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 27 

Abstract – Do tropical trees close to death have a distinct leaf spectral signature? Tree mortality 28 

rates have been increasing in tropical forests globally which is reducing the global carbon sink.  29 

Upcoming hyperspectral satellites could be used to predict regions close to experiencing 30 

extensive tree mortality during periods of stress like drought.  Here we show how imminent 31 

tropical tree mortality in Borneo impacts leaf physiological traits and reflectance.  We measured 32 

leaf reflectance (400-2500 nm), light saturated photosynthesis (Asat), leaf dark respiration (Rdark), 33 

and leaf mass area (LMA) across five campaigns in a six-month period during which there were 34 

two causes of mortality: a major drought and a co-incident tree stem girdling campaign.  We find 35 

that prior to mortality, there were significant (P<0.05) leaf spectral changes in the red (650-700 36 

nm), the NIR (1000 -1400 nm) and SWIR bands (2000-2400 nm) and significant reductions in 37 

the potential carbon balance of the leaves (increased Rdark and reduced Asat).  We show that the 38 

partial least squares regression (PLSR) technique can predict mortality in tropical trees across 39 

different species and functional groups with medium precision but low accuracy (r2 of 0.65 and 40 

RMSE/mean of 0.58).   However, most tree death in our study was due to girdling, which is not a 41 

natural form of death. More research is needed to determine if this spectroscopy technique can be 42 

applied to tropical forests in general. 43 

 44 

 45 

  46 
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 47 

Introduction 48 

Can future tropical forest tree mortality be predicted with aircraft or satellite remote 49 

sensing?  This question is of interest because tropical tree mortality is increasing, reducing the 50 

global carbon sink (Hubau et al., 2020)(Brienen et al., 2015).  Increased tree mortality may be 51 

driven by recent increases in extreme weather events caused by climate change, including 52 

increased drought frequency/severity (Rifai et al., 2019)(Rifai et al., 2018)(Rowland et al., 53 

2015)(Doughty et al., 2015) or elevated air temperatures (Clark, 2004; Doughty & Goulden, 54 

2009a). Other causes of mortality include altered disturbance regimes due to land management 55 

practices or biological invasions (e.g. grass/fire cycles) and the negative environmental impacts 56 

arising from forest degradation (e.g. physical damage to trees from logging or small-scale slash-57 

and-burn agriculture; environmental stress from enhanced edges effects) (Malhi et al., 2014).  58 

Experimental drought manipulations in the Amazon (Meir et al., 2015)(da Costa et al., 2010; 59 

Nepstad et al., 2007) show that larger trees, especially for specific high-abundance taxa 60 

(Bittencourt et al., 2020), are more susceptible to mortality. Could changes to leaf properties in 61 

these large trees indicate risk of imminent future mortality?  Death of these large individuals has 62 

the greatest impact on tropical forest vegetation and carbon dynamics (Phillips et al., 2009).   63 

“Environmental surveillance” techniques that enable us to identify individuals at risk of death or 64 

to predict future patterns of senescence would enable us not only to more accurately model forest 65 

vegetation and carbon dynamics, but could possibly enable us to manage the spread of forest 66 

pathogens and understand environmental stress gradients related to disturbance.  Given that these 67 

large trees are also the most visible to aircraft and satellites, remote sensing techniques that 68 

enable us to identify dying trees hold tremendous potential for detecting and understanding the 69 

causes of tree mortality at large spatial scales. 70 

Leaf traits, like leaf chemistry, photosynthetic capacity or leaf mass per area (LMA), are 71 

important indicators of a tree’s life history strategy and overall vitality (Poorter et al., 2008; 72 

Wright et al., 2004; Wright et al., 2010).  Therefore, remote sensing of these traits is one 73 

approach that could enable us to detect individuals or taxa at elevated risk of death during stress. 74 

For instance, light-demanding species with rapid growth and high mortality rates are predicted to 75 

have low seed mass, leaf mass per area, LMA, wood density, and tree height (Wright et al., 76 

2010). Variation in LMA is in part an expression of a trade-off between the energetic cost of leaf 77 

construction and the light captured per area that may be reflective of the strategy of the broader 78 

tree itself (Díaz et al., 2016; H. Poorter et al., 2009). Drought tolerance is also reflected in 79 

structural traits such as LMA, leaf thickness, leaf toughness and wood density, although further 80 

studies are required to better establish the limitations of these metrics and identify other potential 81 

indices (Bartlett et al., 2012)(Zanne et al., 2010) (Fyllas et al., 2012; Niinemets, 2001).   82 

