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Associations between habitat quality and body size in the Carpathian land snail  Vestia turgida: species
distribution  model  selection  and  assessment  of  performance.  Tytar  V.,  Baidashnikov  O.  –  Species
distribution models (SDMs) are generally thought to be good indicators of habitat suitability, and thus of species’
performance, consequently SDMs can be validated by checking whether the areas projected to have the greatest
habitat quality are occupied by individuals or populations with higher than average fitness. We hypothesized a
positive and statistically significant relationship between observed in the field body size of the snail  V. turgida
and modelled habitat suitability, tested this relationship with linear mixed models, and found that indeed, larger
individuals tend to occupy high-quality areas, as predicted by the SDMs. However, by testing several SDM
algorithms,  we  found varied levels  of  performance in  terms of  expounding this  relationship.  Marginal  R 2  ,
expressing the variance explained by the fixed terms in the regression models, was adopted as a measure of
functional accuracy, and used to rank the SDMs accordingly. In this respect, the  Bayesian additive regression
trees (BART) algorithm (Carlson, 2020) gave the best result, despite the low AUC and TSS. By restricting our
analysis to the BART algorithm only, a variety of sets of environmental variables commonly or less used in the
construction of SDMs were explored and tested according to their  functional accuracy. In this respect, the SDM
produced using the   ENVIREM data set (Title, Bemmels, 2018) gave the best result.
Key words:  Vestia turgida,  terrestrial gastropods, ecological niche modelling, species distribution modelling,
model accuracy, model evaluation, model selection, Bayesian additive regression trees, ENVIREM data set.

1. Introduction.
Information  on  where  species  occur  underlies  nearly  every  aspect  of  managing

biodiversity  (Franklin 2010),  but  knowledge of  distributions  is  often coarse  or  incomplete.
Species  distribution  models,  SDMs  (closely  related  to  ecological  niche  models,  ENMs,
bioclimate-envelope modelling etc.) provide a tool used to derive spatially explicit predictions
of environmental suitability for species (Guisan et al., 2017) by employing suitability indices.
Suitability  indices  describe  the  relationship  between  habitat  suitability  score  and  a  given
environmental variable of a target species. Habitat suitability is a way to predict the suitability
of habitat at a certain location for a given species or group of species based on their observed
affinity  for  particular  environmental  conditions  (Yi  et  al.,  2016;  Ma,  Sun,  2018).  SDMs
therefore have been widely used for predicting  distributions of species in terrestrial, freshwater
and marine environments,  and across  taxa from many biological  groups (Elith,  Leathwick,
2009),  with increasing numbers  of  publications  each year  (Robinson et  al.,  2011;  Brotons,
2014). SDMs have shown to be efficient in biodiversity research considering climate changes
(Barbet-Massin et al., 2011; Visconti et al., 2016), conservation planning (Kremen et al., 2008),
invasive species and pest risk assessments (Gallien et al., 2012; Jeger et al., 2018), pathogen
spread (Schatz et al., 2017), rewilding projects (Jarvie, Svenning, 2018), and a huge number of
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other  issues  ranging  from mapping  snake  bite  risk  (Yañez-Arenas  et  al.,  2016)  to  Pygmy
presence in Central Africa (Olivero et al., 2016). 

SDM tools generally correlate species' occurrence patterns with environmental variables,
which are frequently selected from an array of  `bioclimatic'  indices (Hijmans et  al.,  2005;
Kriticos  et  al.,  2012;  etc.)  and  thus  focus  on  the  abiotic  conditions  affecting  species
distributions (Busby, 1991). Recently, more studies include biotic covariates (Wisz et al., 2013;
Si-Moussi  et  al.,  2019),  motivated  by  the  need  to  account  for  more  directly  explanatory
variables  and resources,  although dependencies  between species  (for  instance,  competition)
may be correlated indirectly through latent abiotic variables. So in general, keeping in mind the
geographic scale, adaptation to abiotic factors allows to assume adaptation to biotic interactions
too. For example, temperature comprises a large set of ecophysiologically relevant variables
(Dahl,  1998),  but even simple temperature variables,  like annual mean temperature, covary
spatially with many broad-scale biotic patterns at regional and global scales (Leith, Whittaker,
1975).  Apparently the success of bioclimate-envelope modelling comes from this strong spatial
covariance between easily measured abiotic variables and the poorly understood and largely
unknown ecologically critical biotic variables (Jackson et al., 2009).

Traditionally,  determining  environmental  and  climatic  features  that  characterize  the
species’ niche and are responsible for shaping their distribution would require laborious field
measurements of  key environmental variables in natural populations (Nakazato et al., 2010;
Warren et al., 2020). Importantly, the use of SDMs has allowed to identify such driving factors,
but SDM construction involves many decisions which may adversely affect model predictions,
including the  choice of modelling algorithms (Warren et al., 2020). Choices regarding optimal
models and methods are typically made based on discrimination accuracy, which only measures
whether a model assigns higher suitability values to presence points than it does to background
or absence points (Gurgel-Gonçalves et al.,  2012),  and conclusions have been made of the
inability  of  current  evaluation  metrics  to  assess  the  biological  significance  of  distribution
models (Fourcade et al., 2018).

