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Abstract

Finger millet, pearl millet and sorghum are amongst the most important

drought-tolerant crops worldwide. They constitute primary staple crops in drylands,

where their production is known to date back over 5000 years ago. Compared to other

crops, millets and sorghum have received less attention until very recently, and their

production has been progressively reduced in the last 50 years. Here, we present new

models that focus on the ecological factors driving finger millet, pearl millet and

sorghum traditional cultivation, with a global perspective. The interaction between

environment and traditional agrosystems was investigated by Redundancy Analysis of

published literature and tested against novel ethnographic data. Contrary to earlier

beliefs, our models show that the total annual precipitation is not the most determinant

factor in shaping millet and sorghum agriculture. Instead, our results point to the

importance of other variables such as the duration of the plant growing cycle, soil

water-holding capacity or soil nutrient availability. This highlights the potential of

finger millet, pearl millet and sorghum traditional cultivation practices as a response to

recent increase of aridity levels worldwide. Ultimately, these practices can play a pivotal

role for resilience and sustainability of dryland agriculture.
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Introduction 1

Finger millet (Eleusine coracana Gaertn.), pearl millet (Pennisetum glaucum (L.)R.Br.) 2

and sorghum (Sorghum bicolor (L.) Moench) are amongst the most important drought 3

tolerant crops in the world. These cereals are cultivated in several ecological regions, 4

but are most common in drylands, where they constitute primary food crops [1–3]. 5

Compared to other crops, such as wheat (Triticum ssp.), maize (Zea mays L.) or rice 6

(Oryza ssp.), sorghum and millets require less water input during their growth and 7

therefore can be cultivated in areas with water deficit. A minimum of 300 mm/yr for 8

millets and 350/400 mm/yr for sorghum are considered necessary for the development of 9

seeds [4]. This entails that in all those areas where annual rainfall is lower than 300 mm, 10

especially during the period of plant growth, it would not be possible to cultivate these 11

crops without irrigation. However, there are examples of modern communities that do 12

cultivate these crops extensively, under exclusively rainfed conditions, in areas where 13

annual average precipitation is much lower [5, 6]. This inconsistency between academic 14

and traditional knowledge has been also highlighted in recent work by the Ceres2030 15

consortium (https://ceres2030.org/), which identified a significant mismatch between 16

research on solutions to world hunger and the needs of small-scale farmers [7]. In this 17

paper, we aim at: 18

1. analyzing the extent of sorghum, finger millet and pearl millet cultivation in areas 19

with limited rainfall; 20

2. understanding how people engage with a practice that is supposedly not viable in 21

drylands; 22

3. exploring the ecological drivers behind the cultivation of sorghum, finger and pearl 23

millet; 24

We approach this investigation through an ethnographic and cross-cultural modeling 25

perspective. Differently from the yield-oriented models normally developed in 26

agronomic studies, [8–13], we focus on the decision-making mechanisms behind the 27

choice of growing finger millet, pearl millet and sorghum, as well as on the techniques 28

that have been traditionally applied to cultivate such cereals, regardless of production 29

outputs. Our working-hypothesis is that models that include TEK are able to better 30
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predict current agricultural practices in drylands than those that do not take it into 31

account. This information holds enormous value in the current search towards ecological 32

sustainability [14] and food security [15] as it results from extremely resilient 33

social-ecological systems, which have been in place for extended periods of time and are 34

a consequence of long-term processes of ecological adaptation [16,17]. We integrate 35

traditional ecological knowledge (TEK) with academic ecological knowledge (AEK) to 36

create models that aim to understand how traditional agricultural systems relate to 37

their surrounding environment. TEK is also referred to as local or indigenous ecological 38

knowledge (LEK, IEK); local knowledge is defined as a the knowledge of a particular 39

community living in a specific location as a result of traditional, external and 40

contemporary learning; indigenous knowledge refers to culturally embedded explanations 41

of reality; and traditional knowledge contemplates the part of local knowledge that is 42

transmitted through generations [18]. AEK is also referred to as scientific or Western 43

ecological knowledge (SEK, WEK). Ludwig and Poliseli [19] argue for the use of AEK in 44

order to avoid conflicts generated by the concept of what is scientific (SEK would imply 45

that LEK, IEK and AEK have no scientific base) or the provenance of the scientists 46