Is tree death caused by carbon starvation, hydraulic failure, or a combination of the two 83 

and what traits are associated with this? To predict tree death with remote sensing we must 84 

understand the characteristics that drive tree death. A recent meta-analysis suggests that metrics 85 

of hydraulic failure more consistently predicted mortality than carbon starvation as determined 86 

by tissue concentrations of NSC (Adams et al., 2017).  Another study found hydraulic traits were 87 

better at predicting the response of ecosystem fluxes (CO2 and water vapor) to drought than traits 88 
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like LMA or wood density (Anderegg et al., 2018).  Tree mortality during droughts is highest for 89 

species that have a small hydraulic safety margin (the difference between typical minimum 90 

xylem water potential experienced and xylem vulnerability to embolism) (Anderegg et al., 2016).  91 

Turgor loss point - the leaf water potential that induces wilting - may be a key trait predicting  92 

drought tolerance and species distributions relative to water supply (Bartlett et al., 2012).  In 93 

tropical forests, there are species-specific changes to turgor loss point at the leaf level 94 

(Maréchaux et al., 2015) and xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss 95 

point (TLP) and cellular osmotic potential (πo) all occurred at significantly higher water 96 

potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT(Powell et al., 97 

2017).   98 

Leaf traits can be sensed remotely by aircraft or from space.  Foliar traits such as nitrogen 99 

(N), chlorophyll content, carotenoids, lignin, cellulose, LMA, soluble carbon, and water can be 100 

remotely estimated with leaf spectral reflectance signatures in many different plants and 101 

ecosystems (Ustin et al., 2009), including tropical forests (Asner & Martin, 2008).  This is 102 

because certain traits are associated with reflectance characteristics within specific spectral 103 

regions.  For instance, the visible part of the spectrum (400–700 nm) is associated with leaf N 104 

concentration, and the shortwave infrared (SWIR; 700–1,300 nm) is associated with structures 105 

such as palisade cell density.  LMA and leaf chemistry have been accurately measured and 106 

modelled at both the leaf (one nm bandwidth) (Asner & Martin, 2008; Curran, 1989; 107 

Jacquemoud et al., 2009), canopy and landscape scales (at 10 nm bandwidth) (Asner et al., 108 

2016). Other elements not directly expressed in the spectrum, such as phosphorus (P), have been 109 

accurately predicted with spectroscopy, possibly through a stoichiometric relationships with 110 

other chemical species (Ustin et al., 2006, 2009) or correlations with leaf morphological traits via 111 

the leaf economics spectrum (Wright et al 2004).  Other tropical tree traits not directly associated 112 

with leaf spectra, such as leaf age (Chavana-Bryant et al., 2017), photosynthetic capacity 113 

(Doughty et al., 2011), and branch wood density, have been predicted with spectroscopy in 114 

tropical forests (Doughty et al., 2017).  Predicted traits not directly associated with spectral 115 

regions are likely correlations between leaf traits and a tree’s life history strategy (Doughty et al., 116 

2017). 117 

There is evidence that drought changes tropical forest reflectance at the continental scale, 118 

due to changes in leaf traits or increased tree mortality.  For instance, EVI, a greenness index, as 119 

measured with Moderate Resolution Imaging Spectroradiometer (MODIS) increased in the 120 

Amazon during the 2005 drought (Saleska et al., 2007). However, others have challenged the 121 

original interpretation of the EVI data (Morton et al., 2014; Samanta et al., 2010), highlighting 122 

the challenge of remote sensing at a continental scale.  More recently, during a major El Niño 123 

drought in Borneo, NDVI initially increased as the drought was strengthening, but decreased at 124 

its peak (Nunes et al., 2019).  Interpretation of changing NDVI and/or EVI, at a larger spatial 125 

scales is generally complicated in many ecosystems as changes at the leaf level may be 126 

compensated for or masked by branch level process, for example leaf senescence and drop may 127 

reduce the canopy scale NIR signal.  However, remotely sensed LAI signal saturates in tropical 128 

forests and LAI variation can be relatively small even following strong climate extremes such as 129 

drought.  For instance, Meir et al. 2018 found a 12-20% change in LAI during an extreme 130 
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drought manipulation experiment with a ~5.5 m2 m-2 LAI which is within the saturation range.  131 

Therefore, changes in tropical forest canopy spectral characteristics at larger spatial scales may 132 

be more linked to changes changes in leaf level spectra, than in other ecosystems (Doughty & 133 

Goulden, 2009b; Wu et al., 2018).    134 

The 2016 El Niño caused a significant drought in Borneo, both in terms of increased 135 

temperature and reduced precipitation (Figure 1)(Rifai et al., 2019)(Rifai et al., 2018).  This El 136 

Niño had unusually high temperatures, which have been attributed to a climate change-amplified 137 

El Niño event (Thirumalai et al., 2017).  Recent work in Borneo, near our study site, found the El 138 

Niño event was associated with a decrease in chlorophyll and carotenoid concentrations by 35% 139 