Predictions from SDMs are generally thought to be good indicators of habitat suitability,
and thus of species’ performance. An implicit assumption of the SDMs is that the predicted
ecological niche of a species actually reflects the adaptive landscape of the species, so in sites
predicted to  be  highly suitable,  species  would have maximum fitness compared to  in sites
predicted to be poorly suitable (Zizhen, Hong, 1997; Nagaraju et al., 2013). Therefore these
models  potentially  can  be  validated  by  checking  whether  the  areas  projected  to  have  the
greatest habitat quality are occupied by individuals or populations with higher than average
fitness  (Mammola  et  al.,  2019),  in  other  words  check  the  SDMs functional  accuracy.  For
instance, a positive correlation (r = 0.5) was found between the growth rate of a wild grass
carp,  Ctenopharyngodon idella (Valenciennes,  1844),  and habitat  quality  for  the  species as
projected by a maximum entropy model (Wittmann et al.,  2016).  In another case modelled
habitat quality was positively associated with maximum body and egg case size in a spider
species, Vesubia jugorum (Simon, 1881) (Mammola et al., 2019). Yet, in the few studies that
have explicitly tested the relationship between habitat quality and species traits,  not always
such relationship was found (Mammola et al., 2019). The problem could be that it is often not
clear which measurable biological phenomena should be correlated with suitability estimates
from SDMs, moreover when  many of the measurable phenomena that are potentially related to



suitability have not been quantified in detail  and as such are merely unavailable for model
validation (Warren et al., 2020).

In this study we attempted to highlight important variables shaping the current niche of a
terrestrial  gastropod,  Vestia turgida (Rossmassler,  1836),  found primarily  in the Carpathian
Mountains,  with  a  focus  on  the  relationships  between  habitat  quality  and  species  traits,
consequences these may have in terms of model selection and performance. We argue that the
habitat suitability of a species as predicted by the ecological niche model may also reflect the
adaptive landscape of the species. Indeed, species should have a higher performance in the core
of their niche (i.e. where conditions are more suitable) than at their edges (Pulliam, 2000).

 First, using the existing natural distribution data of the species and a variety of
environmental  variables,  we  generate  ecological  niche  model  predictions  on  the  habitat
suitability of  V. turgida in the Ukrainian Carpathians by employing a number of algorithms
commonly used or recently developed for constructing  SDMs. 

 Second,  we  evaluate  the  model  predictions  both  in  terms  of  discrimination
accuracy, using conventional criteria, and functional accuracy by using body size as a measure
of fitness and testing whether the degree of predicted habitat suitability correlates positively
with observations of  body size. The null hypothesis was that no correlation exists between
observed  body  size  and  modelled  habitat  suitability,  r  =  0.  We  hypothesized  a  positive,
significant relationship.

 Finally we rank the SDM outputs and select  the ‘best’ modelling approach to
analyze  the  environmental  niche  of  the  species  to  see  which  of  the  employed  sets  of
environmental  variables  promote  better  performance  of  the  SDMs  in  terms  of  functional
accuracy. 

2. Species and study area
V.  turgida is  a  species  of  air-breathing  land  snail,  a  terrestrial  pulmonate  gastropod

mollusk in the family Clausiliidae, the door snails, all of which have a clausilium, a roughly
spoon-shaped "door", which can slide down to close the aperture of the shell (Лихарев, 1969).
The species is considered an endemic Carpathian snail, though sporadically met in the Dnestr
Basin of Podolia in Ukraine. It is widely distributed in the Carpathian Region with numerous
localities  especially  in  Slovakia,  Poland  and  Ukraine.  Several  isolated  populations  are
threatened, especially due to changes in forest management and water drainage. However, the
whole species  is  considered of  Least  Concern (LC) (Walther,  2017).  Nevertheless,  isolated
relict  subpopulations  far  off  the  main  range  as  well  as  marginal  populations  could  be
endangered by human encroachment and climate change.

According to Kerney et al. (1983), V. turgida occurs in very moist woodland, under logs
and ground litter. It is supposed that the litter and bacteria decomposing dead wood are the
main components of the diet of clausiliids (Fog, 1979). The species ascends to 2100 m in the
Carpathians (the Tatra Mountains) (Dyduch-Falniowska, 1991), whereas in the Podolia snails
are found at a much lower height (down to 200 m of even less). 

The study area largely encompasses the range of the Ukrainian Carpathians (48◦32 N,
23◦38 E), which extends over an area of about 24 000 sq. km. The study area lies at an altitude
of 95–2030 m, although 94% of the mountains are < 1200 m. The highest elevations are located
in the southern parts of the Ukrainian Carpathians, while the south-west (bordering Romania),
west (bordering the Transcarpathian Lowland of Ukraine) and north-west (bordering Poland)



Carpathians  are  characterized  by  extensive  valley  systems  and  relatively  gentle  slopes.
Precipitation of 500–1400 mm/year feeds a dense network of rivers (Голубець, 1988). The July
(warmest month) temperature varies from 20◦C at the southern edge of the Carpathians and
18◦C in the north to 6◦C on the highest peaks (Геренчук, 1968; Kuemmerle et al. 2009). Winter
temperatures range from –3◦C to –10◦C. The mountains are dominated by Fagus sylvatica and
Picea abies forests,  replaced by  Pinus mugo and  Juniperus communis in the subalpine and
grasslands in the alpine belts (Геренчук, 1968; Kuemmerle et al. 2009). 

