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Abstract 

Species distribution modeling (SDM) is a powerful empirical approach for associating the 

distribution of a species with environmental covariates such as climate factors. However, SDM 

research still lacks consensus regarding which algorithms are the best for which purposes. We 

propose that exploring the accuracy-interpretability trade-off using explainable artificial 

intelligence (xAI; interpretable machine learning) is key to alleviate this issue. xAI is a subfield of 

AI that aims to enhance the interpretability of complex algorithms. Given an example of SDM 

combined with xAI (with a reproducible R script), we suggest a promising direction to advance 

SDM research.  
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Understanding how and why species are distributed in space is central to biogeography and 

biological conservation (Pecl et al. 2017, Araújo et al. 2019). Species distribution modeling (SDM) 

is a powerful empirical approach for associating the distribution of a species with environmental 

covariates such as climate factors (Elith and Leathwick 2009). Several researchers have put 

substantial efforts into making SDM more easy-to-build for broad users (cf. >10 software available 

for SDM as reviewed in Angelov 2019). As a consequence, SDM has matured as a practical 

ecological modeling tool, and more than 6,000 studies using or mentioning SDM in the past 20 

years (Araújo et al. 2019).  

While various statistical methods can be used, SDM research still lacks consensus regarding 

which algorithms are the best for which purposes (Araújo et al. 2019). A key is to find a balance 

between accuracy and interpretability, given a study objective (Merow et al. 2014). Accuracy and 

interpretability are typically in a trade-off (Breiman 2001a). To find an optimal balance requires 

the exploration of both sides along the trade-off gradient: excessively simple algorithms (e.g., 

linear model) and excessively complex ones (e.g., machine learning and ensemble modeling 

approach that employs several algorithms together (Araújo and New 2007)). 

We argue that it is, therefore, time to reconsider how to assess the ‘goodness’ of SDM. The 

performance of an SDM is usually assessed in terms of accuracy. The theoretical rationale of 

doing so is the bias-variance trade-off. Under this rule, the most complex algorithm is most likely 

to be the best choice. However, as mentioned above, now SDM research also challenges the 

accuracy-interpretability trade-off. We think that interpretability is still largely understudied but 

necessary for bringing more trust in SDM research. Even if an SDM of a target species achieves 

high accuracy, the user, such as the local ecological manager and decision-maker, may not trust 

the model when it is difficult to assess whether a model prediction makes sense in the light of the 

ecology of the target species. Collectively, a truly good SDM should be sufficiently accurate and 

also sufficiently easy to interpret (Phillips et al. 2004, Austin 2007, Merow et al. 2014). Moreover, 

we imagine that increasing interpretability may also enhance the realism and generality of SDMs. 

These are other important ‘goodness’ features (Araújo et al. 2019).  

A complex algorithm is attractive for capturing the complex nature and context-dependency 

of a dynamic system. But at the same time, it is unattractive because of low interpretability. This 

dilemma is a common problem in several other disciplines as well as ecology. Any important 

decision making requires a certain convincing rationale for a prediction (e.g., financial risk 

assessment, medical diagnosis, and criminal justice, to name a few). The strong need for 

rationalizing predictions made with artificial intelligence (AI) has led to the rapid emergence of 

explainable AI (xAI), an AI subfield that aims to enhance the interpretability of complex algorithms. 

xAI is sometimes interchangeably used as interpretable machine learning (Murdoch et al. 2019). 

This article first introduces xAI to SDM research. 

Among others, a groundbreaking idea was suggested by Ribeiro et al. (2016): Local 

Interpretable Model-agnostic Explanation (LIME). The eye-pening idea of LIME is to increase the 

interpretability of an excessively complex model without losing accuracy by reducing the 

‘unnecessary’ degree of the model complexity.  A key assumption of LIME, which we believe also 
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applies in ecology, is that the necessary degree of model complexity is scale-dependent. A 

complex algorithm is suited when modeling a species distribution at the biogeographical scale, 

but a simpler algorithm is often accurate enough at much smaller scales (e.g. landscape, the 

scale where the actual management happens). With LIME one can still fit a complex algorithm, 

but when it comes to the interpretation at a local scale, the algorithm is approximated with a simple 

model that has a sufficient accuracy at the local scale. The idea of cross-scale model exchange 

is quite unique and practical. 