(as NDVI decreased), and this was reflected in the shortwave infrared region of leaf spectral 140 

signatures (Nunes et al., 2019). These authors hypothesized that trees produced new leaves with 141 

higher pigment concentrations at the start of the El Niño event, and then dropped their leaves at 142 

its peak.   143 

In this study, we focus on tree mortality at a 1 ha long-term study site close to the Nunes 144 

et al 2019 study in Sabah, northern Borneo.  We attempt to understand the relationship between 145 

leaf traits, spectroscopy and mortality in two different ways: natural death during El Niño and 146 

forced mortality induced by girdling.  Before, during and after the 2016 El Niño drought (over 5 147 

field campaigns), we measured canopy-top leaf spectroscopy (400-2500 nm), leaf level gas-148 

exchange photosynthesis, dark respiration and LMA in a representative cross section of the 393 149 

monitored trees.  We further tried to explore mechanisms of mortality with a girdling campaign 150 

(the removal of the phloem in a 10 cm ring around the tree stem) in one half (0.5 ha, 210 stems) 151 

of the plot.  Here, we test the following hypotheses: 152 

H1 – Leaf traits that are correlated with leaf spectroscopy signals, such as light saturated 153 

photosynthesis, dark respiration, and LMA, change months prior to tree mortality. 154 

H2 - Tropical tree mortality can be predicted with hyperspectral information (400-2500 nm 1 nm 155 

bandwidth leaf reflectance).   156 

 157 

158 
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Methods 159 

Study sites 160 

Our study plots are in Kalabakan Forest Reserve in Sabah, Malaysian Borneo (Tower SAF‐05 161 
4.716°, 117.609°) within the Stability of Altered Forest Ecosystems (SAFE) Project (Ewers et 162 

al., 2011; Riutta et al., 2018). A schematic of the study site is shown in figure 1C.  Mean annual 163 
temperature is approximately 26.7°C and mean annual precipitation is 2,600–2,700 mm with no 164 

distinct dry season but ~12% of months with precipitation below 100 mm month-1 (Walsh & 165 
Newbery, 1999).  The plot has been selectively logged four times since the 1970s, which 166 

represents a high logging intensity for this region.  The soils are orthic Acrisols or Ultisols on 167 
undulating clay soil. Tree basal area is 13.9 m2/ha.  Total NPP and autotrophic respiration has 168 

been measured at the plot since 2011 and there is an eddy covariance tower nearby (Riutta et al., 169 
2018).  The plot is split in half by a small stream.  All the trees on one side of the stream were 170 
girdled in late Jan, 2016 by removing the phloem tissue in a 10 cm band, as described below 171 

(note: the plot was in the process of conversion to oil palm agriculture production). This part of 172 
the study site is hereafter referred to as the “girdled plot.”  The trees on the other side of the 173 

stream were not girdled and represent the treatment control. This part of the study site is 174 
hereafter referred to as the “drought plot”.  Although all trees experienced drought, the “drought” 175 

plot only experienced drought and not the effects of girdling.  We collected data during five field 176 
campaigns that took place from January to June 2016 (i.e. Campaign 1=21 Jan-16, Campaign 177 

2=10 Feb-16, Campaign 3=01 Mar-16, Campaign 4=29 Mar-16, Campaign 5 08 Jun-16). The 178 
first field campaign (C1) was conducted before girdling occurred to determine pre-girdling 179 

conditions and process rates. 180 
 181 

Girdling experiment – In late Jan 2016, after the first field campaign, we further explored the 182 
causes of tree mortality by conducting a girdling experiment. Girdling involved removing a 10 183 

cm strip of the periderm and phloem in a ring around the tree stem at ~1.2 m height (with 184 
exceptions for trees with buttresses, which were girdled above the buttress) above the soil 185 

(Figure 1a) in a plot that was scheduled for conversion to a Palm Oil plantation.  This technique 186 
prevents carbohydrate transport to the roots, but maintains hydraulic connectivity because xylem 187 

tissue are not severed.  Tree death was determined visually, based on the absence of visible 188 
canopy, with regular (average 18 day period) visits to the plots for both the drought and the 189 

girdled plots.  We give the species measured in both plots in Table 1.   190 
 191 

Leaf sampling strategy –In each plot, 20-25 trees were chosen during each campaign, and tree 192 
climbers with extendable tree pruners removed one branch per tree that was growing in full 193 

sunlight.  These branches were quickly recut underwater and returned to a central lab building 194 
for further measurements. On each of these branches, five fully expanded non-senescent leaves 195 

in randomly selected locations were chosen for measurements of:  leaf-gas exchange (respiration 196 
and photosynthesis), and dark respiration, leaf spectral properties (measured within 1 hour of 197 

being cut) and LMA. Leaf area was determined immediately after collection using a digital 476 198 
scanner (Canon LiDE 110) and then oven dried at 72 °C until constant mass was  reached.  199 

