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Abstract:
Harnessing the fire data revolution, i.e., the abundance of information from satellites, 
government records, social media, and human health sources, now requires complex and 
challenging data integration approaches. Defining fire events is key to that effort. In order to 
understand the spatial and temporal characteristics of fire, or the classic fire regime concept, we 
need to critically define fire events from remote sensing data. Events, fundamentally a 
geographic concept with delineated spatial and temporal boundaries around a specific 
phenomena that is homogenous in some property, are key to understanding fire regimes and 
more importantly how they are changing. Here, we describe FIRED, an event-delineation 
algorithm, that has been used to derive fire events (N = 51,871) from the MODIS MCD64 
burned area product for the coterminous US (CONUS) from January 2001 to May 2019. The 
optimized spatial and temporal parameters to cluster burned area pixels into events were an 11-
day window and a 5-pixel (2315 m) distance, when optimized against 13,741 wildfire 
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perimeters in the CONUS from the Monitoring Trends in Burn Severity record. The linear 
relationship between the size of individual FIRED and MTBS events for the CONUS was strong 
(R2 = 0.92 for all events). Importantly, this algorithm is open source and flexible, allowing the 
end user to modify the spatio-temporal threshold or even the underlying algorithm approach as
they see fit. We expect the optimized criteria to vary across regions, based on regional 
distributions of fire event size and rate of spread. We describe the derived metrics provided in a
new national database and how they can be used to better understand US fire regimes. The 
open, flexible FIRED algorithm could be utilized to derive events in any satellite product. We 
hope that this open science effort will help catalyze a community-driven, data-integration effort 
(termed OneFire) to build a more complete picture of fire.

Keywords: data harmonization; event-builder algorithm; fire regimes; open fire science; satellite
fire detections

1. Introduction

What is a fire? Defining the spatial and temporal boundaries of fire events is critical for 
understanding the drivers and trends in fires [1], ecological consequences [2], and adaptation 
implications [3]. Answering this question is fundamental to defining fire regimes, or the spatial 
and temporal characteristics of fire events in a strict sense [4–6], i.e., size, frequency, intensity, 
severity, seasonality, duration, and rate of spread. Remote sensing has increased our capacity to
quantify some of these characteristics at large spatial scales, such as frequency, intensity, size, 
and severity [7–9]. However, there is even greater potential to inform our understanding of 
changing fire and resilience of ecosystems and society if we are able to delineate events in 
remote sensing fire products that preserve the temporal characteristics. We can then better 
understand whether ecosystem state transitions depend on fire intensity and speed or how 
communities in the wildland-urban interface (WUI) may be vulnerable to rapid fire spread.   
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There are generally three classes of information that satellite sensors capture about fire 
behavior: active fires based on thermal threshold exceedance [10–12], fire radiative power as a 
metric of heat flux [13–15], and burned area derived from a change detection algorithm [16–18],
sometimes also informed by active fire detections [19]. These fire properties are estimated at the
pixel level, which ranges in size for these products from 10s to 1000s of meters. In order to 
explore fire behavior patterns these pixel-level detections are aggregated in some way, 
necessitating the assumption of homogenous fire characteristics across that pixel. Global burned
area products tend to underestimate total burned area due to missing small fires [20] and 
within-fire burned area due to underestimation of burned areas within an event [21]. Further, 
global scale studies explore total burned area summed across larger units or the density of hot 
pixels as a metric of fire frequency [8,22–24], which leaves understanding of actual events 
missing. Given the abundance of satellite fire data (e.g., Table 1), and that they do not “see” the 
same aspects of fire [12,31,32], we fundamentally need landscape-scale event delineation to 
integrate across products and build greater understanding of how fire regimes vary at regional 
and global scales [25]. With event-level delineations we can then also calculate a critical, but 
less understood property of fire regimes—fire spread. The MODIS-based burned area products 
[26,27] use sub-daily images to estimate the date a pixel burned. As such, they are uniquely 
suited to provide estimates of fire spread rate and duration, but only if we can say which pixels 
are all part of the same event. There have been some attempts to characterize fire spread using 
active fire products, but the code and resulting data products are not publicly available [28]. 
Defining events from the MODIS-based products enables capturing fire events, from small to 
large events at a global-scale, providing key metrics on fire regimes and how they are changing.

There are several different approaches for delineating fire events based on proximity of burned 
area or hot pixels in space and time. Some studies have clustered the MODIS active fire hotspots
(MODIS MOD14) to delineate events in Europe and northern Africa [29] and Indonesian 
tropical rainforests [26,27] to understand what drives large fires. Others have used clustering of
MODIS burned area (MODIS MCD64) pixels [7,8,30,31]. Most studies require pixel adjacency 
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(Table 1), but a more relaxed spatial criteria facilitates exploring fires that have unburned 
patches within their perimeters—critical refugia that are necessary for regeneration [21]. This 
approach is also less likely to over-segment events that are imperfectly detected, due to low fire 
severity or cloudiness, for example.  