(WEK suggest that only Western knowledge can be considered academic) [19]. 47

Traditional agricultural practices are mainly determined by the combined effect of plant 48

growth rhythms and the surrounding environment [20]. Even though agricultural 49

activities can be related to several factors, such as market economy, technological 50

implementations or social-cultural tradition that contribute to the high variability of 51

agricultural systems [21], we consider that, under specific environmental and cultural 52

contexts, societies can only adopt a finite number of agricultural solutions. In this work 53

we concentrate on the ecological drivers rather than the cultural background of 54

cultivation practices. As so, we designed a model that analyzes the cultivation and 55

farming techniques of rural communities with non-market economies (TEK data), in 56

relation to crop characteristics and environmental data in which they are applied (AEK 57

data). For this purpose, we created a database of published and novel ethnographic 58

data on all the known communities that cultivate one or more of the target crops, 59

independently to their environmental, ecological or technological background. We 60

included also communities living in humid areas in order to capture all the variability of 61

conditions in which these three crops are grown. However, in the discussion we 62
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concentrate on drylands as sorghum and millets are sometimes the only crops available 63

and constitute a staple food whereas in humid environments these species represent one 64

of the many that are cultivated and usually have a subsidiary role. 65

Drylands are generally defined by the scarcity of water, which affects the 66

environment and its natural resources, and therefore determines and drives human 67

economic activities. The United Nations Environment Programme (UNEP) has 68

provided a clear definition of drylands according to an aridity index (AI), expressing the 69

ratio between average annual precipitation and potential evapotranspiration [22]. 70

According to the UNEP, drylands are lands with an AI <0.65, and can be further 71

divided, into hyper-arid (AI <0.05), arid (0.05-0.2), semi-arid (0.2-0.5) and dry 72

sub-humid (0.5-0.65) lands. Drylands represent 41% of the global land area, and are to 73

be found throughout all continents (Figure 1). 74

Fig 1. World’s regions classification according to Aridity Index values, territorial
distribution of ethnographic groups (eHRAF [23]) as indicated by GREG polygons [24],
and location of ethnographic interviews

Characterized by patchy and limited resources, often ephemeral and erratic, 75

drylands - especially hyper-arid to arid - are generally seen as ‘marginal’ areas for 76
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human settlement and food production. They are often over-exploited ecosystems, 77

where minor shifts in rainfall can trigger drastic changes in the environment, which can 78

in turn ignite episodes of drought, famine, and migrations [25]. Nonetheless, drylands 79

have seen the emergence and the development of many urban entities throughout the 80

last six millennia, like Ancient Egypt, Mesopotamian states and empires, the Indus 81

Valley Civilisation, the kingdom of Aksum, the Zimbabwe cultures, or the 82

Mesoamerican states, among others. These large-scale processes (e.g., emergence of 83

state) occurred close to rivers or better watered areas (e.g., the dry sub-humid zones). 84

Only recently the role of drylands at large has been reevaluated and considered by some 85

scholars as active centers of innovations throughout history [26,27]. The legacy of 86

long-term past adaptations is nowadays to be found in the traditional ecological 87

knowledge of current drylands inhabitants, who developed through time a variety of 88

innovative solutions to produce food under strong environmental constraints. Yet in 89

many reconstructions of agricultural land use and system productivity, large portions of 90

drylands (hyper-arid and arid, see 1) are considered almost totally unproductive, under 91

the assumption that below a given rainfall cultivation is not viable [28]. This holds true 92

even when the data refers to rainfed cultivation of drought-resistant and 93

drought-tolerant species, such as millets and sorghum, and both global [29] and regional 94

viewpoints [30] do not consider arid and hyper-arid lands as suitable areas for 95

cultivation. The reason for this might partially reside in that most of these maps are 96

generated using a combination of production statistics, land use data, satellite imagery 97

and biophysical characteristics [31]. Traditional knowledge has often been considered 98

irrational rather than sustainable, under biased perspectives funded on typically western 99

concepts [32]. As previously stressed by Krätli and colleagues [33], development plans 100

have often failed to provide long-term support and rehabilitation to drylands 101

communities in case of drought or famine. As a result, overall socio-economic conditions 102

in drylands are far worse than in other parts of the planet, and not surprisingly world 103

poverty is concentrated in drylands [22]. Recently, a number of papers have questioned 104

the ‘traditional’ approach to drylands and have explored different perspectives. Largely 105

inspired by New Ecology [34,35] and the adoption of the concept of resilience of 106

social-ecological systems (as formulated by Holling [36] and applied with success to 107

drylands [37–40]), TEK is being considered a possible way to design sustainable and 108
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durable approaches in agroecology [41]. We present here the results of ethnographic and 109

cross-cultural investigations on the cultivation of pearl millet, finger millet and sorghum, 110

with a global perspective (1). We use published ethnographic material (see the Material 111

and Methods section as well as Supplementary Information and SI Dataset S1) and 112

novel data collected on the field (Datasets SI2 and SI3) to build and test models that 113

display the interaction of ecological and geographic variables in explaining agricultural 114

practices in drylands. 115

Methods 116

Ethnographic data: systematic interviews and eHRAF 117

Traditional Ecological Knowledge on the cultivation practices of sorghum, pearl millet 118

and finger millet was extracted from both primary and secondary sources. On the one 119

hand, ethnographic fieldwork was carried out in Tigray (Ethiopia), Khartoum State 120

