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Abstract 
Species distribution models (SDMs) are widely used in ecology, biogeography, and conservation 
biology to understand the correlation of species occurrences with the environment and make 
predictions of how their distributions vary in space and time. During the past two decades, the field 
has increasingly made use of machine learning approaches for constructing and validating SDMs. 
Model accuracy has steadily increased as a result, but the interpretability of the fitted models, for 
example the relative importance of predictor variables for model predictions or their causal effects on 
focal species, has not always kept pace. Here we draw attention to an emerging subdiscipline of 
artificial intelligence, explainable AI (xAI), as a toolbox for better interpreting SDMs. xAI aims at 
deciphering the behavior of complex statistical or machine learning models (e.g., neural networks, 
random forests, and boosted regression trees), and can produce more transparent and 
understandable SDM predictions. We describe the rationale behind xAI and provide a list of tools and 
a reproducible example in R that demonstrates how xAI can help to improve the interpretability of 
machine learning used for SDMs. 
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Main text 

Understanding where and why species occur in space and time is central to ecology, biogeography, 
and conservation biology (Pecl et al. 2017, Araújo et al. 2019). Species distribution models (SDMs) 
are currently the most widely used approach for this purpose. SDMs correlate species’ occurrence 
records with environmental covariates such as land use and climatic factors, to identify factors that 
predict species’ presence or habitat suitability and to project distributional shifts in response to 
environmental change (Elith and Leathwick 2009, Booth et al. 2014).  

Since the first SDM applications in the early 1980s (Box 1981, Booth et al. 2014, Booth 2018), the 
field has steadily moved from simple statistical models (e.g., logistic regressions) to more complex 
statistical methods, often adopting principles or algorithms from the field of machine learning (ML) 
(Phillips et al. 2006, Elith and Leathwick 2009). Moreover, the community has put substantial efforts 
into making SDMs more easy-to-use by streamlining the model-building and analytical processes 
through various software packages, for example, graphical user interfaces (Scachetti-Pereira 2002, 
Phillips et al. 2006, de Souza Muñoz et al. 2011, Kass et al. 2018) and programming frameworks (cf. 
>10 R packages available for SDM as reviewed in Angelov, 2019). With these developments, SDMs 
have matured into a widely applied ecological modeling tool that has resulted in more than 6,000 
studies using or mentioning SDM in the past two decades (Araújo et al. 2019).  

Whereas the wide availability of complex ML algorithms has encouraged users to build more 
accurate SDMs, it has not necessarily enhanced the understanding of the fitted models (e.g., deep 
learning; Christin et al., 2019). The downside of complex ML models is that it is hard to understand 
how and why they make their predictions, which is why they are often referred to as “black-box” 
models. In general, there is a trade-off between the accuracy and interpretability of statistical models 
(Breiman 2001a). Achieving both simultaneously is challenging (Guisan and Thuiller 2005), but most 
researchers would agree that an ideal SDM is both accurate and easy to interpret (Phillips et al. 2004, 
Austin 2007, Merow et al. 2014). It is therefore a reasonable question to ask whether ecologists should 
sacrifice interpretability by using excessively complex algorithms for constructing SDMs in order to 
procure slight advantages in predictive accuracy (Qiao et al. 2015, Araújo et al. 2019).  

The dilemma of gaining accuracy only at the expense of interpretability is not unique to ecology. 
Fields as diverse as financial risk assessment, medicine, or criminal justice have recently also realized 
that although ML algorithms have desirable properties for making accurate predictions, it is difficult to 
understand the rationale underlying these predictions. The lack of interpretability makes these models 
less reliable or acceptable for scientists and stakeholders alike (Ribeiro et al. 2016, Meske and Bunde 
2020). This problem has led to the emerging research area of explainable artificial intelligence (xAI), 
a subfield of AI also termed interpretable ML (Murdoch et al. 2019), that aims at developing tools for 
enhancing the interpretability of complex algorithms (Carvalho et al. 2019).  