Given the number of studies that use the MODIS burned area product (e.g., studies in Table 1) 
and emerging new fire data products [12,17,25–27,32] that conduct some sort of event 
delineation as part of the processing, there is a great need to develop an open and well-
documented algorithm for defining fire events from remotely sensed detections of fire. 
Moreover, event delineation enables joining of different data products to build a more complete 
picture of regional and global fire. Better delineation of the boundaries of events could lead to 
better estimates of total burned area, as well as exploration of derived spatiotemporal metrics 
around events that constitute the fire regime (e.g., event size, event shape, ignition point, 
unburned refugia within a fire, and fire spread rate). Many of the algorithms that have been 
developed previously were used and optimized for one specific analysis and the code was not 
published for further development and reuse [7,33–35]. Furthermore, decisions were often 
made that lessened the computational cost, but relied on assumptions that are often not 
universally applicable. Most notably, data were often aggregated into a single yearly layer, 
which results in the artificial aggregation of pixels that burned multiple times in one year, and 
the artificial segmentation of events that started in one year and ended in the next [34–36]. 

Further, there is a need to better validate the temporal and spatial thresholds, as this selection 
can substantially alter the number of detected fire events. Fire metrics can be sensitive to how 
boundaries are delineated [37]. Moreover, we expect the optimum temporal and spatial 
thresholds to vary based on size distribution and spread differences that will vary across 
ecoregions (e.g., fast, large grassland fires vs. small, slow temperate forest fires) and land use 
types (e.g., agricultural fires vs. deforestation fires). But even so, ground-based delineations of 
fire perimeters also have their challenges, incident command delineations may overestimate 
wildfire perimeters, as delineating unburned patches is difficult on the ground. Also, multiple 
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fire patches may start independently and in proximity (e.g., when a lightning storm starts 
multiple events), which then merge into one fire complex.

Table 1: Studies using spatio-temporal moving window algorithms for delineating fire events, 
first utilized by Archibald et al. [33].

Study Purpose Satellite fire 
product

Spatial criteria Temporal criteria

Archibald et al. 
2009

Examined 
environmental 
and 
anthropogenic 
drivers of fire in 
South Africa

MODIS MCD45* Adjacency 8 days

Balch et al. 2013 Tested whether 
cheatgrass 
occurrence 
increases fire 
activity

MODIS MCD45, 
RMGSC$

2 pixels (1000 m) 2 days

Hantsen et al. 2015 Explored global 
fire size 
distribution

MODIS MCD45 Adjacency 14 days

Frantz et al. 2016 Aggregated raster 
grids from burn 
date to event 
objects

MODIS MCD64+ 10 pixels (5000 m) 5 days

Andela et al. 2017 Examined global 
fire activity

GFED4s%, MODIS 
MCD64

Local spread rate 
x distance

Spatially varying 
fire persistence 
threshold

Laurent et al. 2018 Derived patch 
functional traits 
and other 

MODIS MCD64, 
MERIS 

1 pixel (500 m) 3, 5, 9 and 14 days
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morphological 
features of fire 
events

Andela et al. 2018 Created global fire
atlas product

MODIS MCD64 1 pixel (500 m) Spatially varying

* MCD45: MODIS Collection 5.1 burned area product

+ MCD64: MODIS Collection 6 burned area product
$ RMGSC: USGS Rocky Mountain Geographic Science Center fire perimeter data
% GFED4s: Global Fire Emissions Database version 4 product

Here, we: i) develop an open, refined, and adaptable algorithm for defining events; ii) derive 
events and companion metrics for fires in the CONUS from the MODIS MCD64 burned area 
product, based on the optimum spatial and temporal thresholds; iii) validate the MODIS-
derived events against the  Monitoring Trends in Burn Severity (MTBS) product, which is 
manually derived from Landsat imagery [38]; and iii) demonstrate how defining events enables
us to explore additional metrics of the fire regime across the US. Here, we define an event [39] 
as a geographic concept with delineated spatial and temporal boundaries around a specific 
phenomena that is homogenous in some property and distinct from adjacent areas. The 
algorithm is designed in a way that makes it adaptable to data source, regional context, and 
even event type: the spatiotemporal criteria can be altered, and it could be used with newer 
burned area products (e.g., Fire_cci based on MODIS images at 250 m resolution [26] or VIIRS 
[12]), or even different types of phenomena (e.g. bark beetle outbreaks, floods, etc.). 