Next to this area, were the species is more or less sporadically found, is the Dnister basin
of Podolia, covering around 24 500 sq. km, with an average altitude of 320-350 m. The climate
is temperate-subcontinental with a mean annual temperature of about 7–9◦C and 600–650 mm
annual precipitation (Клімат України, 2003). The relief of the area is dissected by numerous
river valleys into distinct ridges. About 10-15% of the area is occupied by the forest vegetation
comprised of oak-hornbeam-beech stands. 

2.2 Species distribution modelling

2.2.1 Collection data
In 1985–1986, 1989–1992 and 2004 snails were collected by hand at 94  georeferenced

stations  sites  at  elevations  up  to  1527  m a.s.l.  Sampling  intensity  varied  over  geography,
therefore to  minimize spatial sampling heterogeneity, we aggregated data at the resolution of
the environmental predictors to avoid inflation of the number of presences. 

With a LOMO Binocular Stereo Microscope MBS-1, we measured in 1 016 specimens of
V. turgida three morphological traits related to body size: shell height (H), shell diameter (D)
and number of whorls (Wh) using a conventional standard (Лихарев, Раммельмейер, 1952). 

2.2.2 Environmental predictors
In  most  cases  environmental  predictors  are  selected  based  on  the  availability  and

experience  that  the  variables  show  correlation  with  the  species  distribution  (Guisan,
Zimmerman, 2000).  Because of the habitat complexity it is difficult to single out which factors
play a crucial role in controlling molluscs distribution (Sulikowska-Drozd, 2005), but for the
majority of terrestrial gastropods their occurrences are considered to be determined by several
factors,  such  as  pH  and  calcium  content  (Nekola,  Smith,  1999;  Martin,  Sommer,  2004),
drainage  (Paul,  1978),  altitude  (Cowie  et  al.,  1995),  shelter  possibilities  (South,  1965),
humidity (Martin,  Sommer,  2004),  plant  composition,  and plant  diversity (Barker,  Mayhill,
1999). Important environmental factors emerging from these studies are moisture conditions,
vegetation structure and soil pH, which is related to soil calcium content (Astor, 2014). 

Under  these  circumstances  we  might  expect  temperature  and  precipitation  variables,
together with their various combinations, to be important (Hof, 2011). Climate variables used
in SDMs are assumed to reflect the physiological constraints on the study species that affect
where they can survive in the wild (Kearney, Porter, 2009), although many commonly used
SDM variables have been shown to often neglect important physiological factors (Gardner et
al., 2019). Nevertheless, we employ climate variables anticipating their wider impacts, by being
closely linked to the energy available in the ecosystem or the length of the growing seasons,
plant  growth,  species’ spatial  variation  patterns  owing  to  moisture  availability,  operating
through variations in plant productivity, impact on soil properties, etc. 



We  used  the  widely  accepted  bioclimatic  potential  predictor  variables  for  species
distribution and suitability analysis (Hijmans et  al.,  2005).  These bioclimatic predictors are
ecologically  more  sensitive  to  differentiate  the  physio-ecological  tolerances  of  a  habitat
(Thompson  et  al.,  2009)  than  simple  temperature  and  precipitation  predictors  (Graham,
Hijmans, 2006; Kumar et al., 2009). Information on the bioclimatic parameters was collected as
raster  layers  from the WorldClim website  (http://www.worldclim.org/current)  with a  spatial
resolution  of  30  arc  seconds.  These  variables  indicate  a  general  trend of  precipitation  and
temperature, extremity and seasonality of temperature. 

Former studies have shown a strong influence of topography on both biotic and abiotic
factors in study areas (Homeier et al.  2010; Werner et al.  2012; Svenning et al.  2009) and
topography variables are observed to  make an extremely high (up to  90%) contribution to
species distribution models (Dudov, 2017). In this study, topographic variables (e.g. elevation,
slope,  aspect  etc.)  are  used  as  proxies  for  environmental  factors  such  as  insolation,  wind
exposure,  hydrological  processes  etc.,  affecting  the  quality  of  the  species’  habitat.
Topographical  variables  were  based  on  the  SRTM  data  set  that  is  available  at
http://srtm.csi.cgiar.org. Derived topographic variables were calculated using the open source
software SAGA GIS (Conrad et al., 2015).

Valuable remotely sensed predictors for site quality and forest species communities also
include vegetation indices such as the normalized difference vegetation index (NDVI), which
has been widely used as surrogate of primary productivity and vegetation density (Pettorelli et
al., 2005). Vegetation data include maps NDVI obtained from satellite images by NASA and
processed at Clark Lab (www.clarklabs.org).  Means and deviations were computed over an 18-
year period (from 1982 to 2000) and original NDVI real values (from -1 to +1) were rescaled to
a range from 1 to 255 (byte format).