The purposes of this forum article are to provide a brief introduction to the field and several 
techniques of xAI and to suggest for the first time its potential applicability to SDM research (Fig. 1). 
This work builds upon previous studies and software that improved accessibility and understanding 
for novel ML tools in ecology (Cutler et al. 2007, Elith et al. 2008, 2011, Olden et al. 2008, Elith and 
Graham 2009, Merow et al. 2013, Ryo and Rillig 2017). We acknowledge that some of these methods 
are already routinely used, and substantial efforts have already been made to improve the 
interpretation of fitted ML models in SDM research and ecology, independently of the emergence of 
xAI: e.g., bootstrap approach for key variable detection (Olden and Jackson 2002), novel higher-order 
interaction discovery (Ryo et al. 2018), and the Maxent “Explain” tool (Phillips 2017). However, these 
efforts are now being rapidly synthesized and expanded in the scientific domain of xAI, and several 
tools are readily available. Thus, we call for attention to the tools and principles developed in this field 
for ecological applications. 
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Figure 1. The role of explainable Artificial Intelligence (xAI) in species distribution modeling. Interpretable 
machine learning methods either target a direct understanding of model architecture (i.e., model-based 
interpretability) or interpret the model by analyzing the model behavior (i.e., how predictions react to certain 
inputs; post-hoc interpretability). Many methods of the latter kind are model-agnostic, meaning that they can be 
used for any model, while the former methods are specific for certain model classes. 

 

To explain how xAI helps ecologists, it will be useful to start with an example. The field of xAI has 
been developing quickly in recent years, and many new methods have been proposed recently (Table 
1, see also Molnar 2019, Murdoch et al. 2019, Biecek and Burzykowski 2020, Boehmke and 
Greenwell 2020). From those, we selected as an example the Local Interpretable Model-agnostic 
Explanation (LIME), a post-hoc interpretation method proposed by Ribeiro et al. (2016). “Post-hoc” 
means that it is implemented after the model has been fit, and model-agnostic means that it is usable 
for any complex model.  

 

Table 1. Model-agnostic post-hoc methods in explainable Artificial Intelligence (xAI), their approaches, and 
potential use for species distribution models (SDMs). Model-agnostic means that they can be used for any 
model. Note that the list may not fully cover all available methods. For the “level” column, “local” means that the 
method is applicable for understanding how each prediction is made, while “global” means that it is used for 
understanding the model learned from the dataset. 

Level Method Approach Utility for SDM modellers  Ref. 

local Local Interpretable 
Model-agnostic 
Explanation 

Explains how the model 
predicts at a given instance 
with a simple parametric or 
machine learning model 

Inspects which features are important for 
the prediction at a given location.  

(Ribeiro et al. 
2016; this 
work) 

local Shapley values Explains the relative 
contribution of each feature to 
the prediction at a given 
instance, based on cooperative 
game theory 

Inspects which features are important for 
the prediction at a given location.  

(Lundberg and 
Lee 2017) 

local Anchors Builds if-then rules with some 
features and their thresholds 
such that the model does not 
change the prediction at a 
given instance  

Identifies which features are important 
and how sensitive the prediction is against 
changes in the selected features at a 
given location. 

(Ribeiro et al. 
2018) 

local iBreakDown Identifies interactions and Inspects which feature interactions are (Gosiewska 
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measures their contributions important for the prediction at a given 
location. 

and Biecek 
2020) 

global Permutation importance; 
multi-level block 
permutation 

Measures the relative 
contribution of each feature to 
the model accuracy. The latter 
accounts for the covariance 
structure. 

Quantifies which variables are important, 
including the mean and confidence 
intervals, for the accuracy of the model. 

(Winkler et al. 
2015) 

global Partial dependence plot; 
individual conditional 
expectation plot; 
accumulated local 
effects plot 

Shows the marginal effects of 
features on the prediction 

Visualizes how the associations between 
the features and response are modeled. 

(Hastie et al. 
2001, 
Goldstein et al. 
2014, Apley 
and Zhu 2019) 

global H-statistic Measures the interaction 
strength of paired features 
based on the stability of partial 
dependence 

Identifies key pairwise interactions, either 
among all possible combinations or given 
a specific feature. 