2. Materials and Methods
a. Study area and data acquisition and processing
The study area was CONUS. We chose this study area because of the availability of other fire 
datasets like MTBS [38] which we were able to use to gauge the accuracy of our aggregation of 
burned pixels to events from the MCD64 dataset. We used the MODIS Collection 6 MCD64 
burned area product [27] [available at ftp://fuoco.geog.umd.edu/MCD64A1/C6/]. These data 
contain five layers at 500-m resolution: burn date, first day, last day, a quality assessment, and 
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error. The data are available worldwide, via a sinusoidal projection that is divided into 648 tiles 
(268 of which are terrestrial), each with 2400 rows and columns at 463-m resolution. We 
downloaded the entire monthly time series available for each tile that overlaps with CONUS, 
and extracted the burn date layer. 

b. Accounting for pixels that burn more than once per year (intra-annual reburns)
Some other studies that have aggregated pixels into fire events from the MODIS burned area 
product have aggregated the input data to a yearly time-step [34,35], taking either the earliest 
or latest burn date in the case of pixels that burn twice in one year. This assumes a minimal 
occurrence of pixels that actually burn twice in one year (e.g. the land burns first in spring and 
then again in fall). Aggregating the monthly data to yearly time steps makes the processing of 
the data much less complex and computationally costly (i.e., it allows for a 2-dimensional 
moving window). However, aggregation at a yearly timescale presents two problems. First, the 
occurrence of pixels that burn more than once within a year would result in separate events 
being collapsed, resulting in an underestimate of burned area for the study area. Second, fires 
that burn from one year to the next become arbitrarily split into two events. 

Prior efforts have justified ignoring intra-year or intra-season reburns based on an occurrence of
around 1% [34,35]. However we found that when we examined the study area tile by tile, some 
areas experienced rates of intra-year reburns much greater than 1%. To investigate whether 
reburned pixels would have a confounding effect on our data, we examined the occurrence of 
pixels that burned multiple times per year for each of the tiles overlapping CONUS for each 
year. We converted each monthly tile in CONUS to binary (1 for burned, 0 for unburned), 
summed each monthly pixel per year and calculated the percentage of pixels that burned more 
than once per year, per tile. For 2001 - 2018 for all of CONUS except the tile that contains 
Florida, there were a total of 12,676 pixels that burned more than once in a given year, or about 
0.48% of pixels. The tile that includes Florida (h10v06) had a rate of 5% (sd 2.3%) of pixels that  
burned multiple times per year (Table 2). We suspect that this high reburn occurrence is due to 
the year-round growing season combined with year-round occurrence of lightning strikes and 
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human ignition pressure. Intra-year reburns would present a problem if this algorithm were 
expanded globally, because there are many ecosystems, especially in the tropics, with year-
round growing seasons combined with year-round anthropogenic ignition sources. 

Because of the relatively high reburn occurrence, and also due to concern over segmenting 
winter fires into multiple events, we decided not to aggregate the input rasters by year or fire 
season. Instead, we created a space-time cube for each monthly tile for the entire time series, 
where the julian day of the year for each pixel in each month layer was converted to a number 
along a continuous series starting on January 1, 1970.

Table 2. Number of reburned pixels per year, per tile calculated for 2001-2018 from the monthly 
MODIS MCD64 Burned area product.

Tile Mean Reburn % Std Reburn %
h08v04 0.17 0.18
h08v05 0.35 0.27
h08v06 1.35 1.05
h09v04 0.36 0.30
h09v05 0.23 0.19
h09v06 0.73 0.47
h10v04 0.12 0.09
h10v05 0.67 0.29
H10v06 (Florida) 5.12 2.31
h11v04 0.35 0.33
h11v05 0.32 0.35
h12v04 0.35 0.61
h13v04 0.32 0.29
Total (excluding 
h10v06) 0.48 0.55

c. Defining events with a flexible, fast algorithm 
We created an algorithm that automatically downloads, processes, defines events and calculates
summary statistics for the entire CUS in 30 minutes on a normal laptop. To define events, we 
used a 3-dimensional moving window to aggregate burned pixels into distinct events. The 
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algorithm takes as input a spatial variable, representing the number of pixels, and a temporal 
variable, representing the number of days, within which to group burn detections. It then 
aggregates by assigning each burned pixel an event identification number. 

The data processing script downloads the entire time series of HDF files from the ftp server, 
extracts the burn date layer from each monthly tile, and adds them to a 3-dimensional netCDF 
data cube. We used this data structure to maximize efficiency and speed. The event perimeter 
script reads the netCDF file for each tile, where each band represents one month, and for each 
burned pixel the date of fire detection is represented as the number of days since January 1, 
1970. The netCDF file is converted into a three-dimensional array and the moving window 
traverses the array. To avoid unnecessary computation, we did not check cells in which there 
was no burned area assignment throughout the study period.