 200 
Leaf-level gas exchange – We used a portable gas exchange system (LI 6400, Li-Cor 201 

Biosciences, Lincoln, NE, USA) to measure leaf-level gas exchange. After returning to the 202 
central lab building, leaf dark respiration (Rdark) was measured by covering branches with an 203 
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opaque bag for at least 20 minutes prior to measurement at a cuvette temperature of 30° C. After 204 
this, branches were exposed to sunlight and light-saturated leaf photosynthesis was measured 205 

(Asat; 1200 µmol m-2 s-1 PPFD, 400 ppm CO2, at 30° C).  With Asat; 1200 µmol m-2 s-1   chosen 206 
because photosynthetic capacity in most tropical leaves saturates above light levels of 1200 µmol 207 

m-2 s-1 PPFD (Both et al., 2019; Gvozdevaite et al., 2018)(Doughty & Goulden, 2009b).  We 208 
waited for gas exchange values to stabilize before starting a measurement, recorded data every 2 209 

seconds and averaged the results after eliminating the first 20 measurements.    We excluded 210 
photosynthesis measurements less than 0 µmol m-2 s-1 (as this was indicative of a failure to 211 

maintain hydraulic connectivity in the sampled branch resulting in stomatal closure) and dark 212 
respiration measurements more negative than -1.5 µmol m-2 s-1 (as this was considered indicative 213 

of a failure to truly represent Rd, or in some cases operator error). Most physiological 214 
measurements were collected between 07:00 and 14:00 local time and branches were cut from 215 

tree between 06:00 and 13:00 local time.  An online supplement includes our averaged ± sd data 216 
for each leaf measured for transpiration rate (mmol H2O m-2 s-1), vapor pressure deficit based on 217 

leaf temp (kPa), intercellular CO2 concentration (µmol CO2 mol-1), conductance to H2O (mol 218 

H2O m-2 s-1), and  photosynthetic rate (µmol CO2 m
-2 s-1). 219 

Leaf spectroscopy – We randomly selected five leaves within an hour of each branch being cut 220 

and measured hemispherical reflectance near the mid-point between the main vein and the leaf 221 
edge. We used an ASD Fieldspec 4 with a fibre optic cable, contact probe and a leaf clip 222 

(Analytical Spectral Devices High Intensity Contact Probe and Leaf Clip, Boulder, Colorado, 223 
USA).  The spectrometer records 2175 bands spanning the 325–2500 nm wavelength region. 224 

Measurements were collected with 136-ms integration time per spectrum. To ensure 225 
measurement quality, the spectrometer was calibrated for dark current, stray light and white 226 

referenced to a calibration panel (Spectralon, Labsphere, Durham, New Hampshire, USA) after 227 
each branch.  The spectrometer was optimized after every branch. For each measurement, 25 228 

spectra were averaged together to increase the signal-to-noise ratio of the data. 229 

Data analysis - We used the Partial Least Squares Regression (PLSR) modelling approach to 230 
predict leaf traits with spectral information, (Geladi & Kowalski, 1986).  PLSR incorporates all 231 

the spectral information within each leaf reflectance measurement, eventually reducing all 232 
spectral data (400-2500 nm) down to a relatively few, uncorrelated latent factors. This approach 233 

has been used successfully to predict plant traits across a wide range of ecosystems, including 234 
tropical forests (Asner & Martin, 2008)(Serbin et al., 2014).  We used the PLSregress command 235 

in Matlab (Matlab, MathWorks Inc., Natick, MA, USA) to establish predictive models for LMA, 236 
Asat, wood density and tree mortality.  We minimized the mean square error with K-fold cross 237 

validation to avoid over-fitting the number of latent factors.  To create a completely independent 238 
testing dataset, we used the above method on 70% of our data to calibrate our model and then the 239 
remaining 30% to test the accuracy of our model.  We evaluated the accuracy of our modelled 240 

estimates using two main metrics: r2 and root mean square error (RMSE)/mean.  We grade our 241 
results as high precision and accuracy (r2 > 0.70; %RMSE < 15%), medium precision and 242 

accuracy (r2 > 0.50; %RMSE < 30%), low precision and accuracy (r2 > 0.50; %RMSE > 30%). 243 

Statistical tests – For our leaf spectral measurements, for each 1 nm bandwidth, we determined 244 
statistical significance (P<0.05) with a paired t-test.  To understand significant differences 245 

between differences of LMA, Rdark, and Asat, we used a t-test.  To understand the impact of the 246 

girdling over time, we used a repeated measures ANOVA.  247 
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 248 
Results 249 