(Sudan) and Sindh (Pakistan) in 2018 and 2019 [42], during which several interviews 121

were conducted with people engaged in traditional agricultural practices (S1 Appendix 122

Fig S1). Oral consent was obtained and recorded prior to the interview from each 123

participant as approved by the the Institutional Committee for Ethical Review of 124

Projects (CIREP) at Universitat Pompeu Fabra (ethics certificate n. 2017/7662/I). All 125

methods were carried out in accordance with relevant guidelines and regulations. A 126

total of 53 semi-structured interviews, which were systematically completed using a 127

questionnaire as a general guide, provided the data for testing the model performance. 128

The questions targeted data on agricultural activity related to finger millet, pearl millet 129

and sorghum production, including information about cereal species selection and 130

cultivation, farming methods and techniques, water management practices, growing 131

cycles, land tenure, alimentation and food-security, amongst other topics. Participants 132

were selected through snowball sampling, always under the advice and approval of local 133

authorities and colleagues. Interviewees were predominantly landowners from rural and 134

semi-rural areas, ranging between 27 and 88 years old and whose main economic 135

activity was farming. They included 46 men and 7 women, which had been farmers for 136

the most part of their lives. The total number of interviews performed in each area 137
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depended on the availability of participants in a radius of less than 100 km from the 138

base camp. Retrieved information was processed, normalized and added into a 139

separated dataset both as single entries for each interview but also as aggregated data 140

for each of the three cultures: Tigrayan, Sudan Arabs and Sindhis. Detailed results of 141

these interview can be found in Biagetti et al. [42] 142

Data from existing anthropological studies were obtained from the Human Relation 143

Area Files (eHRAF) [43]. The objective was to provide a consistent, coherent body of 144

information, which allowed for the creation of a robust dataset for cross-cultural 145

comparison on agricultural activities in drylands. The eHRAF database allows to 146

perform comparative studies [23] by providing easy access to a wide range of 147

ethnographic sources and it is being increasingly used to carry out 148

ethnoarchaeologically-driven presearch [44,45]. 149

The inclusion criteria for extracting the information from eHRAF for this study were: 150

1. Cultivation of one or more of the target crops, independently to the 151

environmental, ecological or technological background 152

2. Being small-scale food producers 153

3. Database entries contained explicit information on crops, and cultivation 154

techniques 155

In the present study, we included all occurrences reporting the cultivation of finger 156

millet (FM), pearl millet (PM) and/or sorghum (SB). The study variables taken into 157

account included: intensity of cultivation (casual, extensive and intensive), watering 158

regimes (rain-fed, décrue and irrigation) and the duration of the growing cycle of each 159

crop (S1 Appendix Table S1). All ethnographic bibliography containing both generic 160

and specific terms referring to the three crops under study was extracted from eHRAF 161

and systematically reviewed (S1 Appendix Table S3). Data was separated and 162

organized by community for a total of 66 entries. This preliminary dataset was 163

normalized into a cultures database which included pre-created categories on 164

socio-economic features (e.g., type of subsistence economy, settlement or group mobility) 165

and plant cultivation practices and techniques (e.g., crop importance, cycle duration, 166

land preparation, manuring or watering systems) based on the Standard Cross-Cultural 167

January 18, 2023 7/29



Sample Codebook [46] (Table 1). Further to eHRAF data, available bibliography was 168

reviewed in order to fill missing information in the database and only the communities 169

with enough information to define all the current study variables were retained for 170

analysis, resulting in a final dataset of 57 entries. Finally, as this research concentrates 171

on agricultural techniques rather than on social aspects, the database was organized by 172

crop growing cycles taking into account that some societies cultivate in each year 2 173

crops with different techniques, hence reaching a total of 72 entries. 174

Table 1. Definitions of agricultural practices considered in this study

Variable Definition
Casual agriculture Slight or sporadic cultivation of food or other plants incidental

to a primary dependence upon other subsistence practice [47]
Extensive agriculture Or shifting cultivation, as where new fields are cleared annually,

cultivated for a year or two, and then allowed to revert to
forest or brush for a long fallow period [47]