For each cell where at least one fire detection occurred, the program creates a mask identifying 
all burned pixels that fall within the spatial and temporal range of the current cell. If the current 
cell is already part of an existing event, any new burned pixels are assigned the event ID for that
event. If it is a new event, the current cell and all overlapping cells are given the next sequential 
event ID. If there are multiple event IDs within the mask, two perimeters have grown together 
and they are merged into the first event ID. After the event perimeters are delineated within 
each tile, all event perimeters that potentially overlap with an adjacent tile are flagged. After all 
tiles are processed, the flagged events are partitioned and those that overlap spatially and 
temporally are merged. Finally, events across all tiles are merged into a final dataset and given a
new sequential event ID.

d. Sensitivity analysis: identifying the optimal spatiotemporal parameters for delineating fire events 
In order to find which combination of spatial and temporal variables outputs best defined fire 
events for CONUS, we assessed how well the FIRED outputs matched fire perimeters from 
MTBS [38]. MTBS is a dataset of fire perimeters from 1984-2016 derived from Landsat satellite 
data. It has a minimum size threshold of 404 ha in the western US and 202 ha in the eastern US 
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(separated by the 97th meridian). It documents 21,673 fire events throughout the entire US, and 
13,741 in the overlapping study area and timeframe, beginning in 2001. One problematic feature
of the MTBS data for this comparison is that fire complexes are not dealt with uniformly. Fire 
complexes are “two or more individual incidents located in the same general area which are 
assigned to a single incident commander or unified command [40].” In some cases each fire 
patch is assigned its own ID number and is represented as a single perimeter, and in other cases
these complexes are lumped into a multipolygon with a single ID number. To address this 
issue, we split all multipolygons into single polygons, assigned unique ID numbers to each 
polygon, and then calculated the area for each individual polygon. This way, our sensitivity 
analysis would objectively assess how individual polygons matched, without the confounding 
factor of aggregated multipolygons.

We ran the fire event classifier for all spatiotemporal combinations between 1-15 days and 1-15 
pixels (463 - 6,945 m), resulting in 225 spatiotemporal combinations for CONUS. For each 
combination we matched the FIRED events that were >404 ha in the west and >202 ha in the 
eastern US to the associated MTBS wildfire perimeter.

An accuracy assessment was conducted for each spatiotemporal combination of the FIRED 
events, based on how well they matched the MTBS events. For each unique fire polygon in the 
MTBS database, we extracted the ID numbers for each FIRED event overlapping the MTBS 
polygon. Then, for each unique FIRED event, we extracted each MTBS ID that overlapped. We 
then calculated the ratio of the number of unique MTBS events that contained a FIRED event 
divided by the number of unique FIRED events that contained at least one MTBS event, with 
the optimum value being one. We used this ratio to approximate the spatio-temporal 
combination that minimized both over- and under-segmentation of the FIRED events based on 
known MTBS fire perimeters.   

Based on the ratio that minimized both over- and under-segmentation, we estimated an optimal
combination for the US of 5 pixels (2315 m) and 11 days. We calculated commission and 
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omission errors for both the FIRED events and the MTBS events. 

e. Calculating statistics for each event, and daily statistics within events
Once the optimal spatial-temporal aggregation level was identified, we created two vector 
products for CONUS: one where individual pixels were aggregated to polygons representing 
each fire event, and one where individual pixels were aggregated to each date within each 
event. For the event-level vector product, we calculated ignition location and date, duration, 
spread rate (burned area/duration), burned area, date of maximum growth, area burned on the
dates of maximum and minimum growth (the date with the highest burned area per event), 
and the mean daily area burned for each event. We also extracted the mode of the International 
Geosphere-Biosphere Programme land cover classification from the MODIS MCD12Q1 
landcover product for the year before the fire [41], and the Community for Environmental 
Cooperation’s level 1-3 ecoregions [42], for each event (Table 3). For the daily-level vector 
product, we calculated the daily burned area, cumulative burned area per day, days since 
ignition, mode landcover per day, and mode ecoregion per day, in addition to the metrics 
calculated for the event-level product (Table 4). In addition, the algorithm has a third output: a 
table with each burned pixel as a single row, with coordinates, burn date, and the event 
identification number derived from the algorithm. This raw output is provided so the end-user 
can use and manipulate the raw data in any way they see fit.

Table 3. Attributes included in the event-level FIRED product.

Attribute Units
Ignition date, day of year, month, year, location
Duration days
Burned Area km2, ha, acres, pixels
Fire Spread Rate pixels/day, km2/day, ha/day, acres/day
Maximum, minimum, and mean growth rate km2/day, ha/day, acres/day, pixels/day, date

(max only)
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Land Cover (for the year before the fire) mode land cover classification / event
Ecoregion mode ecoregion, Levels 1-3 

Table 4. Attributes included in the daily-level FIRED product

Attribute Units
Daily Burned Area km2, ha, acres, pixels
Daily Landcover mode land cover classification / day
Daily Ecoregion mode ecoregion, Levels 1-3 
Cumulative Burned Area km2, ha, acres, pixels
Ignition Date (of the whole event) date
Last Burn Date (of the whole event) date
Duration (of the whole event) days
Event Day days from ignition date
Percent Total Area percent (%)
Percent Cumulative Area percent (%)
Fire Spread Rate (of the whole event) pixels/day, km2/day, ha/day, acres/day

f. Comparison of FIRED events to MTBS events and the National Interagency Fire Center estimates