 250 
The field campaigns overlapped with the 2016, El Niño in Borneo (Figure 1b).    251 

Campaign 1 (C1- Jan-21) was before the period with peak drought and temperature, C3 (March -252 
16) was the peak of the drought and high temperatures, and by C5 (June-16) the rains had 253 

returned.  After C1, all the trees in the girdled plot had their phloem tissue removed in a 10 cm 254 
band.  Given the downward flux of sugars from the canopy, we might expect an initial build-up 255 

of sugars above the girdle followed by eventual tree death as carbon starvation below the girdle 256 
impacts tree function, particularly in the roots.  Companion papers explore the causes of tree 257 

death and the impacts on plant hydraulics and soil respiration. 258 
There was little change in leaf reflectance (400-2500 nm) between C1 and C2 (Figure 2) 259 

in both the drought and girdle plots.  We expected few spectral changes during this short interval 260 
between C1 and C2 (Jan-21 to Feb-10) for the natural drought plots, but we were surprised there 261 

were also few changes for the girdled plots since these trees experienced a significant trauma.   262 
In the later campaigns (C3 to C5 01-Mar to 08-Jun), there were large (~0.03 albedo units) 263 

decreases in NIR reflectance (750-1500 nm) in both the girdled and natural drought plots (Figure 264 
2 a and b).  Reflectance in the visible wavelengths were greater during the peak natural drought 265 

(C3) than after the rains returned (C4 and C5).  The girdled plots showed a consistent decrease in 266 
the visible bands.  The SWIR bands also differed between girdled and drought (non-girdled), 267 

with large decreases in the drought plots and little change in the girdle plot except for the final 268 
campaign where there was an increase.  However, changes in spectral properties in the girdled 269 

plot might also have resulted from species changes because certain tree species died sooner than 270 
others, thus changing the species composition as the experiment continued.   271 

 Our average Asat values across the campaigns for the girdled plot (3.7 µmol CO2 m
-2 s-1) 272 

and the drought plot (4.7 µmol CO2 m
-2 s-1) were slightly lower, but within 95% confidence 273 

intervals of values from a nearby campaign in Borneo of community weighted mean and 95% 274 
confidence interval of 4.08 µmol CO2 m

-2 s-1 (2.7–5.5) for the old growth plots and 7.0 µmol 275 

CO2 m
-2 s-1 (5.7–8.4) for the selectively logged plots (Both et al., 2019). Our average Rdark values 276 

across the campaigns for the girdled plot (-0.82 µmol CO2 m
-2 s-1) and the drought plot (-0.83 277 

µmol CO2 m
-2 s-1) were likewise slightly lower than the values from Both et al 2019 of –1.0 278 

µmol CO2 m
-2 s-1 (–0.9 to –1.2) for the old growth plots and –1.3 µmol CO2 m

-2 s-1 (–1.1 to –1.4) 279 

for the selectively logged plots. Light saturated leaf photosynthesis and Rdark showed strong 280 
seasonality in both plots over the measurement period (Figure 3).  For instance, Asat increased in 281 

both the drought and girdled plots in campaign 5 following the return of the rains.  Surprisingly, 282 
the surviving girdled trees had the highest photosynthetic rates of the campaign in C5 despite the 283 

damaged phloem.  Dark respiration was at its lowest in C3 and 4 during the peak of the drought. 284 
In both groups, changes in Rdark matched those in Asat meaning that as Asat increased so did dark 285 

respiration.  The ratio Rdark/ Asat showed a similar seasonal cycle, with the exception of C4, 286 
which was less efficient in the drought plot.   A repeated measures ANOVA showed no 287 

significant differences between Asat, Rd, and LMA over time between the girdled and drought 288 
plots across the five campaigns suggesting the girdling had little overall impact of on leaf 289 

physiology.           290 

Details of the trees that died (i.e. size, species, functional traits) is the topic of a 291 

companion paper (Nottingham et al in prep), but functional traits, such as wood density, may 292 

explain some of the timing of tree mortality in our study (see companion paper).  To understand 293 
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how the drought and girdling impacted leaf spectral properties in different ways according to 294 

functional traits, we binned our results into groups of trees with either high (>0.5 g cm3) or low 295 

wood density (<0.5 g cm3) (Figure 4). Tree species with lower density wood showed a much 296 

stronger reaction to the drought in the NIR and SWIR bands than tree species with higher density 297 

wood, with fewer significant changes (P<0.05) in the visible bands.  In contrast, the high wood 298 

density tree species show a stronger reaction to the girdling than the low wood density species, 299 

again with most of the change in the NIR and SWIR bands.   300 

 We then compared near death leaf reflectance (within 50 days of dying) to leaf 301 

reflectance from the same trees not near to death (Figure 5). We found that as death approaches 302 

in the girdled trees, there are large, significant reductions in reflectance in the visible, the red 303 

edge and most of the NIR (P<0.05).  By C5, 38 trees or 18% percent of all girdled trees had died.  304 