Considering that vegetation is highly influenced by edaphic variables, we also examined
soil properties. In many studies on land snails, particular attention was paid to soil chemical
parameters,  as snails have a high demand of calcium for shell formation (Martin,  Sommer,
2004). However, several studies confirm the importance of a range of soil characteristics as
determinants of gastropod distribution (Ondina et al., 2004). Soil properties, including physical
and chemical  features,  were  downloaded from SoilGrids  (www.soilgrids.org),  a  system for
global digital soil mapping (Hengl et al., 2014).

In  this  study  we  used  for  modelling  purposes  a  recently  reconsidered  in  terms  of
biological  significance  set  of  16  climatic  and  two  topographic  variables  (the  ENVIREM
dataset, downloaded from http://envirem.github.io), many of which are likely to have direct
relevance  to  ecological  or  physiological  processes  determining  species  distributions  (Title,
Bemmels,  2018).  These  variables  are  worth  consideration  in  species  distribution  modeling
applications, especially as many of the variables (in particular, potential evapotranspiration)
have direct links to processes important for species ecology. 

2.2.3 Calibration area
We calibrated and projected SDMs within the spatial extent  of the Ukrainian Carpathians.

Because true absence data is not available,  pseudo-absence data was generated in locations
with contrasting environmental  conditions (Barbet-Massin et al.,  2012),  using the  BCCVL
application (Hallgren et al., 2016).



2.2.4 Modelling methods
There  exists  a  large suite  of  algorithms for  modelling the  distribution  of  species,  but

because there is no single ‘best’ algorithm some authors have reasonably concluded that niche
or distribution modelling studies should begin by testing a suite of algorithms for predictive
ability under the particular circumstances of the study and choose an algorithm for a particular
challenge based on the results of those tests (Qiao et al., 2015).

Accordingly,  we  assessed  the  relative  performance  of  various  categories  of  SDM
algorithms: BIOCLIM (Busby, 1991; Booth et al., 2014), Generalized Linear Models (GLMs,
Guisan et al.,  2002), MaxLike  (Royle, J.A. et al., 2012), Random forests (Breiman, 2001),
Boosted Regression Trees (Elith et al., 2008), Support Vector Machines (SVMs; Vapnik, 1998),
and Bayesian additive regression trees (BART, Carlson,  2020).

SDM methods, excluding BART, were employed using the  “sdm”  package  within  the
statistical  software  R  (Naimi, Araújo, 2016), following the recommended by the authors
default  settings.  Models  were  evaluated  by  10-fold  cross-validation  using  30%  of  the
occurrence dataset, and incorporating the aforementioned  pseudo-absence data.

Initially  we  fitted  models  that  included  a  selection  of  non-collinear  environmental
variables from the entire set based on the variance inflation factor (VIF, Marquardt,  1970):
strongly  collinear  variables  (VIF>10)  were  discarded.  Subsequently  automated  variable  set
reduction was employed.

In  terms  of  discrimination  accuracy  model  performance  was  evaluated  using  two
commonly used validation indices: the area under a receiver operating characteristic (ROC)
curve, abbreviated as AUC, and the True Skill Statistic (TSS). The AUC validation statistic is a
commonly used threshold independent accuracy index that ranges from 0.5 (not different from
a  randomly  selected  predictive  distribution)  to  1  (with  perfect  predictive  ability).  Models
having  AUC  values  >0.9  are  considered  to  have  very  good,  >0.8  good  and  >0.7  useful
discrimination abilities (Metz,  1978).  The TSS statistic  ranges from −1 to +1 and tests the
agreement between the expected and observed distribution, and whether that outcome would be
predicted under chance alone (Allouche et al., 2006; Liu et al., 2009). A TSS value of +1 is
considered perfect agreement between the observed and expected distributions, whereas a value
<0 defines a model which has a predictive performance no better than random (Allouche et al.
2006). TSS has been shown to produce the most accurate predictions (Jiménez-Valverde et al.,
2004). Values of TSS < 0.2 can be considered as poor, 0.2–0.6 as fair to moderate and >0.6 as
good (Landis, Koch, 1977)

2.2.5 Relationships between body size and habitat quality
Geographic variation in size has been found to be correlated with a variety of abiotic and

biotic environmental factors. For instance, shells in the land snail Albinaria idaea (Gastropoda:
Clausiliidae) are larger in regions of high temperature, and are generally larger in areas with
higher rainfall (Welter-Schultes, 2000). In an extensive literature review shell size in terrestrial
gastropods individualistic responses have been noted along moisture, temperature/insolation,
and calcium availability gradients (Goodfriend, 1986), although the author could not identify
universal ecological predictors. Most likely synergetic interactions between them could be the
best  explanation  of  the  size  variations  resulting  from the  influence  of  local  environmental
and/or  climate  factors  (Proćków  et  al.,  2017),  where  maximum  sizes  are  attained  at



environmental optima (Rensch, 1932, 1939; Терентьев, 1970). Our assumption is that these
conditions are adequately reflected in the  projected habitat quality for the species.

There was a high degree of correlation among the shell traits related to body size (Pearson
correlations between shell height (H) and the shell diameter (D), and the number of whorls
(Wh)  was  0.90  and  0.85,  respectively.  Therefore  shell  height  (H)  was  selected  as  a
representative proxy of body size.