In order to understand how well the FIRED algorithm delineated event size, we compared the 
estimates of burned area from FIRED events to the estimates of burned area for MTBS events for
the subset of events that were captured by both products. Because MTBS does not account for 
unburned patches within a fire perimeter when they calculate burned area, many burned area 
estimates reported by MTBS are likely overestimations. Thus, comparing the area burned by the
two products represents a trade-off between imperfect satellite detection from MODIS and 
imperfect burned area reporting in the perimeters that drive selection by the MTBS product. 
With those caveats in mind, we co-located those events captured by both products (i.e. they 
overlapped in space and time), and compared estimated area burned at the event level using 
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two approaches. First, to compare all fire events, we created a linear regression model where the
FIRED-determined area burned predicted MTBS-determined area burned. Second, to 
understand how that relationship varied with size class, we binned the fire events into 50 equal 
size classes, and created a linear model on each subset. The expectation was that FIRED-based 
burned areas would be consistently less than the MTBS-based burned areas. In addition, due to 
lower burn detection by MODIS for smaller fires [32], we expected the models at smaller size 
classes to explain less of the variation than for large sizes. We also acquired the total yearly 
burned area and fire counts from the National Interagency Fire Center (NIFC) for CONUS to 
understand how FIRED and MTBS products compared to the aggregation of all reported 
wildfires (note, NIFC does not include intentional land use fires or prescribed burns).

g. Data and code availability
Code for the python command line interface used to download data, classify events, calculate 
event- or daily-level statistics, and write tables and shapefiles is available as the “firedpy” 
python package at www.github.com/earthlab/firedpy. R code for the analysis presented here is 
available at https://github.com/earthlab/modis-fire-events-delineation. R code for the 
sensitivity analysis is available at www.github.com/admahood/fired_optimization. Data is 
available at CU Scholar [DOI: https://doi.org/10.25810/3hwy-4g07].

3. Results

a. Classification accuracy assessment 
The MODIS-derived events had a 55% omission and 62% commission error, compared to the 
MTBS reference dataset, based on a confusion matrix that compares when FIRED and MTBS 
identify the same events (Table 5). An additional 24,163 events were detected below the MTBS 
size thresholds and were not included in these calculations. 

CE=
FIREDtrueMTBSfalse

(FIRED trueMTBS false+FIRED trueMTBS true)
=

11,412
(11,412+7,054)

=0.62
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OE=
FIRED falseMTBSTrue

(FIRED falseMTBS true+FIRED trueMTBS true)
=

8,721
(8,721+7,054)

=0.55

Table 5. Confusion matrix for the MODIS MCD64-derived events. The MTBS event-size 
threshold is 404 ha in the western US, 202 ha in the eastern US.

MTBS True MTBS False 
(Commission)

MTBS False (Commission)

FIRED True 7,054 11,412 (over threshold 
only)

24,163 (under threshold 
only)

FIRED False 
(Omission) 

8,721 - -
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Figure 1. A comparison of the spatial distribution of fire events from the FIRED and MODIS 
products from 2001-2016 shows a similar distribution of fire events and burned area in general, 
but the FIRED algorithm picks up many more events and burned area in the midwest, 
southeastern US and eastern Washington. 

b. Comparison to MTBS:
There were approximately 3.3 times more wildfire events and 65,000 km2 (18%) more burned 
area captured in the FIRED product compared to MTBS. The FIRED burned area represents 97%
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of the National Interagency Fire Center (NIFC) reported totals from 2001-2016 (Table 6). The 
relationship between area burned for the FIRED events and the MTBS events was strong (R2 = 
0.92, Figure 2A), and the area reported by MTBS was always higher than the FIRED events (the 
points are all above the 1:1 line in Figure 2A) at the event level. As event size increased, the R2 
improved from below 0.6 for fires below 50,000 acres, to above 0.8 for fires over 70,000 acres 
(Figure 2b). The MODIS MCD64A1 burned area product consistently underestimated burned 
area reported by MTBS for fires below 100,000 hectares. This consistent underestimation is not 
necessarily a flaw with the FIRED product, rather it is partially due to the fact that MTBS does 
not account for unburned patches within a fire perimeter when they calculate burned area, and 
burned area is consistently overestimated by MTBS. The burned area captured by MODIS 
MCD64A1, and thus FIRED, was much closer to the NIFC totals (Table 6). This is likely because
the MCD64A1 product captures many more small fires than MTBS. However, the MCD64A1 
product does not generally capture the smallest fires, below 12.6 ha [32]. There is a dramatically
larger count of individual events reported by NIFC, which includes many fires as small as 0.4 
ha.