There were large (0.03-0.05 reflectance units) and significant decreases (P<0.05) in leaf 305 

reflectance in the visible bands and the red edge as tree death approached.  There were also large 306 

(0.02) and significant increases (P<0.05) in leaf reflectance in NIR and SWIR bands too.  Next, 307 

we investigated how drought conditions, precipitated by the ENSO event, affected leaf spectral 308 

properties in trees which died naturally in the non-girdled control plot.  Only one tree died from 309 

drought in the control that was intensively sampled for functional traits.  We observed similar 310 

significant changes in this tree as observed in the trees that died following the girdling treatment: 311 

reductions in reflectance occurred in the red, the NIR and SWIR bands.  However, there was a 312 

significant peak in the red edge in the opposite direction compared to the girdling study.  The 313 

wavelengths that show similarities for both types of death are: red (650-700nm), the NIR (1000 -314 

1400nm) and SWIR bands (2000-2400nm). 315 

For both the girdled and non-girdled trees, there were highly significant changes 316 

(P<0.0001) to the potential carbon balance (Rdark /Asat – Figure 6e and f) of the leaves just prior 317 

to death (i.e. within 50 days). In both the drought and the girdled plots, there were significant 318 

increases in Rdark and significant decreases in Asat (Figure 6). This combination of increased 319 

respiration and decreased photosynthesis should reduce the carbon available to the tree (again 320 

dependent on stomatal conductance changes). There was no significant change in LMA with the 321 

girdled trees. In contrast, in the tree that died from drought in the non-girdled plot, the leaves had 322 

significantly higher LMA near to death.  We do not know if this was a result of a changing 323 

cohort of leaves present on the sampled branch (i.e. leaves with lower LMA senesced sooner) or 324 

if all leaves changed their LMA via altered density prior to death (but this is less likely as 325 

structural carbon is fixed). 326 

Finally, we used PLSR to predict changes in physiology and time to death with 327 

spectroscopy (Figure 7).  We used the primary weighting (right side of figure 7) to understand 328 

which spectral regions are most important (deviations from 0).  Spectroscopy predicted LMA 329 

with an r2 of 0.70 and RMSE/mean of 0.14 (similar to many other studies with high precision 330 

and high accuracy (Asner and Martin 2008, Doughty et al 2011).  The primary weighting is in 331 

the NIR and SWIR bands which is typical of traits relating to structure. Spectroscopy predicted 332 

maximum photosynthetic rate (Asat) with an r2 of 0.65 and RMSE/mean of 0.69 (medium 333 

precision but low accuracy) and wood density with an r2 of 0.45 and RMSE/mean of 0.24 (low 334 
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precision but medium accuracy). The primary weighting of Asat was in the visible bands (likely 335 

related to chlorophyll content) and for wood density in NIR and SWIR >1000 nm (likely related 336 

to variations in LMA and leaf structure). Finally, we predicted to time to death with spectroscopy 337 

and the PLSR technique with an r2 of 0.65 and RMSE/mean of 0.58 (medium precision and low 338 

accuracy).  The primary weighting shows similarity with Figure 5 with important spectral 339 

regions in the visible (related to photosynthetic characteristics), the NIR (related to structure) and 340 

SWIR bands (related to water bands).   341 

 342 

  343 
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Discussion 344 

Leaf spectroscopy - Identification of tropical trees susceptible to mortality through 345 

hyperspectral imagery could provide a powerful tool in examining recently reported increases in 346 
tree mortality rates across the tropics (Hubau et al., 2020)(Brienen et al., 2015).  By contributing 347 

to “environmental surveillance,” the use of hyperspectral data would have a wide range of 348 
applications from the prediction of tree death from heat stress, pests, pathogens or illegal 349 

logging.  Moreover, this technique could enable us to identify potential tipping points in tropical 350 
forests, with wider ramifications for the development of adaptive forest management strategies in 351 

the future.  Based on these preliminary results, future mortality is potentially predictable using 352 
hyperspectral imagery for up to 50 days in advance of tree death (Figure 7).  We also observed a 353 

tree that died naturally from drought, and saw that there were regions of spectral overlap with the 354 
signal from trees killed by girdling in terms of the wavelengths that changed prior to tree death; 355 

e.g. red (650-700nm), the NIR (1000 -1400nm) and SWIR bands (2000-2400nm) (Figure 5).  356 
This gives us some confidence that the spectral changes may be general to mortality and not 357 

specific to girdling-induced mortality.  We demonstrate only changes in leaf reflectance and not 358 
overall canopy reflectance. It is important to differentiate between leaf versus canopy reflectance 359 