We tested the relationship between body size and projected habitat quality with linear
mixed models (LMMs) that we fitted using the ‘Mixed Model’ module in the jamovi computer
software  (The  jamovi  project,  2020).  This  mixed method  allowed to  address  the  fact  that
because we measured multiple individuals from the same populations, we violated the models’
assumption of spatial independence. The sampling location was included as a random factor
and the  variance  explained by the  fixed  terms  in  the  regression  models  was  expressed  as
marginal R2  and adopted as a measure of functional accuracy.

3 Results

3.1 Species distribution modelling and selection
After removing duplicate occurrences, we used 85 occurrences to generate the SDMs. We

selected  thirteen  non-collinear  variables  for  constructing  the  models.  These  represent  the
bioclimate (mean diurnal range,  isothermality,  precipitation seasonality,  and precipitation of
warmest  quarter),  topography  (eastness,  northness,  slope,  and  topographic  position  index),
NDVI for  February,  April  and June,  and soil  properties  (cation exchange capacity  and silt
content). 

The outputs of the SDM algorithms varied in terms of discrimination accuracy evaluated
by the AUC and TSS (Table 1).

Table 1. Discrimination accuracy of employed  SDM algorithms*
SDM methods AUC TSS

BIOCLIM 0.65 0.31

Generalized Linear Model (GLM) 0.91 0.75

MaxLike 0.88 0.70

Random forests (RF) 0.98 0.89

Boosted Regression Trees (BRT) 0.93 0.78

Support Vector Machines (SVM) 0.96 0.81

Bayesian additive regression trees 
(BART)

0.89 0.61

*see abbreviations in the text

According  to  these  results,  the  Random  forests  (RF)  model  demonstrates  the  best
preformance (AUC = 0.98, TSS = 0.89), whereas the performance of the BIOCLIM model is
behind the rest of the employed SDMs (AUC = 0.65, TSS = 0.31). 



In all cases we found a positive, significant (p < 0.001) relationship between shell height
(H) and habitat quality as projected by the models, with larger individuals in high-quality areas
(Table 2).

Table 2. Functional accuracy of employed  SDM algorithms*

SDM methods
Estimated 

β ± SE
R2 AIC**

BIOCLIM 6.02±1.734 0.107 4082.0

Generalized Linear Model
(GLM)

3.33±0.580 0.098 3008.3

MaxLike 3.73±0.997 0.054 3016.6

Random forests (RF) 6.43±1.213 0.142 3013.0

Boosted Regression Trees 
(BRT)

9.48±1.376 0.192 2991.5

Support Vector Machines 
(SVM)

3.26±0.703 0.075 3008.1

Bayesian additive 
regression trees  (BART)

5.88±0.845 0.210 2987.4

*see abbreviations in the text
** AIC – Akaike information criterion (Aho et al., 2014)

Based on these findings, the most biologically meaningful model has been constructed
using the  Bayesian additive regression trees (BART) algorithm, which has outperformed other
SDM algorithms of the employed suite, with the highest marginal R2 (0.210) and lowest AIC
(2987.4). The linear relationship, derived from the linear mixed model, between habitat quality
predicted by the BART model and shell height is shown in Figure 1. Treading on the heels of
the BART model and displaying good performance is the Boosted Regression Trees (BRT)
model,  with a marginal R2 only somewhat lower (0.192) and AIC slightly higher (2991.5).
Interestingly, BIOCLIM, the vet of SDMs (Nix, 1986), according to the applied criteria (aside
from AIC), appears to have performed better than some of the other algorithms in the suite,
including machine learning methods. 

3.2 Analysis of the environmental niche using  BARTs
Based on the results of the preceding tests, the Bayesian additive regression trees (BART)

algorithm has been selected to perform an indepth analysis of the niche of the snail V. turgida in
relation to environmental predictors listed in 2.2.2.

Bayesian  additive  regression  trees  (BART)  are  a  new  alternative  to  other  popular
classification tree methods. In computer science, BARTs are used for everything from medical
diagnostics to self-driving car algorithms, however they have yet to find widespread application
in ecology and in predicting species distributions. Running SDMs with BARTs has recently
been greatly facilitated by the development of an R package, ‘embarcadero’ (Carlson, 2020),
including  an  automated  variable  selection  procedure  being  highly  effective  at  identifying



informative  subsets  of  predictors.  Also  the  package  includes  methods  for  generating  and
plotting partial dependence curves.

Figure 1. Linear relationship (solid line) and 95% confidence interval
(gray area) between habitat quality predicted by the BART model (x-

axis) and shell height (H in millimeters, y-axis), derived from the
linear mixed model.

3.2.1 Bioclimatic variables
Nineteen  bioclimatic  variables  from  the  WorldClim  base  were  used  in  the  species

distribution  modelling  (their  codes  and  names  are  available  here:
https://worldclim.org/data/bioclim.html; accessed 26.04.2020). 

Table 3. Accuracy measures for the  BART model based on bioclimatic variables

AUC TSS
Estimated 

β ± SE
t-test p R2 AIC

0.854 0.620 7.06±0.991 7.13 <0.001 0.249 2968.8

Five bioclimatic variables were identified as an informative subset of predictors: BIO17 =
Precipitation  of  Driest  Quarter,  BIO16  =  Precipitation  of  Wettest  Quarter,  BIO5  =  Max
Temperature of Warmest Month, BIO9 = Mean Temperature of Driest Quarter, and BIO10 =
Mean Temperature of Warmest Quarter, which capture the basic bioclimatic requirements of the
snail. On-topic accuracy measures for the model are presented in Table 3. 