Table 6: Fire events and burned area by level one ecoregion, 2001-2016. National Interagency 
Fire Center statistics compled from https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html

MTBS FIRED NIFC

Level 1 Ecoregions Events
Burned Area

(km2)
Events

Burned Area
(km2)

Events
Burned Area

(km2)
Eastern Temperate Forests 5,644 47,116 20,556 103,615 - -

Great Plains 3,350 94,068 11,818 112,907 - -

Marine West Coast Forest 22 379 249 978 - -

Mediterranean California 368 17,971 1,432 21,251 - -

North American Deserts 1,739 80,430 5,689 72,012 - -

Northern Forests 134 2,130 141 2,086 - -
Northwestern Forested 
Mountains

1,614 81,189 3,815 68,006 - -

Southern Semi-Arid 159 5,494 260 4,459 - -
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Highlands
Temperate Sierras 431 19,374 447 13,674 - -

Tropical Wet Forests 266 4,818 1,394 19,424 - -
Conterminous US 13,727 352,967 45,801 418,414 1,153,896 432,733

Figure 2: A comparison of burned area for individual fire events delineated by both products. 
Panel A shows the relationship between area burned for MTBS and FIRED events. While the 
relationship is generally strong (R2 = 0.92 for all events), it is weaker for smaller fires. For 
panels B and C we binned the data into 50 equal size classes (each bin spans ~ 5000 hectares), 
and ran a linear regression (MTBS burned area predicted by MODIS burned area) on each bin. 
Panel B shows the R2 values, which do not consistently stay above 0.8 until about 70,000 
hectares. Panel C shows the relationship between the slope of the regression line for each size 
class bin, illustrating that the MODIS MCD64A1 burned area product consistently 
underestimates burned area for fires below 100,000 hectares. 

d. Ecoregion comparisons between FIRED and MTBS
One of the primary differences between the two products is the detection of small fires, which is
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a function of the ~200-ha and ~400-ha cut-off for the eastern and western US in the MTBS 
product [38]. In the east and central US, where fires are generally smaller, FIRED captured 
37,724 fires while MTBS captured 11,008 fires (Figure 1, Table 5). There were several ecoregions 
where FIRED captured more events, but less burned area (e.g., in North American Deserts; 
Table 5). This is either due to the lack of smaller events in the MTBS dataset, or that MTBS does 
not delineate unburned patches within its fire perimeters, and so can overestimates burned area
for many fires (e.g., see Figure 3). 

Ecoregions with the highest maximum fire spread rates were those with large areas of 
grasslands - the Great Plains and desert ecoregions (Table 7). However, the three ecoregions 
with the highest mean fire spread rates were all forested ecosystems - the temperate Sierras, 
southern semi-arid highlands, and northern forests, and these ecoregions also had the highest 
variability in fire spread rates.

Table 7. Summary statistics of fire spread rate by ecoregion.

Fire
Events

Fire Spread Rate (ha/day)

Level 1 Ecoregions n Max
Lower
95%tile

Mean
Upper
95%tile

SD SE

Eastern Temperate Forests 20,556 2,756 9 43 119 60 0.4
Great Plains 11,818 13,584 12 95 279 293 2.7
Marine West Coast Forest 249 301 7 42 143 45 2.8
Mediterranean California 1,432 5,883 11 126 497 329 8.7
North American Deserts 5,689 14,620 11 137 481 487 6.5
Northern Forests 141 2,442 10 144 614 312 26.3
Northwestern Forested 
Mountains

3,815 3,878 10 105 415 233 3.8

Southern Semi-Arid Highlands 260 1,755 17 162 550 244 15.2
Temperate Sierras 447 6,365 16 194 627 541 25.6
Tropical Wet Forests 1,394 1,220 8 45 117 85 2.3
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Figure 3. Comparison of A) FIRED and B) Global Fire Atlas delineated events for the Sour 
Orange fire (started February 9, 2007), the Moonshine Bay fire (started February 24, 2007), and 
a third unnamed event, FIRED event #29790 (started December 28, 2007, and continued into 
March of 2008). The FIRED product joins the two intra-year burns (#25211) and delineates a 
third event (#29790) that reburns some of the same pixels. The dark outlines, bold and dashed, 
show the MTBS fire perimeters for the Sour Orange and Moonshine Bay fires. Note that MTBS 
does not include unburned patches within perimeters. Panel B) shows the Global Fire Atlas 
(with an abridged legend showing 3 of 57 colors), which segments the same MODIS burned 
area pixels into 57 events and no delineation of overlapping reburns. 

4. Discussion

Remote sensing has fundamentally changed our ability to quantify fire, and has consequently 
challenged how we define fire events. The active fire, burned area, and fire radiative power and 
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severity products [12,14,15,17,18,27,38] have fundamentally changed how we can conceptualize
fire regimes. Key to translating this wealth of information is defining fire events in space and 
time so that we can understand how modern fire regimes are changing. Parallel efforts such as 
the Global Fire Atlas (based on the MODIS MCD64 product [27]) have converged on 
identifying the same need, with a key motivation to improve global fire modeling [30]. We 
argue that the need is more profound, that in order to understand how fire regimes are 
changing at regional to global scales we need an open, and flexible methodology to identify 
events and integrate fire data across sources based on these events. This event-based approach 
could be utilized to derive events in any satellite product to build a more complete picture of 
fire.