(as seen from aircraft or space) because the latter also incorporates forest structural changes (like 360 
variations in LAI and branch architecture), which we have not measured.   Leaf spectral 361 

properties strongly influence canopy spectral properties especially in certain wavelengths (Asner 362 
and Martin 2008), but changes in other properties, like LAI, could confound the signal. Large 363 

shifts in these spectral regions may be indicative of tree mortality and should be tested with 364 
hyperspectral aircraft data in the region for confirmation (Swinfield et al., 2019).   365 

 366 

Surprisingly, leaf spectral properties did not vary greatly during the period immediately 367 

following tree girdling (~1 week).  Previous studies have quantified changes in non-368 

photosynthetic vegetation to estimate regional selective logging (Asner et al., 2005). Here we 369 

show that significant trauma to the trunk did not immediately result in changes to leaf spectral 370 

properties but leaf spectral properties did change within 50 days of tree death.  We hypothesize 371 

that > 10 days is the time needed to change the biochemistry,  physiology and metabolism of 372 

leaves to respond to environmental stress.   This indicates that >10 days but <50 are necessary 373 

for leaf spectral changes to occur (Figure 5), which could constrain timing for a potential new 374 

technique to identify damage to trees from selective logging.   375 

It should be noted that our plots had been extensively logged, four times since the 1970’s 376 

with 46 to 54 Mg C ha−1  cumulative extracted biomass in the area (Riutta et al., 2018).  This has 377 

been shown with hyperspectral imagery to lower canopy foliar nutrient concentrations and 378 

decrease nutrient availability (Swinfield et al., 2019).  Our results are therefore biased towards 379 

logged/low foliar nutrient forests, although our dataset does include late-successional species as 380 

well.  However, most forests (72%) in the region have been selectively logged, and our results 381 

should be valid for these forests (Bryan et al., 2013).   382 

Leaf physiology - Dark leaf respiration, Rdark, was at its lowest during the peak of the drought, in 383 

campaigns C3 and C4.  This stands in contrast to other leaf respiration studies during an artificial 384 

drought that saw a strong increase in leaf respiration rates (Rowland et al., 2015), although recent 385 

results suggest that this response may be taxon-specific result that is not observed across all 386 
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species (Rowland et al in review).  Leaf Rdark also did not increase in the girdled leaves despite 387 

potential increases in leaf NSCs (as they could not be transported towards the roots following the 388 

girdling).  Other studies have shown a decrease in overall respiration during drought periods as 389 

compared to before a drought (Doughty et al., 2015), and this is a similar pattern shown at our 390 

plots (Riutta et al 2020).   391 

We also observed both increased Rdark and decreased Asat 50 days prior to tree death, 392 

which in combination are very likely to reduce the carbon available in leaf tissue (although net 393 

carbon balance is also dependent on changes in stomatal conductance).  Which in turn could 394 

increase the likelihood of carbon starvation (McDowell et al., 2018) and reduce the availability 395 

of carbon (or more accurately NSC) for embolism repair the of reversal of in the water 396 

conducting xylem tissue (Sala et al., 2012).  It is also interesting to note that the highest average 397 

photosynthetic capacity (Asat) for the girdled experiment were observed when the rains returned. 398 

We speculate that might be due to a growth or sink driven response where, after the return of 399 

available water increased growth (e.g. fine root growth and leaf flushing) to replace senesced 400 

tissue results in a higher carbon sink leading to a a higher demand for NSC with a consequent 401 

increase in Asat.   Overall, this is more evidence that photosynthesis is robust despite 402 

perturbations, and that growth may be maintained preceding a mortality event as the plant 403 

attempts to recover damaged xylem capacity (L. Rowland et al., 2015; Lucy Rowland et al., 404 

2015). 405 

Conclusion 406 

 Our key finding is that remote sensing using spectral imagery shows potential to identify 407 

trees at imminent risk of death (approximately 50 days prior).   This technique has widespread 408 

relevance and applicability for ecological/management surveillance, prediction of future 409 

vegetation and forest carbon dynamics. We suggest aircraft campaigns search for a large shift in 410 

visible, red edge, and NIR reflectance and compare this to observed tree mortality.  For instance, 411 

we hypothesize that comparing hyperspectral aircraft flights before and after the 2016 drought 412 

might show large shifts in reflectance properties prior to tree mortality (Davies et al., 413 

2019)(Swinfield et al., 2019).  This could also be of use for hyperspectral satellites (Krutz et al., 414 

2019).  The large significant changes in leaf reflectance observed here that were shared by both 415 

girdling- and drought-killed trees at the same timescale prior to mortality indicate that there 416 

could be a spectral indication of tropical tree mortality that has regional or wider application. 417 
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Tables 423 

Table 1 – Tree species measured intensively in the drought and girdled plot aligned to show 424 

which species were measured in both plots. 425 

Girdled Plot Drought Plot 

Adinandra borneensis, 

Brownlowia peltata,  

 

 

 

Dryobalanops lanceolate, 

Duabanga moluccana, 

 

Hydnocarpus anomalus, 

Leea aculeate,  

Lithocarpus blumeanus, 

Litsea  garciae, 

Lophopetalum sp., 

Macaranga hypoleuca, 

Macaranga pearsonii,  

 

 

Neolamarckia cadamba, 

Nephelium rambutan, 

Parashorea malaanonan,  

 

 

 

Shorea johorensis,  

Shorea parvifolia. 