Within  this  subset  the  modelling  brought  out  the  high  importance  of  BIO17  =
Precipitation of Driest Quarter. The driest quarter in the study area broadly coincides with the
cold season, therefore BIO17 can be considered a proxy for snow depth. Snow is a highly
effective insulator and can provide a significant buffer against winter temperature extremes
(Sturm et al., 2001; Zhang, 2005; Nicolai, Ansart, 2017). Here, in the case of  V. turgida, highly
suitable areas are those where the cold season precipitation is above 170 mm (projected habitat

https://worldclim.org/data/bioclim.html


suitability above 70%), whereas below that level suitability rapidly decreases to a projected
30% and less (Figure. 2).

Figure 2. Partial dependence plot for 
BIO17 =  Precipitation of Driest Quarter; blue area

=  95% confidence interval

A positive, significant relationship was found between shell height and habitat quality as
projected by the model, with larger individuals in bioclimatically more suitable areas.   

3.2.2 Topographic variables
We used a set of topographic variables including elevation (although there are opposing

views on whether to include elevation as a predictor in SDMs or not; see, for example, Hof et
al.,  2012),  slope, aspect (eastness,  northness),  terrain roughness index (Wilson et al.,  2007)
SAGA-GIS topographic wetness index (Boehner et al., 2002), and  topographic position index
(Guisan et al.,  1999). Importantly, strong relationships between body size of  V. turgida and
elevational  gradients have been reported  (Байдашников,  1985; Sulikowska-Drozd,  2001).

Three  topographic variables  were  identified  as  an  informative  subset  of  predictors:
elevation, SAGA-GIS topographic wetness index (TWI), and  terrain roughness index (tri).
Corresponding accuracy measures for the model are presented in Table 4.  

Table 4. Accuracy measures for the  BART model based on topographic variables

AUC TSS
Estimated 

β ± SE
t-test p R2 AIC

0.879 0.639 6.68±0.803 8.32 <0.001 0.263 2985.5

There is a general hump-shaped relationship between the habitat suitability values and
elevation.  Highest  projected  habitat  suitability,  using  a  50%  habitat  suitability  threshold



(Waltari, Guralnick, 2009), is shown to occur between elevations of around 200 and 580 m
a.s.l.

TWI, another topographic variable of recognized importance,  calculates the capacity of
water accumulation of each pixel in a watershed. Pixels with higher TWI values have higher
capacity of water accumulation (Besnard et al., 2013) or, in other words, being “wetter”. The
index is highly correlated with several soil attributes such as horizon depth, silt percentage,
organic matter content, and phosphorus (Moore et al., 1993), can be used to simulate the status
of  soil  moisture,  which  also has  an  influence on soil  pH (Song,  Cao,  2017).  In  our  case,
increasing values of TWI in relation to projected habitat suitability show a steady downward
trend (Figure 3),  meaning habitats that are “too wet” do not favour the species.  Indeed,  V.
turgida occurs in very moist woodland (Kerney et al., 1983), however it has also been shown
that the snail avoids very damp places (Urbański, 1939), so presumably our modelling results
are consistent with these findings based upon observations made in the field. 

Figure 3. Partial dependence plot for
topographic wetness index (TWI)

Figure 4. Partial dependence plot for terrain
roughness index (tri)

Finally, terrain roughness (‘tri’) provides a description of the terrain profile and surface
heterogeneity. Such heterogeneity plays an important role in catchment-related hydrological
responses by driving the flow direction, water runoff velocity, water accumulation, and soil
moisture  (Bogaart,  Troch,  2006).  Similarly,  topographic  variation  strongly  influences  the
accumulation and heterogeneity of mountain/alpine snow cover (Grünewald, 2013). Together
these factors regulate the water availability in soil, directly influence vegetation and thus can be
assumed to be essential for shaping the habitat of  V. turgida,  but because of these multiple
associations tri may not itself be the driver of the species’ distribution (Bemmels, 2018). In the
Ukrainian Carpathians the species appears to prefer areas of medium to high terrain roughness,
where  projected habitat suitability reaches its highest value (Figure 4).



The relationship between shell height and habitat quality as projected by the model was
found  positive  and  statistically  significant,  with  larger  individuals  in  areas  of  preferred
topography.

3.2.3 Normalized difference vegetation index (NDVI)
Monthly  NDVI  were  used  to  build  the  SDM.  There  was  barely  a  selection  of  an

informative subset of predictors: most monthly NDVIs were retained for modelling, except for
February and June. Accuracy measures for the model are presented in Table 5.  

Table 5. Accuracy measures for the  BART model based on the NDVI

AUC TSS
Estimated 

β ± SE
t-test p R2 AIC

0.894 0.667 4.790±0.822 5.82 <0.001 0.106 2996.6

Amongst  the  monthly  NDVIs,   relatively  more  important  appear  those  characterizing
April and May, when vegetation activity, lower in the winter months, significantly increases
(Páscoa et al., 2018).