Intensive agriculture On permanent fields, utilizing fertilization by compost or
animal manure, crop rotation, or other techniques so that
fallowing is either unnecessary or is confined to relatively
short periods [47]

Rain-fed agriculture Water is provided by rainfall alone (directly or as run-off),
cultivation occurs far from any permanent water sources and
without any water harvesting [5]

Décrue agriculture Water is provided by natural inundation, typically from major
river systems (floodplain cultivation) [5]

Irrigated agriculture Water is provided to crops at regular intervals throughout the
growing season by human intervention [5]

Duration of growing
cycle

Mean and variance of crops’ growing cycle duration (in days)
from sowing to harvest [23]

Environmental data and spatial distribution 175

A total of 58 ecological variables both physio-climatic and edaphic were included, as 176

they are considered to be the principal factors in plant growth and development [48]. 177

Environmental data were extracted from published GIS data at 30 arc-secs resolution 178

and derived raster files created with ArcGIS 10.6 or QGIS 3.4.15 with GRASS 7.8.2 (S1 179

Appendix Table S3). Mean values and variances for each ecological variable were 180

included in the analysis, resulting in a grand total of 116 variables. Data retrieval was 181

based on previously assigned “areas of activity” (Fig 1): the cultures spatial distribution 182

was obtained from the Geo-Referencing of Ethnic Groups dataset (GREG [49]), which 183

employs geographic information systems (GIS) to represent group territories as 184
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polygons independently of state boundaries. In case of no data, the location of societies 185

was assigned by using their administrative units as described in eHRAF documents. 186

Territories designated to each culture were not restricted to agriculturally active areas 187

but included their whole area of activity. Centroids of these polygons were utilized in 188

order to define longitude and latitude for each human community. Furthermore, the 189

geographic location of the ethnographic interviews was established as a 190

50-kilometer-round area from the GPS location of each subject house. This choice was 191

based on the information about agricultural fields location given during the interviews, 192

which ranged between 0 and 40 kilometers. All operations were performed using R 3.6.2, 193

specifically the rgdal [50], raster [51], and spatialEco [52] packages. 194

Data analysis and modeling 195

The eHRAF data was used as training response variables, whereas the ethnographic 196

dataset was utilized as testing response data. Both datasets were transformed into 197

dummy binary variables and divided into 4 subsets for separate analysis: 198

1. presence or absence of each study crop (all cases, n = 72) 199

2. agricultural intensity and watering systems for finger millet (n = 30) 200

3. agricultural intensity and watering systems for pearl millet (n = 27) 201

4. agricultural intensity and watering systems for sorghum (n = 55) 202

Redundancy analysis (RDA [53]) was applied in order to analyse each response 203

subset variability in relation to the duration of the plants growing cycle and their 204

surrounding environment. All training response datasets were transformed using 205

Hellinger’s transformation prior to RDA [54,55], whereas the explanatory datasets were 206

standardized (by subtracting the variable mean to each value and then dividing it for 207

the standard deviation) to create comparable scales. First, RDA was applied to explore 208

the overall variability of each subset of data, accounted for by growing cycle and 209

environmental predictors. The proportion of inertia retained by each of these 210

components was also retrieved as the adjusted coefficient of determination (R2 [56]). 211

Permutation tests were used to check for statistical significance of each RDA [57] and 212

the variance inflation factors of each variable (VIF [58] cited in [53]) were calculated to 213
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look for linear dependencies between explanatory variables. Second, adjusted-R2-based 214

forward selection (FS [59]) was used to identify and select significant predictor variables 215

and reduce collinearity - as it can work with supersaturated models [60]. A 216

double-stopping criterion (alpha level combined with the adjusted R2) was implemented 217

and tested over 1000 permutations [59]. The resulting models were analysed for 218

explained inertia and statistical significance, as were the FS variables for collinearity 219

and statistical relevance. Model coefficients for each FS predictor and ordination scores 220

for both response variables and study cases were calculated in order to understand the 221

effect of each explanatory variable in the response data. Next, variation partitioning 222

