And by combining citizen science data with other data, including remotely 199 

sensed products, understanding can improve for some of the processes involved and likely 200 

opportunities for recovery of organisms and their ecosystems.   201 

 202 

Fire scientists typically quantify fire regimes, including the intensity (i.e., the energy output 203 

from the fire itself) and extent of fires in space and time, as well as the severity of the burn 204 

(i.e., the organic matter lost by component organisms as a direct result of the fire). Estimates 205 

of severity and intensity are both useful, either for understanding fire behaviour and its 206 

different impacts on functional processes or potential for recovery (Keeley 2009). These two 207 

indices are positively correlated but they can be related weakly to each other, because of 208 

different vegetation physiognomies and fuel characteristics (Hammill & Bradstock 2006). We 209 

showed a similar positive relationship between our citizen science-generated assessment of 210 

fire severity and intensity (Figure 3). Our results suggest that accuracy of satellite mapping of 211 

fire severity is least accurate where fires burn beneath a tree layer without consuming the tree 212 

foliage, consistent with findings of Gibson et al. (2020) who used a different mapping 213 

platform, and reinforced the need for ground observations. The strength of the relationship 214 

we found was likely to be reduced in particular vegetation types, and is also limited by 215 

outliers resulting from spatiotemporal gaps in the satellite data, which sometimes miss the 216 

peak intensity of a given fire. Importantly, the on-ground validation data from citizen 217 
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scientists was useful in ground-truthing broad-scale fire severity (Gibson et al. 2020). Finer-218 

resolution remote sensing products are however the result of machine learning algorithms that 219 

require training data (e.g., Gibson et al. 2020), a process that is fire-specific and takes time to 220 

produce. A reliable understanding of fire severity patterns is important to guide immediate 221 

post-fire response efforts, such as wildlife rescue, as well as longer term strategic policies 222 

centred on protection of fire refuges and reducing risks of future fires. Citizen science 223 

observations support this effort by enabling policy decisions to be informed by a stronger and 224 

more timely understanding of the uncertainties in mapping than is possible by other means. 225 

 226 

Two other features of this project are worth highlighting. First, by using a public platform the 227 

dataset is open and can be downloaded and analyzed by anyone including both professional 228 

and citizen scientists. This is crucial given the wide range of taxa surveyed (Figure 2) and 229 

potential utility for specialists in these fields. Second, the data can be linked to pre-fire data – 230 

collected at the same sites and sometimes by the same observers – allowing analyses of 231 

population, species, and community responses to bushfires.   232 

 233 

Citizen science data can significantly contribute to the data we require to make decisions, 234 

particularly over large temporal and spatial scales (Chandler et al. 2017; Callaghan et al. 235 

2019). Our project delivered rapid data on biodiversity and fire severity over a large scale. 236 

Uniquely, we demonstrated the utility of citizen scientists to respond to landscape-scale 237 

environmental disturbances such as the 2019-2020 fires in southeastern Australia. The 238 

challenge will be to continue to engage citizen scientists to collect data tracking long-term 239 

temporal change and such a large spatial scale. This can be partly met by showing how such 240 

data can significantly improve understanding of fire processes and also contribute to 241 

improving the management of the environment for the many organisms affected by such 242 
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large scale fires. Citizen science is now entering an era where the platforms can rapidly 243 

mobilize data collection after large-scale catastrophic events, increasing in likelihood with 244 

anthropogenic change to the atmosphere and climate (Cheal et al. 2017). 245 

 246 

ACKNOWLEDGEMENTS 247 

We thank the naturalists who are greatly increasing our knowledge on biodiversity responses 248 

to fire and contributing their observations to iNaturalist. MKJO and DAK thank the NSW 249 

Government’s Department of Planning, Industry & Environment for providing funds to 250 

support their research via the Bushfire Risk Management Research Hub. 251 

 252 



13 

 

REFERENCES 253 

 254 

Bakker, Victoria J., et al. “The Changing Landscape of Conservation Science Funding in the 255 

United States.” Conservation Letters, vol. 3, no. 6, 2010, pp. 435–444., 256 

doi:10.1111/j.1755-263x.2010.00125.x. 257 

Boer, Matthias M., et al. “Unprecedented Burn Area of Australian Mega Forest Fires.” 258 

Nature Climate Change, vol. 10, 2020, pp170-172., doi: 10.1038/s41558-020-0716-1 259 

Bradstock, Ross A. Flammable Australia the Fire Regimes and Biodiversity of a Continent. 260 

Cambridge Univ. Press, 2010. 261 

Burgess, H.k., et al. “The Science of Citizen Science: Exploring Barriers to Use as a Primary 262 