The relationship between shell height and habitat quality as projected by the model based
on monthly NDVIs was found positive and statistically significant, although fairly weak

3.2.4  Soil properties
The following topsoil (0–5 cm) physical and chemical properties were tested: bulk density

(cg/cm3), clay content (g/kg), coarse fragments (g/kg), sand content (g/kg), silt content (g/kg),
cation  exchange  capacity  at  pH=7 (mmol(c)/kg),  soil  organic  carbon (dg/kg),  pH in  water
(pH*10), and one derived property, organic carbon density (g/dm3), was included. Similar to
NDVI, there was a wide selection of predictors used to build the BART model:  bulk density,
clay content,  coarse fragments,  silt content,  soil organic carbon, and pH in water. Accuracy
measures for the model are presented in Table 6.  

Table 6. Accuracy measures for the  BART model based on  soil properties

AUC TSS
Estimated 

β ± SE
t-test p R2 AIC

0.914 0.640 4.920±0.984 5.00 <0.001 0.101 2766.2

Expectedly,  pH has been distinguished amongst  the selected soil  features as the most
influential variable. According to the response, higher values of  projected habitat suitability are
maintained up to an estimated pH of 5.85, after which there is a steady decline (Figure 5),
meaning a preference in V. turgida towards acidity. In terms of variable importance, next and
close to pH is the soil silt content, which reveals a comparable trend: higher values of projected
suitability are maintained in habitats where soils contain lesser amounts of silt (we estimate
below the level of 47 g/kg); above this estimate projected habitat suitability shows a steady
decline.

The relationship between shell height and habitat quality as projected by the model based
on  soil properties was found positive and statistically significant, although, as in the NDVI
case, fairly weak.



Our  results  are  basically  in  agreement  with  those  of  several  studies  confirming  the
importance  of  a  number  of  soil  characteristics  as  determinants  of  terrestrial  gastropod
distribution (summarized in: Ondina et al., 2004). General conclusions have been made on the
influence of soil properties, which are considered to reflect above all soil acidity and basicity,
and secondly soil texture (Ondina et al., 2004).

Figure 5. Partial dependence plot  for pH
water (phh2o)

Figure 6. Partial dependence plot for silt
content (SLT)

 On these grounds the quoted authors (Ondina et al., op. cit.) proposed a useful, as regards
gastropod distribution, classification of soils based on chemical and physical criteria, where
one of the major chemical criteria is pH (consequently, acid and less acid soils), and major
physical criteria are textual factors, soil aeration and soil moisture content. Physical criteria
allow  to  distinguish  two  categories,  namely  well-drained  coarse-textured  soils  (high
proportions  of  gravel  and  sand,  high  aeration,  low  proportions  of  silt  and  clay,  low  soil
moisture content) and wet fine-textured soils (higher proportions of silt and clay,  higher soil
moisture content). Regarding  V. turgida, we can say the species prefers acid soils and well-
drained coarse-textured soils, for which silt content has served an efficient proxy. 

3.2.1  The ENVIREM data set
All 16 climatic and two topographic variables from the ENVIREM dataset were used  to

produce the BART models. The final recommended variable list consists of three variables:
PETColdestQuarter  =  mean  monthly  PET  of  coldest  quarter,  PETseasonality  =  monthly
variability  in  potential  evapotranspiration,  and  ‘tri’  =  terrain  roughness  index.  On-topic
accuracy measures for the model are presented in Table 7. 

The  automated variable selection procedure  has put ahead of others  ‘tri’,  the terrain
roughness  index,  which  behaves  exactly  in  the  same way  as  when  included to  the  set  of
topographic variables (3.2.2). 



Table 7. Accuracy measures for the BART model based on variables of the ENVIREM dataset

AUC TSS
Estimated 

β ± SE
t-test p R2 AIC

0.912 0.717 8.130±0.825 9.85 <0.001 0.327 2959.1

The next two are related to  potential evapotranspiration, which is  considered to model
relationships between water-energy requirements and productivity (Currie, 1991; Field et al.,
2005;  Fick,  Hijmans,  2017).  In  the  first  place mean  monthly  PET of  coldest  quarter  was
selected, in the second –  monthly variability in potential evapotranspiration. The latter is often
viewed as a measure of seasonality of moisture available for vegetation (Zomer et al., 2014)
and also is considered to express continentality of the climate (Metzger et al., 2013). In both
cases  the  relationship  between  the  projected  habitat  suitability values  and  values  of  the
corresponding variables are hump-shaped, meaning, according to Shelford's law of tolerance,
there is an optimum below or above which a species cannot survive. Tolerance limits regarding
the PETColdestQuarter factor could be related to dormancy, whereas  PETseasonality could be
a reflection of adaptation to the seasonal amplitude in ambient temperature, where differences,
either big or small, between seasonal temperature extremes are suggested to be limiting factors.

The relationship between shell height and habitat quality as projected by the model based
on  the  ENVIREM  data  set was  found  positive  and  statistically  significant,  and  appeared
notably strong. 