(VP) was performed to test for spatially structured variance [56,59]. For this purpose, 223

models were used along with XY coordinates and distance-based Moran’s eigenvector 224

maps (dbMEMs [53,60,61] but see also [62,63]). Linear trends of each response data 225

subset were analyzed by RDA following Borcard et al. [64]. When statistically 226

significant, response data was de-trended prior to dbMEM analysis by regressing all 227

response variables on the XY coordinates and retaining the residuals [53]. The 228

construction of dbMEMs [60,64] was carried out using minimum distance between 229

polygon frontiers as geographical distances amongst study cases. RDA was then applied 230

for each response data subset against their dbMEMs. The resulting spatial submodels 231

were tested for statistical significance and FS was applied when confirmed by 1000 232

permutations. VP analysis [64] was used to decompose the total inertia into 233

independent and shared fractions: that is, the pure fraction of each explanatory dataset; 234

their joint fractions as a result of intercorrelation, and the remaining unexplained 235

variation. Testable shared fractions were evaluated by RDA, whereas the pure 236

individual fractions of each predictor dataset were tested by means of partial RDA. 237

Models were evaluated using performance measures: accuracy (correctly classified 238

entries / total number of cases), recall (positive entries correctly classified / total 239

number of positive cases), precision (positive samples that were correctly classified / 240

total number of positive predicted cases) and F1-score (evaluation of the classification 241

performance through calculation of the harmonic mean of precision and recall [65]). A 242

classification threshold was obtained by using the sensitivity-specificity sum 243

maximization approach on the training data [66–69]. The models were then validated by 244

assessing their effectiveness on predicting their training datasets. Next, accuracy and 245
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F1-score were measured when predicting the testing response data. S1 Appendix Fig S2 246

presents a summary of all the described methods, whereas S1 Appendix Fig S3 shows 247

the full schematic workflow of the analysis. All statistical analyses were executed using 248

R 3.6.2, specifically the FactoMineR [70], factoextra [71], vegan [72], rgeos [73], 249

adespatial [74], and PresenceAbsence [75] packages. 250

Results 251

Crop selection and cultivation practices 252

Table 2 presents descriptive statistics of crop selection and cultivation training response 253

data. Finger millet cultivation practices were identified by cross tabulation as 254

Extensive-Rainfed (56.6%), Intensive-Rainfed (36.7%) and Intensive-Irrigated 255

agriculture (6.7%). The results of cross tabulations for pearl millet cultivation were 256

similar to that of finger millet, but with a higher presence of irrigated systems: 55.6% 257

entries were classified as Extensive-Rainfed, 29.6% as Intensive-Rainfed and 14.8% as 258

Intensive-Irrigated agriculture. Sorghum agriculture featured a higher rate of diversity: 259

along with Extensive-Rainfed (40%), Intensive-Rainfed (36.4%) and Intensive-Irrigated 260

(10.9%), two additional groups were identified by cross tabulation as Casual-Rainfed 261

(7.3%) and Intensive-Décrue (5.4%), for a total of five combinations for sorghum 262

cultivation. In no instance, casual agriculture was observed to be combined with décrue 263

or irrigated watering regimes, neither was extensive agriculture. 264

Table 2. Descriptive statistics of training response data. (n) absolute number, (f)
frequency.

Study crops Finger millet - FM Pearl millet - PM Sorghum - SB
Attribute n f % f % f %
Crop selection 72 30 41.6 27 37.5 55 76.3
Intensity of cultivation 72 30 27 55
Casual agriculture (CAS) 0 0.0 0 0.0 4 7.3
Extensive agriculture (EXT) 17 56.7 15 55.6 22 40.0
Intensive agriculture (INT) 13 43.3 12 44.4 29 52.7
Watering regimes 72 30 27 55
Rainfed agriculture (RF) 28 93.3 23 85.2 46 83.7
Décrue agriculture (DEC) 0 0.0 0 0.0 3 5.4
Irrigated agriculture (IRR) 2 6.7 4 14.8 6 10.9

January 18, 2023 11/29



Modelling Variability of traditional cultivation practices 265

After FS, RDA showed the models to retain 54.9% of the total inertia for crop selection 266

and 60.7% for finger millet, 87.8% for pearl millet and 24%, for sorghum cultivation. All 267

selected variables were found to be statistically significant and independent to one 268

another. For crop selection, six variables appeared as the most relevant (SI Figure 4a): 269

mean topsoil volumetric water content at 15 kPa, mean topsoil pH, variance of mean 270

temperature of the warmest quarter, mean global horizontal irradiance, variance of 271

subsoil clay content and mean precipitation seasonality. Significant variables for finger 272

millet cultivation include mean subsoil sulphur content, mean precipitation 273

concentration index and topsoil mean phosphorus content (SI Figure 4b). The most 274

relevant variables for pearl millet cultivation were variance of temperature seasonality, 275

variance of topsoil volumetric water content at 33 kPa, mean subsoil gravel content, 276

mean topsoil clay content, mean duration of the growing cycle, the mean temperature of 277

wettest quarter, variance of topsoil organic carbon content, variance of topsoil silt 278