There are several beneficial aspects of our approach that yield more appropriate delineation of 
multi-year events, small fires, complexes, and intra-annual reburns, while also providing key 
output metrics, e.g., fire spread and pre-fire landcover. The primary difference between FIRED 
and other algorithms is that FIRED uses the entire monthly time series as a space-time cube 
input, upon which a 3-dimensional moving window is applied, compared to aggregating fire 
seasons or years into one layer upon which a 2-dimensional moving window is applied. This 
enables proper identification of intra-year reburns (Table 1) and ensures that fires at the end or 
beginning of months or years are not arbitrarily split into multiple events (Figure 3). Second, 
because the FIRED database is based on the MODIS MCD64 product, it includes fire events 
theoretically as small as 4m2, albeit these are rare detections (~90% omission error) [32]. Small 
fire events greater than 12.6 hectares are more likely the events that are captured in the MODIS 
MCD64 product (10% omission error) at the size of a MODIS pixel (~500 m) [32], and therefore
in FIRED. The MTBS database, in contrast, has a minimum threshold of 202 ha east and 404 ha 
west of the 97th meridian. Having small fires expands our ability to understand how fire size 
and burned area are changing, beyond just the large events [43]. Smaller events are difficult to 
capture systematically but we know these events can be incredibly important in the US, 
contributing large additional burned areas and emissions [20,44]. Third, the daily-level product 
preserves the daily-scale information (i.e., daily polygons and ensuing metrics) for the larger 
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events. This elucidates whether large fire events are actually complexes of smaller 
independently ignited fire patches, or if the large event is truly the product of a single ignition 
location (e.g., the Rim Fire in figure 4). This also allows users to link daily-level burned area 
data within a defined event to daily or even sub-daily covariates (e.g., climate variables). 
Fourth, this product provides several attributes that are new pieces of information, refined 
across CONUS. For example, fire spread rate is a unique attribute, derived from events, which is
a critical piece of information not easily accessed in other datasets (e.g., MTBS or ICS-209s). 
FIRED also provides the landcover for the year before the fire for each event, a coarse metric of 
fuels information, and critical for understanding ecosystem impacts and resilience. This annual 
landcover information could enable exploration of when fire precipitates rapid vegetation 
transitions, particularly as woody plant-dominated systems may lose their resilience to fire 
against a backdrop of warmer and drier climates [45,46]. Last, FIRED is also the only 
automated, satellite-derived product we are aware of that captures intra-annual reburns. Intra-
annual reburns will perhaps become more prevalent in the future as the decline of resilience in 
some ecosystems leads to an acceleration of disturbance regimes [47,48], particularly if novel 
ecosystems result from invasive, flammable plants [7,49].  

Another key advantage of this approach is that the algorithm is open and flexible; we hope for 
community input and we expect it to be improved over time. The spatio-temporal criteria can 
be altered based on other information, regionally-specific fire perimeters such as Canada’s 
National Burned Area Composite (https://cwfis.cfs.nrcan.gc.ca/datamart), or known 
delineations of intentional land use fires or prescribed burns. Further, we anticipate that this 
algorithm has wide applicability to other fire products and other efforts to build events based 
on any geospatial data that has both spatial and temporal information. Previous studies, 
including this team’s previous efforts [7], have not made their workflow and code publicly 
available, limiting the potential to facilitate community development of an integrated, evolving 
global fire database.

With the plethora of remote sensing data about fire and fire effects, there is a great need to 
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delineate events at large regional and global scales. There are at least three other recent studies 
that have created fire events from the MODIS burned area product (Table 1), two of which 
[34,36] have created global fire event databases. In addition to the global efforts, Frantz et al. 
[35] created an algorithm based on a study area in sub-Saharan Africa which uses a top–down 
multilevel segmentation strategy that starts by defining potential ignition points and gradually 
refines the individual object membership. All three efforts use an approach that starts by 
identifying potential ignition points and grows objects from the ignition point using only 
adjacent pixels. The code for the algorithm created by Andela et al. [34] is not publicly available
and the code created by Frantz et al. [35] is available upon request. Laurent et al. [36] created a 
publicly available database and the code is also available upon request. Their output data 
contains what they term fire patch functional traits, including patch area and other 
morphological features, but does not preserve daily fire spread information or polygons 
containing the perimeter shapes of the derived events. Our approach differs in that we use a 
spatiotemporal window that can capture isolated burned pixels that may be part of the same 
event, but may be isolated because of the inability of the MODIS sensor to detect burned area in 
the area between patches due to cloudiness, low vegetation density, low severity, or unburned 
patches (i.e., fire refugia) that are important elements of an event. It is worth noting that the 
spatial-temporal thresholds we derived (i.e., 11-day window and a 5-pixel distance) are much 
greater than those used in most previous studies (e.g. [12,34] but see Frantz et al. [35]), leading 
to less artificial truncation, or oversplitting, of events. For example, the Rim fire which occurred 
in California in 2013 was delineated into more than 10 separate events by the Global Fire Atlas 
algorithm, whereas our algorithm delineated a single event that more closely matches the MTBS
delineation (Figure 4). Future improvements could include: i) validation with smaller events, 
such as those contained in the US-based National Incident Feature Service dataset, formerly 
Geomac [50] or others; ii) estimates of uncertainty around start and end dates of the fire events; 
iii) regionally-varying thresholds based on fire regime characteristics; and iv) development of 
an optimization process that does not rely on already existing fire perimeter polygons. In the 
current study, we were able to use the MTBS database to define the optimum spatial and 
temporal parameters for delineating events in CONUS. Unfortunately, these types of data do 
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not exist for many parts of the world. We attempted to scale the FIRED product to the entire 
globe and found that our spatial and temporal parameters were inappropriate, particularly for 
the savanna biome where very high proximity of fires in space and time led to severe 
aggregation of events. This highlights a substantial need for global fire perimeter data [51], or 
development of an optimization approach that does not rely on these external data.