Research Tool.” Biological Conservation, vol. 208, 2017, pp. 113–120., 263 

doi:10.1016/j.biocon.2016.05.014. 264 

Callaghan, Corey T., et al. “Improving Big Citizen Science Data: Moving beyond Haphazard 265 

Sampling.” PLOS Biology, vol. 17, no. 6, 2019, doi:10.1371/journal.pbio.3000357. 266 

Chandler, Mark, et al. “Contribution of Citizen Science towards International Biodiversity 267 

Monitoring.” Biological Conservation, vol. 213, 2017, pp. 280–294., 268 

doi:10.1016/j.biocon.2016.09.004. 269 

Cheal, Alistair J., et al. “The Threat to Coral Reefs from More Intense Cyclones under 270 

Climate Change.” Global Change Biology, vol. 23, no. 4, 2017, pp. 1511–1524., 271 

doi:10.1111/gcb.13593. 272 

Fensham, Roderick J., et al. “Dominant Tree Species Are at Risk from Exaggerated Drought 273 

under Climate Change.” Global Change Biology, vol. 21, no. 10, 2015, pp. 3777–274 

3785., doi:10.1111/gcb.12981. 275 



14 

 

Gibson, Rebecca, et al. “A Remote Sensing Approach to Mapping Fire Severity in South-276 

Eastern Australia Using Sentinel 2 and Random Forest.” Remote Sensing of 277 

Environment, vol. 240, 2020, p. 111702., doi:10.1016/j.rse.2020.111702. 278 

Hammill, Kate A., and Ross A. Bradstock. “Remote Sensing of Fire Severity in the Blue 279 

Mountains: Influence of Vegetation Type and Inferring Fire Intensity.” International 280 

Journal of Wildland Fire, vol. 15, no. 2, 2006, p. 213., doi:10.1071/wf05051. 281 

Hampe, Arndt, and Rémy J. Petit. “Conserving Biodiversity under Climate Change: the Rear 282 

Edge Matters.” Ecology Letters, vol. 8, no. 5, 2005, pp. 461–467., 283 

doi:10.1111/j.1461-0248.2005.00739.x. 284 

Hobbs, R.J. and McIntyre, S. “Categorizing Australian landscapes as an aid to assessing the 285 

generality of landscape management guidelines.” Global Ecology and 286 

Biogeography, vol. 14, no. 1, pp.1-15. 287 

Hughes, Terry P., et al. “Spatial and temporal patterns of mass bleaching of corals in the 288 

Anthropocene.” Science 359: 80-83. 2018, doi:10.1126/science.aan8048 289 

Hutchinson, M.F., McIntyre, S. et al. “Integrating a global agro‐climatic classification with 290 

bioregional boundaries in Australia.” Global Ecology and Biogeography, vol. 14 no. 291 

3, 2020, pp.197-212. 292 

Jordan, Rebecca C., et al. “Knowledge Gain and Behavioral Change in Citizen-Science 293 

Programs.” Conservation Biology, vol. 25, no. 6, 2011, pp. 1148–1154., 294 

doi:10.1111/j.1523-1739.2011.01745.x. 295 

Keeley, Jon E. “Fire Intensity, Fire Severity and Burn Severity: a Brief Review and 296 

Suggested Usage.” International Journal of Wildland Fire, vol. 18, no. 1, 2009, p. 297 

116., doi:10.1071/wf07049. 298 

Keith, David A. Australian Vegetation. Cambridge University Press, Cambridge, 2017. 299 



15 

 

Kelling, Steve, et al. “Using Semistructured Surveys to Improve Citizen Science Data for 300 

Monitoring Biodiversity.” BioScience, vol. 69, no. 3, 2019, pp. 170–179., 301 

doi:10.1093/biosci/biz010. 302 

Kooyman, Robert M., et al. “Protect Australia's Gondwana Rainforests.” Science, vol. 367, 303 

no. 6482, 2020, doi:10.1126/science.abb2046. 304 

Kosmala, Margaret, et al. “Assessing Data Quality in Citizen Science.” Frontiers in Ecology 305 

and the Environment, vol. 14, no. 10, 2016, pp. 551–560., doi:10.1002/fee.1436. 306 

Legge, Sarah M. et al. Monitoring threatened species and ecological communities. CSIRO 307 

Publishing, Melbourne, 2018 308 

Mckinley, Duncan C., et al. “Citizen Science Can Improve Conservation Science, Natural 309 

Resource Management, and Environmental Protection.” Biological Conservation, vol. 310 

208, 2017, pp. 15–28., doi:10.1016/j.biocon.2016.05.015. 311 

Milly, P. C. D., et al. “Increasing Risk of Great Floods in a Changing Climate.” Nature, vol. 312 