(Friedman and 
Popescu 2008) 

global Greenwell’s partial 
dependence-based 
variable importance  

Measures the interaction 
strength of paired features 
based on the stability of partial 
dependence  

Identifies key pairwise interactions, either 
among all possible combinations or given 
a specific feature. 

(Greenwell et 
al. 2018) 

 

 

The aim of LIME is to explain how the fitted complex model creates a prediction for a given 
instance (i.e., a grid cell or other local neighborhood). To this end, for each instance, LIME fits a “local 
surrogate” model (a simple model; e.g. a logistic regression or decision tree) that approximates the 
behavior of the complex model for a limited area of the n-dimensional space defined by the predictor 

variables. Searching for the local surrogate model is formulated as argmin L(f, g, πx) + Ω(g). The term 

L(f, g, πx) calculates the difference in accuracy between the complex model f (e.g. random forests) 
and a simple model g (e.g. linear model) at the target prediction x and the surrounding neighborhood 
of proximity π in the n-dimensional space. The term Ω(g) is the complexity of the simple model 
represented as the number of parameters. The LIME algorithm minimizes L + Ω to replace the 
complex model by the simpler one, while attempting to avoid losing accuracy. A key assumption of 
LIME is that the necessary degree of model complexity depends on the data domain for which 
predictions should be made.  

Hence, LIME helps us remove ‘unnecessary’ complexity from a global model to better understand 
how it arrives at local predictions. Although a complex algorithm may be necessary to accurately 
model species distributions at coarse spatial scales (e.g., the full species range), a simpler algorithm 
is often sufficiently accurate at finer scales where conservation and management activities actually 
take place. In fact, many parameters that would apply to the larger scale are not as important at more 
local scales, where most of the parameters can often be assumed to be constants (but see Potter et 
al. 2013).  

The simplified model can also be used for model analysis and validation, as we demonstrate in 
an example where we provide site-level assessment and interpretation for an SDM for the African 
elephant (Box 1, Fig. 2). Most complex algorithms were primarily designed to improve predictions, 
and design principles such as boosting, bagging, or deep layers in neural networks usually complicate 
the interpretation of the fitted model. For example, suppose one fits a random forest model to a focal 
species with a range of different predictor variables and the model predicts the presence or high 
suitability for the species at a particular site. One may want to know why the model made such a 
prediction. For example, is it due to optimal climatic conditions, resource availability, or other reasons? 
LIME can help to analyze how the importance of the predictor variables changes with scale and/or 
subregion (Ryo et al. 2018) and which variables are most relevant for a particular location or scenario. 
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More broadly, xAI methods can help to analyze and approximate the global and local behavior of 
the model and identify the reasons for why particular predictions are made (although such reasons 
are not necessarily causal). It is widely appreciated that statistical models can use non-causal 
predictor variables to make predictions (i.e., the model predicts the right outcome for the wrong reason 
(Fourcade et al. 2018)). This is not necessarily a problem, because non-causal factors can act as 
proxies for unobserved and unobservable causal factors to improve predictions. However, the use of 
such non-causal model structures is problematic when predicting under conditions where the 
correlation structures of predictor variables change (Dormann et al. 2013). It is therefore important to 
determine the extent to which the fitted model reflects the true causal structure, and thus the 
mechanisms actually driving these relationships. 

xAI cannot directly answer these questions, but it can help ecologists to examine the question of 
causality. For example, an xAI analysis may show that model predictions depend on predictor 
variables that are determined a priori as unlikely relevant for the focal species, or that the relevance 
of predictor variables changes in geographical or environmental space in a way that is ecologically 
counterintuitive. These results may lead the researcher to reconsider the extent to which the fitted 
model reflects true mechanistic relationships, as well as the extent to which it can be used for 
extrapolation or to inform direct management interventions. In such a way, xAI can be combined with 
ecological and biogeographical knowledge to create a richer and more accurate interpretation of fitted 
ML models. 