content and mean temperature during the driest quarter (SI Figure 4c). The most 279

important variables for sorghum cultivation were the mean of growing cycle duration, 280

the variance of both topsoil and subsoil cation exchange capacity and the mean soil 281

organic carbon (SI Figure 4d). 282

Absence of spatial patterns 283

Linear trend analysis by RDA revealed statistically significant models for crop selection 284

and pearl millet cultivation variables. None of the analyses performed with 285

distance-based Moran’s eigenvector maps (dbMEMs) were found to be statistically 286

significant, nor was any dbMEM selected by means of FS, hence pointing to the absence 287

of spatial autocorrelation in both finger millet and sorghum cultivation datasets. As a 288

result, dbMEMs were not included in variation partitioning analysis (VP). For crop 289

selection, VP results (Fig 2a) showed significant effects of physio-climatic, edaphic and 290

spatial components on the variability of the study agricultural package (19.3%, 39.5% 291

and 17.8% of the total inertia). 12% of the variance retained by edaphic factors was also 292

explained by the spatial component, thereby pointing to the existence of a linear trend 293

amongst edaphic variables. Still, the pure spatial fraction failed to pass the test for 294
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statistical significance, hence pointing to the absence of spatial patterns in the crop 295

selection dataset. VP analysis of finger millet cultivation data identified the impact of 296

both physio-climatic and edaphic components to be statistically significant. No shared 297

fraction was identified (Fig2b). For pearl millet cultivation, a component related to the 298

duration of the plant growing cycle (7.9%) was also detected along with the 299

physio-climatic (32.8%), edaphic (27.3%) and spatial components (25.8%) - all of which 300

were found to be statistically significant. The pure fraction of the spatial component 301

was proven to retain no inertia hence showing the absence of spatial autocorrelation in 302

the pearl millet dataset - even though the shared fraction with the rest of the 303

components points to the existence of linear spatial trends amongst the predictors 304

(Fig2c). As for the unique contributions of each component, they were all found to be 305

statistically meaningful. Finally, both growing cycle and edaphic components were 306

found to significantly explain 8.4% and 16% of the total variability in sorghum 307

cultivation (Fig2d). 308

Model Validation using Ethnographic Observations 309

All four models were found to be capable of predicting their own training response 310

datasets (S1 Appendix Fig S5). The crop selection model showed 86.6% accuracy and a 311

F1-score of 0.869, with precision and recall featuring values of 0.88 and 0.857 312

respectively. 95% accuracy was obtained for the finger millet cultivation model, whereas 313

the prediction of the pearl millet training data was 100% accurate. All the performance 314

measures scored 0.95 and 1 respectively. Finally, the modeling of sorghum cultivation 315

practices showed 78.2% accuracy and a F1-score of 0.723. In this case, recall was found 316

to be larger (0.855) than precision (0.627) indicating a higher rate of false positives 317

amongst the predictions. All models scored between 60% and 80% accuracy when 318

predicting individual cases (S1 Appendix Fig S6a). Interestingly, the models F1-score 319

(S1 Appendix Fig S6b) remained similar to accuracy for crop selection, as well as for 320

finger millet and pearl millet cultivation models. However, the sorghum cultivation 321

model classification strength (F1-score) was lower than its accuracy by 8% due to a 322

higher rate of false positives (0.4) than false negatives (0.233). Regarding the prediction 323

of the testing cases as cultures (individuals mode), the models showed an accuracy of 324
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Fig 2. Summary by Venn diagrams of VP analysis of physio-climatic (PC), edaphic
(ED), spatial (XY) and plant’s growing cycle (GC) components of a) Crop selection; b)
Finger millet (FM) cultivation; c) Pearl millet (PM) cultivation; and d) Sorghum (SB)
cultivation.

77.8% for crop selection, 100% for finger millet, 50% for pearl millet and 83.3% for 325

sorghum (S1 Appendix Fig S6c). Again, F1-scores (S1 Appendix Fig S6d) for crop 326

selection, finger millet and pearl millet cultivation models featured almost no change 327

with respect to accuracy, whereas the sorghum cultivation model also showed lower 328

precision (0.714) than recall (0.833). 329
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Discussion 330