This innovation additionally offers a novel approach for model validation: site-level 

assessment (see an example in Box 1). Most complex algorithms cannot provide the reasons for 

each prediction as an output, and therefore, there is no way to assess how much a prediction at 

a specific site makes sense ecologically. Imagine that we fit a random forest model to a focal 

species, and the model predicts its presence at site X. But why does the model think so? Because 

of the temperature, water availability, or other reasons?—We cannot know. But, xAI tools now 

make it possible to answer such a question. We can investigate how well the complex model of a 

target species can offer ecologically convincing reasons on prediction outcomes at some 

randomly chosen local sites. Site-level model validation in the light of ecology of the species is 

critically important because (i) even if a prediction seems correct, it can be made for utterly 

nonsense reasons; (ii) locally important environmental features do not necessarily correspond to 

globally important environmental features (e.g. microclimate and context-dependence); and (iii) 

an SDM with a high accuracy score does not necessarily mean highly accurate at the local scale. 

We mainly introduced LIME as an example, but more xAI techniques are increasingly available 

to enhance interpretability and thus trust in complex algorithms: see e.g., Molnar (2019) and 

Murdoch et al. (2019). xAI has already brought promising successes to other scientific disciplines 

(e.g. computer vision and medical science). We hope that this article helps make SDM research 

even more successful with the help of xAI to explore a balance between accuracy and 

interpretability.  
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Box 1: Explaining the distribution of African elephant with xAI 

 
Since we hope many ecologists investigate the potential of xAI, we demonstrate how to apply 
the LIME approach for SDM in R (R Core Team 2017). In this exercise, we make a SDM of 
Loxodonta africana (African elephant). Note that our intention here is neither to advance the 
ecological knowledge of the species nor to model the species rigorously (e.g. we did not 
consider spatial autocorrelation). Rather, we aim to show how to implement the technique (the 
R script is available at https://github.com/boyanangelov/interpretable_sdm). We applied the 
Random Forest algorithm (Breiman 2001b) for modeling the distribution of L. africana (data 
from GBIF) with bioclimatic covariates (data from WorldClim). For data acquisition and 
processing we used sdmbench package (Angelov 2018), and for model training mlr package 

(Bischl et al. 2016), and for model explanation, lime package (Pedersen and Benesty 2019). 

Fig. S1 highlights the role of xAI in investigating how the SDM predicts at some local sites. 
Conventionally, model assessment is based mostly on the visualization of its habitat suitability 
(upper-left panel), accuracy score and variable importance ranking (lower-left panel). In this 
example, we interpret that the model is very accurate (AUC = 0.984), and that key covariates 
are the precipitation amount of the wettest quarter and the temperature of the coldest and 
driest quarter. This interpretation is important for biogeographical understanding, but it does 
not help us assess the model reliability at the local scale, where actual conservation happens. 

 xAI can solve the issue. With LIME we show site-level model validation at three randomly 
taken sites (right panel). At site A, the model predicted a high presence probability (0.95), and 
now we ask—why does the model predict so? We see that the prediction is supported by all 
top 5 environmental conditions at the site. At site B, the model also predicts presence 
(prob.=0.97), but the reasons supporting the prediction differs largely from those of site A. 
Having different key conditions makes sense, since these sites are so far away (approx. 2,500 
km). At site C, the model predicts absence (presence prob. =0.34). Yet, some factors are 
against the prediction. Hence, at site C, a more careful investigation is needed with a 
specialist of the species around the site.  

As demonstrated, such individual LIME explanations for local sites can help better check 
spatial variations in covariate importance, which in turn, can contribute to more reasonable 
conservation decisions, ecological understanding, and higher trust in the model at the local 
scale. 
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Figure S1. Interpreting the species distribution model of L. africana based on habitat suitability 
mapping and model assessment at both biogeographically and conservationally-relevant scales (global 

and local). Model interpretation at the local scale applies LIME (local interpretable model-agnostic 
explanations), an algorithm of explainable artificial intelligence (xAI).  
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