4. Discussion & Conclusions
Our  model  species,  the  terrestrial  snail  V.  turgida,  provided  an  opportunity  to  test

hypotheses concerning SDM predictions produced by a number of algorithms commonly used
or  recently  arising  due  to  continuing  efforts  being  put  into  the  refinement  of  modeling
approaches and construction of SDMs (Melo-Merino et al., 2020). Because there is no single
‘best’ algorithm we, as recommended (Qiao et al., 2015), have tested a suite of algorithms for
predictive ability and based on the results of these tests selected an algorithm for our particular
purpose, which is to describe the environmental niche of the considered species in a variety of
perspectives. 

In modeling exercises,  not only the selection of  appropriate modeling techniques,  but
methods of measuring accuracy are crucial to the outcome (Shabani et al.,  2018). Commonly
for this purpose diagnostic metrics are used, such as AUC and TSS. However, a high model fit
does not necessarily translate into highly consistent spatial or environmental niche predictions
(Aguirre-Gutiérrez et al., 2013), and conclusions have been made of the inability of current
evaluation  metrics  to  assess  the  biological  significance  of  SDMs  (Fourcade  et  al.,  2018).
Indeed,  there  has  been insufficient  attention  to  evaluating  the  biological  meaning of  SDM
outputs (Wittmann et al., 2016). In our study we have made an attempt to confront the output of
the  produced SDMs with  biological  performance  data,  namely  body size  of  the  snails.  In
general,  body  size  strongly  correlates  with  development  times,  fecundity,  physiological
performance,   competitiveness and vulnerability to predation, and therefore is considered a
fundamental  species  trait (Wardhaugh et  al.,  2013).  Within  species,  large  individuals  often
achieve higher  reproductive  fitness  and have greater  environmental  tolerances  than smaller
individuals (Shine, 1989). Predictions from SDMs are generally thought to be good indicators



of habitat suitability,  and thus of species’ performance (Thuiller et  al.,  2010),  consequently
SDMs can be validated by checking whether the areas projected to have the greatest habitat
quality are occupied by individuals or populations with higher than average fitness (Mammola
et al., 2019), and such correlations already have been found (for instance, Thuiller et al., 2010;
Nagaraju et al., 2013; Wittmann et al., 2016; Mammola et al., 2019). 

We too, hypothesized a positive and statistically significant relationship between observed
in  the  field  body  size  of  the  snail  V.  turgida and  modelled  habitat  suitability,  tested  this
relationship with linear mixed models, and found that indeed, larger individuals tend to occupy
high-quality areas, as predicted by the SDMs. However, by testing several  SDM algorithms,
we found that some of them performed better, others not so good, in terms of expounding this
correlation.  In  other  words,  their  functional  accuracy  (Warren  et  al.,  2020)  was  different.
Therefore, marginal R2 , expressing the variance explained by the fixed terms in the regression
models,  was  adopted  as  a  measure  of  functional  accuracy,  and  used  to  rank  the  SDMs
accordingly. In this respect, the Bayesian additive regression trees (BART) algorithm (Carlson,
2020) gave the best result, despite the low AUC and TSS. Interestingly, by functional accuracy
the BIOCLIM model outperformed even some machine learning SDM methods. 

Our study confirms the possibility to correlate SDM projections with functional traits that
serve as proxies for fitness and we propose to use marginal R2  to validate these correlations and
their strenght. 

By restricting our analysis to the  BART algorithm only, a variety of sets of environmental
variables  commonly  or  less  used  in  the  construction  of  SDMs  were  explored  and  tested
according  to  their   functional  accuracy.  In  this  respect,  the  SDM  produced  using  the
ENVIREM  data  set  gave  the  best  result.  Indeed,  variables  in  this  data  set  are  worth
consideration in SDM applications, especially as many of the variables have direct links to
processes important for species ecology (Title, Bemmels, 2018), particularly those related to
potential evapotranspiration (PET). However, despite this importance, PET up to now is poorly
represented in species distribution modelling (Bradie, Leung, 2017). Satisfactory results were
obtained using the sets of topographic and bioclimatic variables, despite reservations against
the use of elevation as a predictor or that correlations between climate and species’ distributions
could be reflecting the spatial structure of climate rather than real biological process (Beale et
al., 2008; etc.). On the contrary, models using vegetation indices and edaphic variables in terms
of functional accuracy performed poorly, although the corresponding values of AUC and TSS,
considered  ‘good’ and  ‘very  good’,  indicate  the  opposite.  We  assume  the  low  functional
significance of these SDMs is due to scale, because model quality depends not only on the
algorithm and applied measure of model fit, but also the scale at which it is used. There are
many  indications that  climate impacts on species distributions are most apparent at macro-
scales (Vicente et al., 2014), whereas plant biomass or soil may be a more important at the local
scale.  This  also  highlights  the  need  to  consider  an  appropriate  scale  for  predictions,  as
vegetation and edaphic complexity is likely to be degraded by the use of coarse resolution
rasters.

Despite  some  shortcomings,  the  use  of  SDMs  has  allowed  to  identify  some  of  the
important  environmental  and  climatic  features  that  characterize  the  niche  of  V.  turgida.
Including other  biologically  relevant  parameters  and non-climate  variables  at  apprpropriate
scales should contribute important information and help to gain a deeper insight into the niche
of the species.
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