Traditional agricultural systems have been receiving enhanced 331

attention [14,16, 17,21,76,77], especially after the introduction of FAO’s climate-smart 332

agriculture initiative in 2010 [78]. However, the integration of traditional practices into 333

institutionalised science and policy seems to be still marginal [16]. Far from being static, 334

traditional practices are constantly hybridizing with both local and global knowledge, 335

thereby hindering the task of creating comprehensive datasets susceptible to ecological 336

analysis. As a result, parameters such as the annual rainfall limit are still used to assess 337

the cultivation suitability of a given area [24,28,79,80]. This produces a general 338

mismatch between research on drought-resistant cultivations in drylands and the reality 339

of many small-scale farmers in these areas [7]. 340

Water scarcity is generally considered one of the main limiting factors to agricultural 341

production. Even for drought-resistant crops such as finger millet, pearl millet and 342

sorghum, mean annual precipitation is generally regarded as the critical factor that 343

defines agroecological systems. However, our model on crop selection portrays a 344

different picture showing that total yearly rainfall, although important, does not appear 345

to be as critical as previously suggested. Indeed, mean annual precipitation is not 346

retained as a variable in the model and it only explains 8.3% of the overall variance 347

when used as the only predictor in the crop selection model. Finger millet is preferred 348

by groups inhabiting areas with higher soil water-retention capacity (e.g., Shilluk, Gusii, 349

Bagisu), whereas pearl millet is chosen by communities living in areas where seasonal 350

precipitations are more temporally concentrated, such as the Fellahin, Wolof or Dogon. 351

More importantly, water availability is not the only driving factor in either case. The 352

selection of finger millet is further associated with areas with higher regional variance of 353

summer temperature (e.g., Pashtun, Sherpa, Amhara), indicating the plant capacity to 354

resist greater intra-regional temperature ranges. Indeed, finger millet has been 355

recognized as a high-temperature tolerant species, with landraces resisting over 356

40°C [81]. Enhanced solar irradiance (more commonly insolation when reported 357

integrated over a time period) determines the choice of pearl millet by communities 358

such as the Teda, Kanuri or southern Tuareg. This characteristic of pearl millet makes 359

it very suitable to areas such as the Sahara and its margins as the species has high 360
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efficiency in converting solar radiation into dry matter, especially in comparison with 361

C3 crops [82]. The inclusion of sorghum in traditional agrosystems appears to be 362

unrelated to water availability and associated with relatively higher soil water pH, 363

present in areas such as Inner Mongolia, Somalia or the Turkana region. Indeed, soil 364

acidity has been found to significantly reduce sorghum yields [83]. Recent research has 365

shown that pH increases with aridity and temperature [84], suggesting that sorghum 366

might be part of the drylands crop package for being able to cope with alkalinity 367

induced by aridity. Overall, our crop selection model indicates that in traditional 368

agricultural systems this choice is highly influenced by ecological conditions. 369

Our models explained a significant part of the total variability of cultivation 370

practices, especially for finger and pearl millet. All three models performed well when 371

cross validated against our first-hand ethnographic data. This is especially notable if we 372

consider the impact of current technological implementations such as tractor agriculture 373

or water-pumping techniques and the effects of state policies on land tenure and 374

availability, but also social factors such as the influence of globalization on individuals’ 375

preferences or beliefs about agricultural productivity. 376

Precipitation concentrated in a short period of the year was found to be associated 377

with extensive-rainfed regimes of finger millet cultivation. These types of agrosystems 378

are traditionally developed by human communities occupying regions with high rainfall 379

seasonality, both in sub-humid to very humid areas (e.g., Azande, Khasi or Garo) and 380

drylands with AI <0.40 (e.g., Nuba, Shilluk or Tonga). Notably, this was the only 381

rain-related predictor to have a significant impact in all three models. In our finger 382

millet model, intensive-rainfed systems are connected with regions characterized by high 383

topsoil phosphorus content (e.g., Konso, Nyakyusa, Kaffa). Plant-available soil 384

phosphorus has been identified as a crucial factor for sorghum and experimental 385

cultivation has shown that sorghum and finger millet respond similarly to P [85]. 386

Finally, high subsoil sulphur concentrations seem to be a driver for irrigation as the only 387

two instances of recorded irrigated finger millet (e.g., Pashtun and Tamil) are strongly 388

related to this variable. To our knowledge, no study has yet investigated the relation of 389

sulphur and finger millet watering practices. 390

By contrast, pearl millet cultivation systems featured growing cycle, edaphic and 391

temperature-related predictors as their significant ecological driving factors. Previous 392
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studies have argued for water stress as the main limitation to pearl millet 393

cultivation [82,86–88] despite having identified the importance of other factors such as 394

soil nutrient availability [89]. According to our model, extensive-rainfed cultivation is 395

preferred by farmers planting slow-growing pearl millet varieties in lands with high 396

topsoil clay content (e. g. Fon, Ila, Shona), which allows for better water retention 397

regardless of aridity (AI ranging from 0.14 to 1.04).By contrast, communities such as 398

the Mossi, Nupe or Songhai developed intensive-rainfed systems in arid to dry 399

sub-humid areas where plant-available soil water was much more irregularly distributed 400

as a result of enhanced soil water loss - due to increased evaporation and drainage. 401

