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Abstract 15 

 16 

The availability of whole genome sequences was expected to supply essentially unlimited data 17 

for phylogenetics. However, strict reliance on single-copy genes for this purpose has drastically 18 

limited the amount of data that can be used. Here, we review several approaches for increasing 19 

the amount of data used for phylogenetic inference, focusing on methods that allow for the 20 

inclusion of duplicated genes (paralogs). Recently developed methods that are robust to high 21 

levels of incomplete lineage sorting also appear to be robust to the inclusion of paralogs, 22 

suggesting a promising way to take full advantage of genomic data. We discuss the pitfalls of 23 

these approaches, as well as further avenues for research.  24 



 3 

The search for orthologs 25 

 26 

The business of phylogeny-building has been transformed by the availability of whole genome 27 

sequences (reviewed in [1]). Indeed, the promise of “phylogenomics” was access to many 28 

thousands of loci [2]. However, the data requirements of most phylogenetic inference methods—29 

single-copy genes present in almost all species sampled (Figure 1A)—have meant that a growing 30 

number of phylogenomic studies have actually used very small amounts of data. For instance, in 31 

their dataset of 76 arthropod genomes, Thomas et al. [3] found no genes that were single-copy 32 

and present in all species. This study is not unique: even with whole-genome data, as the number 33 

of species sampled goes up, the number of single-copy genes found in all taxa goes down [4]. 34 

 35 

Phylogeny estimation has long relied on the identification of single-copy orthologous genes, 36 

filtering out paralogous genes found in multiple copies in one or more species (Box 1). Indeed, 37 

when Fitch [5] introduced the terms ortholog and paralog it was in the context of species 38 

phylogeny estimation: “Phylogenies require orthologous, not paralogous, genes.” This sentiment 39 

is echoed repeatedly in the literature [6,7], based on the belief that, since orthologous genes are 40 

related by speciation events alone, their relationships should more accurately reflect the species 41 

phylogeny. Similar claims are made about the privileged use of orthologs in protein-function 42 

prediction [8–10]. 43 

 44 

However, accurate methods for inferring species trees using both orthologs and paralogs were 45 

proposed more than 40 years ago [11], and efficient software implementing these approaches has 46 

been around for at least 20 years [12]. Methods using orthologs and paralogs work because gene 47 

trees containing duplication events also include all of the speciation events that follow (Figure 48 

1B). While each duplication event does add a branch not found in the species tree, it also doubles 49 

the amount of information contained about subsequent speciation events. Most significantly, 50 

recent methods developed for phylogeny inference using orthologs [13,14] turn out to be highly 51 

accurate and extremely efficient when applied to datasets including paralogs. Although the 52 

application of these approaches to such datasets is just beginning, their promise for 53 

phylogenomics is clear. 54 

 55 
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In this review, we discuss ways to combat the limitation of single-copy orthologs by increasing 56 

the amount of data that can be used in phylogenomics, while still maintaining a high degree of 57 

accuracy. We first discuss the problem of gene tree heterogeneity, and how it affects the 58 

accuracy of species trees. Next, we review two broad approaches for increasing the amount of 59 

data used in phylogenomic inference: one that still includes only orthologs and one that includes 60 

both orthologs and paralogs. We also describe the newly developed phylogenetic methods that 61 

make both of these approaches possible. Finally, we identify some key topics to consider when 62 

inferring phylogenies in the presence of paralogs, including promising future areas of research on 63 

this topic. 64 

 65 

Gene tree heterogeneity and the problem of “hidden paralogy” 66 

 67 

Gene tree heterogeneity—a mismatch between the topology of a single region and the topology 68 

of a species—is now recognized as common in phylogenetics [15]. This heterogeneity may be 69 

due to a number of biological factors, including incomplete lineage sorting (ILS), introgression, 70 

and gene duplication and loss (GDL) [16], in addition to technical factors such as error in gene 71 

tree reconstruction. This heterogeneity has important consequences for species tree inference, as 72 

if it is not accounted for it can lead to an incorrect phylogeny. Methods developed to deal with 73 

multiple causes of heterogeneity can also help us to infer phylogenies from a broader set of loci. 74 