415, no. 6871, 2002, pp. 514–517., doi:10.1038/415514a. 313 

Nolan, Rachael H., et al. “Causes and Consequences of Eastern Australia's 2019–20 Season 314 

of Mega‐Fires.” Global Change Biology, 2020, doi:10.1111/gcb.14987. 315 

NSW DPIE (Department of Planning, Industry and Environment) “Understanding the effects 316 

of the 2019-20 fires.” https://www.environment.nsw.gov.au/topics/parks-reserves-317 

and-protected-areas/fire/park-recovery-and-rehabilitation/recovering-from-2019-20-318 

fires/understanding-the-impact-of-the-2019-20-fires 319 

Wooster, M. J., et al. “Retrieval of biomass combustion rates and totals from fire radiative 320 

power observations: FRP derivation and calibration relationships between biomass 321 

consumption and fire radiative energy release.” Journal of Geophysical Research 322 

Atmospheres, 2005, 110, doi:10.1029/2005JD006318 323 

 324 

 325 

https://www.environment.nsw.gov.au/topics/parks-reserves-and-protected-areas/fire/park-recovery-and-rehabilitation/recovering-from-2019-20-fires/understanding-the-impact-of-the-2019-20-fires
https://www.environment.nsw.gov.au/topics/parks-reserves-and-protected-areas/fire/park-recovery-and-rehabilitation/recovering-from-2019-20-fires/understanding-the-impact-of-the-2019-20-fires
https://www.environment.nsw.gov.au/topics/parks-reserves-and-protected-areas/fire/park-recovery-and-rehabilitation/recovering-from-2019-20-fires/understanding-the-impact-of-the-2019-20-fires


16 

 

 326 



17 

 

FIGURES 327 

 328 

 329 
Figure 1. Map of fire extent (grey regions) in eastern Australia, with our citizen science 330 

derived measures of on ground burn severity (including five photographic observations and 331 

their contributors, top left burnt Eucalyptus: motherj; bottom left Koala: tonia1971; top right 332 

Red Triangle Slug: mollynuge; bottom right White Root: gtaseski) and a comparison between 333 

the timing of the fire front extent, measured in terms of numbers of hotspot data (red) and 334 

number of citizen science observations (blue). 335 

 336 
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 337 

 338 
Figure 2. Taxonomic breakdown (kingdom, phylum, class, and order) and the number of 339 

identified observations (71% of the total observations were identified to order). There were 340 

two slime molds added to the project but not shown. 341 

 342 

 343 
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 344 
Figure 3. Relationship between the citizen science measure of burn severity and the remotely 345 

sensed temperature from the Digital Earth Australia hotspots data. 346 

 347 

 348 
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 349 
Figure 4. Percentage of burnt and unburnt area of affected national vegetation formations across 350 

temperate-subtropical south-east Australia during the 2019-2020 fire season. The number to the right 351 

of each bar indicates the number of iNaturalist observations recorded within that vegetation 352 
formation. 353 

 354 

 355 
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SUPPLEMENTARY FIGURES AND TABLES 356 

 357 

Table S1. Pairwise effect sizes extracted from a linear model where the response variable 358 

was temperature and the predictor variable was our post-fire citizen science assessment of 359 

burn severity. 360 

 361 

Contrast Effect 

size 

Standard 

error 

Lower 95% 

CL 

Upper 95% 

CL 

Trees <50% leaves scorched - Trees 100% 

leaves consumed 
-0.6609 0.1039 -0.8647 -0.457 

Trees <50% leaves scorched - Trees 100% 

leaves scorched 
-0.9720 0.0937 -1.1558 -0.788 

Trees <50% leaves scorched - Trees 50%-

99% leaves scorched 
-0.5883 0.0938 -0.7724 -0.404 

Trees <50% leaves scorched - Trees no 

leaves scorched 
-0.1146 0.4152 -0.9292 0.700 

Trees 100% leaves consumed - Trees 100% 

leaves scorched 
-0.3111 0.0869 -0.4816 -0.141 

Trees 100% leaves consumed - Trees 50%-

99% leaves scorched 
0.0726 0.0884 -0.1008 0.246 

Trees 100% leaves consumed - Trees no 

leaves scorched 
0.5464 0.4143 -0.2666 1.359 

Trees 100% leaves scorched - Trees 50%-

99% leaves scorched 
0.3837 0.0750 0.2365 0.531 

Trees 100% leaves scorched - Trees no 

leaves scorched 
0.8574 0.4119 0.0493 1.666 

Trees 50%-99% leaves scorched - Trees no 

leaves scorched 
0.4737 0.4119 -0.3346 1.282 

 362 

 363 

 364 

 365 
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