Irrigated agrosystems were developed in both hyper-arid (e.g., southern Tuareg, Teda) 402

and semi-arid (e.g., Telugu) environments where soil water evaporation processes were 403

even more significant; but also, more irregularly distributed at an intra-regional scale. 404

Rainfall was not found to play a direct role in traditional techniques applied to 405

sorghum cultivation either. Instead, our sorghum cultivation model indicate that the 406

most crucial factors were related to the duration of the growing cycles as well as to soil 407

fertility variables, in accordance with previous reports [4]. According to our results, 408

supplementary growing cycles appeared in relation to rainfed cultivation regimes 409

developed by communities such as the Azande, Santal or Tiv. In these cases, the main 410

limitation to intensive cultivation is soil fertility regardless of aridity (AI between 0.14 411

to 1.04 for extensive-rainfed cultivation, and 0.16 to 1.07 for intensive-rainfed 412

agriculturalists). Certainly, higher concentrations of soil organic matter allowed for the 413

implementation of intensive cultivation systems (e.g., Koreans, Rwandans, Gikuyu), 414

whereas communities in less fertile regions such as the Hausa, Bambara or Wolof have 415

to use extensive or land-shifting regimes. Communities living in hyper-arid to arid areas 416

where fertility is unevenly distributed and concentrated around water sources, showed 417

application of décrue and irrigated watering practices (e.g., Fellahin, Shluh or southern 418

Tuareg people). Still, communities living in more humid areas such as Central Thais 419

and Tamils were also found to use irrigation. By contrast, casual-rainfed sorghum 420

production appeared restricted to hyper-arid to arid regions where reduced soil organic 421

matter paired with higher intra-regional variability of topsoil cation exchange capacity 422

(e.g., the areas around water sources). 423

Overall, our models reveal the existence of important ecological patterns in the ways 424
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that traditional small-scale farmers adapt to their surrounding environment, most of 425

which showed no direct relationship with annual rainfall nor aridity levels. Variation 426

partitioning analysis detected no variability exclusively driven by geographical location 427

or distance between communities. As so, we argue that processes of cultural 428

transmission did not play a primary role in the shaping of the studied agrosystems, 429

which were instead the result of local processes of adaptation [44]. The existing 430

similarities can thus be considered as a product of cultural convergence, as several 431

communities reached similar agroecological solutions when faced with similar ecological 432

problems independently of cultural diversity. As so, traditional agricultural knowledge 433

appears as a type of TEK resulting from long-term adaptation processes [90,91] that 434

allowed for the development of sustainable, resilient agroecosystems. Most of the main 435

driving ecological factors described in the present study were found to be in agreement 436

with previous academic ecological knowledge. 437

Concluding remarks 438

The ecological modelling of traditional agricultural systems has revealed that the 439

relationship between annual precipitation and agricultural viability is not as strong as 440

previously considered. Other factors such as growing cycles duration, soil nutrient 441

availability and water holding capacity appear to be much more determinant in shaping 442

traditional agroecosystems. Our work forwards the understanding of how human 443

communities developed long-term sustainable, resilient agricultural strategies. This is 444

especially significant in the current context of climate instability and increasing 445

population, which calls for immediate action. 446

Global climate change is fostering new research on local practices and traditional 447

crops. TEK offers a highly relevant source of information, as it encompasses the 448

exploitation of locally available resources and it is the result of long-term processes of 449

adaptation to the environment. By contrast, supra-national institutions have often 450

opted for short-term, generalized solutions such as the so-called improvement of the seed 451

market with high-yielding hybrids or the promotion of agrochemicals in economically 452

less developed regions. Despite their relatively positive short-term effect on crop yields, 453

these solutions are based on finite resources, and have caused significant damage to 454
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both crop biodiversity and soil conservation. Instead, traditional practices rely mainly 455

on renewable resources and they can be considered as a suitable way to increase 456

productivity and minimize crop failure without sacrificing sustainability and resilience 457

on the long term scale. Besides, and in parallel to the improvement of crops to increase 458

drought tolerance and yield, the current situation calls for the reevaluation of 459

small-scale agricultural strategies suited to specific agroecosystems. The present study 460

offers an alternative view on possible pathways to integrate traditional knowledge in 461

scientific and policy programs to provide solutions to food security for low-and 462

middle-income dryland areas. 463
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