 75 

In particular, high levels of ILS can mislead many species tree methods, whether they apply 76 

maximum likelihood methods to concatenated alignments of all loci [17] or count gene tree 77 

topologies individually [18]. Partly because of these issues, methods that account for ILS when 78 

estimating species phylogenies have proliferated [19–24]. These gene-tree-based methods 79 

usually construct a separate tree for each locus (excluding the methods in refs. [20] and [23]), 80 

combining these trees together in a principled way to infer a species tree. As with most 81 

phylogenetic approaches, these methods were designed to use datasets consisting of only single-82 

copy orthologs, as they account only for ILS as a source of gene tree heterogeneity. Importantly, 83 

however, many of these methods also deal naturally with missing data; this will be key for 84 

several of the new approaches described below.  85 

 86 
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Gene duplication and loss leads to gene tree heterogeneity by adding duplication events to gene 87 

trees (Box 1). Such events are not expected in histories that follow only the species tree, so trees 88 

that contain more than one copy of a gene are generally removed from phylogenetic datasets. 89 

More insidiously, “hidden paralogs” [25], or “pseudo-orthologs” [26], contain only a single copy 90 

per species due to differential loss of duplicate copies across species (Figure 2) and can be 91 

mistaken for single-copy orthologs. The topologies inferred from pseudo-orthologs can differ 92 

from the species tree via a process that is rarely modeled by phylogenetic methods. 93 

 94 

Although they are much feared, few studies have actually evaluated the effects of including 95 

pseudo-orthologs on phylogenetic inference, and these found mixed results. Brown and Thomson 96 

[27] suggested that outlier loci supporting a contentious placement of turtles were paralogs, and 97 

that these had an extreme effect on Bayesian inference applied to a concatenated dataset. Many 98 

other studies have shown differences in the species tree inferred from datasets assembled using 99 

different orthology detection tools, differences that are possibly due to the inclusion of pseudo-100 

orthologs [reviewed in 6]. Some of these studies found substantial differences in the inferred 101 

trees [28], while others found minimal effects [29,30]. 102 

 103 

What is clear from the work briefly summarized here is that there are many causes of gene tree 104 

heterogeneity that have the capacity to mislead phylogenetic inference. With respect to 105 

increasing the types of loci that can be used in phylogenomics, we would like any approaches 106 

using these loci to be robust to the known problems caused by both ILS and hidden paralogy.  107 

 108 

Increasing data availability without including paralogs 109 

 110 

If only orthologous genes are required, there are multiple ways to increase the total number of 111 

loci used in phylogenetic inference. Below, we discuss two such approaches that can increase the 112 

amount of available data: relaxing filters for missing data (Figure 1C) and sampling lineage-113 

specific duplicates (Figure 1D).  114 

 115 

Sampling single-copy orthologs with missing data 116 

 117 
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Often, researchers require that all or most of their taxa are sampled for a locus to be included in 118 

phylogenetic inference. However, the actual effects of including missing data—i.e. loci for 119 

which no sequences exist in one or more species—remain unclear. In concatenated analyses, 120 

simulation studies have demonstrated that there are limited negative effects of missing data [31]. 121 

Other studies have argued that the issue is a lack of informative data rather than missing data per 122 

se [32,33]. Many empirical studies show little effect of including missing data [34,35], and often 123 

the positive effects of including a larger number of loci or sites seem to outweigh the negative 124 

effects of missing data [36,37].  125 

 126 

There has been a lot of recent work on the effects of missing data on gene-tree-based methods 127 

that can account for ILS [14,19,21,24]. Because these methods combine individual gene trees 128 

from each locus, they can naturally accommodate missing taxa in a subset of trees. Studies have 129 

shown that ILS methods can be robust to substantial levels of missing data, whether these are 130 

randomly or non-randomly distributed [38, 39, 40]. Note, however, that these results may break-131 

down in cases of extreme branch lengths [41,42]. 132 

 133 

Based on these considerations, one simple way to drastically increase the amount of data that can 134 

be used for phylogenetic inference is to relax missing data thresholds. For quartet-based methods 135 

such as ASTRAL [13], the minimum number of taxa required from each locus is four (Figure 136 

1C), as a four-taxon unrooted tree is all that is needed to specify phylogenetic relationships. 137 

Empirically, results of relaxing these thresholds can be dramatic. For example, Eaton and Ree 138 