In conclusion, we hope that this article will encourage applications of xAI tools in the SDM research 
domain to strengthen mutual understanding between modelers and practitioners. Expert knowledge 
from both groups can be used to assess how local predictions are made based on the output of xAI, 
and this should inform model selection and conservation or management action. To conclude, we 
think that demystifying the decisions that complex models make is a necessary step towards 
producing models that can explain real-world ecological data (Mammola et al. 2019, Araújo et al. 
2019).  
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Box 1: Explaining the distribution of the African elephant with xAI 

 
We demonstrate here an application of the LIME approach for SDMs with R (R Core Team 
2019), using as an example the distribution of the African elephant (Loxodonta africana). The 
R script to reproduce the analysis with detailed settings is available on Zenodo 
(https://doi.org/10.5281/zenodo.3904245). Note that our intention is purely demonstrational: 
we seek neither to advance the ecological knowledge of this species nor to adhere to all the 
best modeling practices (e.g., we did not consider spatial autocorrelation or model tuning).  

We applied the random forests algorithm (Breiman 2001b) for modeling the distribution of L. 
africana using occurrence data downloaded from GBIF (Navarro and Jackson in press, Musila 
et al. 2019, naturgucker_de 2020, Questagame 2020, Ueda 2020), 10,000 randomly sampled 
background points, and standard bioclimatic variables from WorldClim v2 (Fick and Hijmans 
2017). For data acquisition and processing, we used the sdmbench package (Angelov 2018), 

for model training the mlr package (Bischl et al. 2016), and for model explanation the lime 

package (Pedersen and Benesty 2019; but note that the breamDown package is an 

alternative, Biecek and Grudziaz, 2020). The data was split into training and testing data, 70% 
and 30% respectively. 

Conventionally, model assessment relies heavily on visual inspections of the mapped 
model predictions (in this case, species’ habitat suitability; upper-left panel in Fig. 2), accuracy 
metrics, variable importance rankings, and variable associations (lower-left panel). In this 
example, we interpret that the model is accurate when evaluated on testing data (Area Under 
the ROC Curve = 0.98) and that the most important variables are the precipitation of the 
wettest quarter and the temperature of the coldest and driest quarter. This interpretation is 
important for biogeographical understanding, but it does not help us assess how reliable the 
model is or what the locally important variables are at the local scale, where actual 
management and/or conservation occurs. 

 Local surrogates can help alleviate this issue. With LIME we show site-level model 
validation at three randomly chosen sites (right panel). At site A, the model predicts high 
habitat suitability (0.95), and we ask why it makes such a prediction. With LIME, we can 
confirm that the prediction is supported by all top five environmental conditions at the site. At 
site B, the model also predicts equally high suitability (0.97), but the reasons for the prediction 
differ from those for site A. As these sites are so distant from one another (approx. 2,500 km), 
it is reasonable that these sites may be similarly suitable for different reasons. At site C, the 
model predicts low suitability (0.34) because of a combination of both positive and negative 
environmental factors. Hence, at site C, a careful investigation may be warranted to confirm 
the presence or absence of the species. 

The habitat suitability at site A (0.95) is slightly lower than that at site B (0.97), although at 
site A all predictor variables support the prediction while at site B one variable is against the 
prediction (i.e., temperature seasonality). This is potentially because of (i) the effects of the 
other variables that are ranked lower than five and/or (ii) the local surrogate model did not 
perfectly explain the global model. We do not intend to solve these issues in this exercise, but 
they can be taken as potential caveats of LIME. 

As demonstrated, individual LIME explanations for local sites can help us better explore 
spatial variations in variable importance, which in turn, can contribute to more reasonable 
conservation and management decisions with higher interpretability for the model at the local 
scale. 
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Figure 2. Interpreting the species distribution model of the African elephant (Loxodonta africana) based on 

model assessment at scales relevant to both biogeographic processes and conservation and/or management 
(global and local). Model interpretation at the local scale applies Local Interpretable Model-agnostic 

Explanations (LIME), an explainable artificial intelligence (xAI) technique (see Table 1 for other techniques).  
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