Adinandra borneensis,  

 

Cariumna odontophyllum, 

Diplodiscus paniculatus, 

Dipterocarpus caudiferus, 

Dryobalanops lanceolate, 

Duabanga moluccana, 

Endospermum peltatum,  

 

 

Lithocarpus blumeanus,  

 

 

 

Macaranga pearsonii, 

Mallotus leucodermis, 

Nauclea officinalis, 

Neolamarckia cadamba,  

 

Parashorea malaanonan, 

Pleiocarpidia sandakanica, 

Pterospermum elongatum, 

Shorea gibbosa,  

Shorea johorensis,  

 

Syzygium sp.,  

Trema orientalis 

 

  426 
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 427 

Figures 428 

 429 

Figure 1. (A) An example tree that was girdled by stripping 10 cm of phloem in a ring around the tree.  430 
(B) Monthly volumetric soil moisture content at 20 cm depth (top) and air temperature (bottom) records  431 
at the study site. The horizontal continuous line denotes the long-term mean and the dashed lines denote 1 432 
and 2 standard deviations.  The grey region is the period of our measurements.  (C) A schematic of the 433 
plot layout with the non-girdled trees in the section labelled West (the other section was girdled). The 434 
total area of the plot is 1 ha, with the two sections separated by approximately 200 m.  The middle black 435 
line represents the river.  Each individual square represents a 20 m ×20 m subplot.  Red lines are trails 436 
and blue lines are small temporary streams. 437 

 438 

  439 
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 440 

Figure 2. Leaf spectral properties (400-2500nm) for the drought (left) and girdled (right) plots for the 5 441 
campaigns (Jan-June 2015).  (bottom) The difference (C1-CX, where X=2-5) in leaf spectral properties 442 
for the control (left) and the girdled (right) plots.  In each campaign, we sampled the same trees unless the 443 
trees died. Reflectance factor is reflected incident light between 0-1. 444 

 445 

  446 
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 447 

 448 

Figure 3. Average ± se (Asat) photosynthetic capacity (A), (Rdark) leaf dark respiration (B), Asat / Rdark  (C) 449 
and (LMA) leaf mass area (D) for the 5 campaigns for the control site (red) and the girdled site (blue).  450 
Asat and Rd were collected at a standard temperature (30 °C) during all campaigns.  We subtracted the 451 
initial difference (2 µmol m-2 sec-1) in the top panel between the average C1 values to better highlight the 452 
impact of the girdling. 453 

 454 
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 456 

Figure 4. Leaf spectral properties (400-2500nm) comparing low wood density (density<0.5 g cm-3, left) 457 
and high wood density species (density >0.5 g cm-3, right) through the 5 Campaigns for the control plot 458 
(top) and the girdled plot (middle).  For each campaign, we subtract dense wooded species from light 459 
wooded species (bottom).  Only significant spectral regions are shown in the bottom.   460 

 461 

  462 
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 463 

 464 

 465 

Figure 5 –The change (negative is a reduction in reflectance close to death) in leaf spectral 466 

properties from healthy leaves (>50 days from death) minus close to death leaves (<50 days from 467 

death) on a tree  that  died of natural drought (red, N=14 leaves) and  trees  that died during the 468 

girdling experiment (black, N=122 leaves).  Dots show regions of significant change (P<0.05) 469 

using a paired t-test.   470 

 471 

  472 
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 473 

Figure 6 – Comparison of Asat (A), Rdark (C), Rdark/ Asat (E) and LMA (G) between initial values 474 

(1) and values within 50 days of death (2) for the girdling experiment (right) and the intensively 475 

monitored tree that died during the drought (left).  The P value listed is the level of significance 476 

to three digits for a student’s t-test. 477 

 478 
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 480 

Figure 7. Results from our PLSR analysis where we try and predict various traits including LMA, 481 
photosynthesis, wood density, and time to tree death. Red dots are the data to train the model (70%) and 482 
the blue dots are the independent dataset (30%).  On the right is the primary weighting and on the left is 483 
the predictive power (measured vs predicted) with the r2 and RMSE/mean. 484 

  485 
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