Figure 4: The 2013 Rim Fire, which lasted over a month and was more than 100,000 ha in total 
size according to incident reports, as delineated by the A) FIRED event product; B) global fire 
atlas C) FIRED daily event product; and D) MTBS. The optimized spatial-temporal criteria we 
used allowed us to correctly classify it as a single event, while the global fire atlas has 
segmented the Rim Fire into 14 separate events. The FIRED ignition point is estimated as the 
average location of all pixels occurring on the first day of the event.

This is a unique moment in the history of fire science, given the abundance of fire data across 
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spatial scales, that requires the fire science community to better coordinate efforts on fire data 
harmonization challenges and opportunities. We see great potential to build a community-
driven, fire data infrastructure that we term OneFire. OneFire is a coordinated architecture that 
would enable a community of researchers and stakeholders to use, repurpose, and contribute to
fire data, code, and workflows. The vision for OneFire is that it will be a coordinated, 
community-inspired data architecture that connects and integrates the many global, national, 
and regional fire databases. This is no small task, but integrating these datasets is key to 
unlocking a transformation in fire science and rapidly accelerating new discoveries about why 
fire regimes are changing and how societies and ecosystems are vulnerable. There is an 
enormous amount of data and work relevant for fire science that could be leveraged, if only it 
was open, reproducible, and scalable. For example, we anticipate that a newly published ICS-
209-PLUS dataset that is an integrated database of over 120,000 incident command reports 
could be connected to MODIS FIRED events to join physical attributes with social impact and 
response on a daily scale [52]. Social media information around wildfires could also be 
leveraged, and provide a view of social response that before would not have been possible 
[53,54]. Additional satellite sensors and their derived products, e.g., active fire, could be 
leveraged to expand the detections per event and add other key properties like fire radiative 
power. Key elements of a vision for OneFire include: i) identified fire events across many 
datasets utilizing the FIRED event-builder algorithm or other approach the delineates events in 
space and time; ii) integration workflows that then connect those same events across data 
sources to build a fuller suite of attributes around commonly identified events; iii) data and 
computational infrastructure that allows for community contributions of data, code, and 
compute environments; iv) formal linkages to other important climate, environment, and social 
data sources that provide insights into driving forces or responses; and v) support for 
community building, engagement, and training that facilitates large, diverse team science. 
Ultimately, no single sensor is going to provide all the information we need about fires, and we 
will never anticipate all the ways that such an integrated source of fire information would get 
used. OneFire would help us build a fuller, global picture of fire. 
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5. Conclusions

There is a clear need to derive events from remotely sensed detections of fires, as event 
perimeters are a key tool for exploring how the spatio-temporal properties of fire regimes are 
changing [55–57] and how resilience to fire is changing [49,58,59]. Further, there are dozens of 
fire products available, for the US and globally (Table 1), that could, if combined and 
harmonized, shed new insights on the drivers and consequences of changing fire. Delineating 
fire events is key to this process, and we argue that this US database and algorithm offer the 
opportunity to begin to build OneFire, a community data-integration effort for fire science. No 
one research group can predict the variables that will be needed for all studies, and there is no 
one satellite that captures all the needed information about fire. We envision that our algorithm 
will be optimized at different scales to best capture regional fire size distributions. We also 
envision that this algorithm can be used across any satellite-based fire product, from active fire 
detections to burned area products, and particularly new efforts, such as the BAECV product or 
VIIRS. Moreover, this algorithm can be used with any spatiotemporal data and is not 
constrained to fire data. As other efforts are built to understand natural hazards, these efforts 
may help to better delineate the spatial and temporal dimensions of floods, hurricanes, disease 
outbreaks, and other events. The fire science community can better harmonize fire observations 
for a larger network of researchers and practitioners who need this information to better help 
society more sustainably live with fire.
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