[43] found that requiring a minimum of four taxa increased the number of loci available in a 139 

group of flowering plants nearly 9-fold compared to requiring that all taxa be sampled. The 140 

relative advantage gained by using these methods can only go up as more taxa are included in a 141 

dataset, though researchers should try to ensure that species are represented approximately 142 

evenly across loci to avoid cases where most of the signal for some branches comes from a small 143 

number of genes (e.g. [44]). 144 

 145 

Sampling orthologs that have lineage-specific duplication events 146 

 147 
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The requirement that only orthologs be sampled for phylogenetic inference does not mean that 148 

we must only include single-copy orthologs. Notably, there is no theoretical reason to exclude 149 

loci that have undergone lineage-specific duplications, as they can have many-to-one 150 

orthologous relationships with single-copy genes (Box 1). For example, in Figure 1D species-151 

specific duplications have occurred in lineages a and e. Since the two copies in each species are 152 

both orthologous to the gene copies in all other lineages, if we chose a single gene from each 153 

species the resulting gene tree would include only speciation events. There can be no gene tree 154 

heterogeneity induced by such a sampling scheme, even when there are more than two copies in 155 

each species. 156 

 157 

Surprisingly, this approach has rarely been used in phylogenetics research. The number of loci 158 

that could be included would greatly increase, but the computational burden would increase 159 

slightly, as well (Box 2). These numbers could be increased even further, too: there should be no 160 

negative effect on the inferred topology of including duplications specific to a pair of sister 161 

species. In other words, if one or more duplication events occur in the ancestor of a pair of 162 

species, sampling a single copy from each of these species cannot induce gene tree 163 

heterogeneity. This occurs because there is only a single way this pair can be related, and such 164 

gene tree invariance cannot be ensured for duplicates ancestral to three or more species. Though 165 

the inclusion of duplicates specific to a pair of sister species should not affect the inferred 166 

topology, it could affect estimates of terminal branch lengths (see section on “Branch lengths” 167 

below). Broadening sampling to include these genes would lead to a further increase in the 168 

number of loci available for phylogenetic inference.  169 

 170 

Estimating species trees in the presence of paralogs 171 

 172 

In the methods described thus far we have still limited ourselves to analyses involving only 173 

orthologous loci. If we relax this restriction even more, we can again greatly increase the number 174 

of loci to be used. Below, we review five general approaches for reconstructing species trees in 175 

the presence of paralogs. We largely go through these methods in the chronological order in 176 

which they appeared in the literature, spending the most time at the end on promising new 177 

methods. 178 
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 179 

Gene Tree Parsimony 180 

 181 

The earliest methods to infer species trees in the presence of gene duplication and loss used gene 182 

tree parsimony (GTP) [11,45,46]. In these approaches the aim is to find the species tree with the 183 

minimum “reconciliation” cost [47] to a collection of input gene trees; i.e. the species tree that 184 

minimizes the distance to all gene trees. Reconciliation costs are calculated based on explicit 185 

biological causes of gene tree heterogeneity, including, but not limited to, GDL. Some software 186 

packages calculate reconciliation costs based on minimizing duplications and losses 187 

[11,46,48,49], while others focus completely on minimizing the number of differences induced 188 

by ILS [50,51], or allow users to choose among these reconciliation costs [52]. Recognizing that 189 

these processes do not act in isolation, recent approaches consider both GDL and ILS [53], with 190 

some additionally incorporating introgression [54,55]. Although these approaches appear to deal 191 

with ILS, they do not completely account for very high levels of ILS when inferring the species 192 

tree [56], and therefore may give misleading results in such cases. 193 

 194 

Robinson-Foulds-based methods 195 

 196 

The Robinson-Foulds (RF) distance between two trees measures the number of branches that 197 

must be removed, and the number of subsequent branches that must be added to make them have 198 

the same topology [57]. RF species tree methods try to find the species tree that minimizes the 199 

RF distance to a collection of input gene trees [58]. Although this is a similar approach to gene 200 

tree parsimony, RF-based approaches make no assumptions about the biological processes 201 

leading to heterogeneity between the gene trees and the species tree, and there are therefore no 202 

options to apply different costs to different processes.   203 

 204 

Although RF-based methods as originally described were applicable only to input trees with no 205 

duplicates, interest in applying these methods to multi-copy gene trees (i.e. those with both 206 

orthologs and paralogs) led to several advancements that permitted the calculation of RF 207 

distances between them [59,60]. Chaudhary et al. [61,62] then introduced an approach for 208 

finding a species tree using multi-copy gene trees as input. Their method, MulRF, compares 209 
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favorably to GTP approaches [63], and has recently been improved by Molloy and Warnow [64]. 210 

RF methods appear to perform well under general conditions [63, 64], though, like GTP 211 

methods, they are not accurate under high levels of ILS [65]. 212 

 213 

Probabilistic Methods 214 

 215 

Several probabilistic approaches have been introduced for inferring species trees in the presence 216 

of gene duplication and loss, but these are often much more computationally intensive than GTP 217 

and RF methods. For example, PHYLDOG jointly estimates gene family trees, species trees, and 218 

the number of duplications and losses under a model of GDL by maximizing their likelihood 219 

given a set of alignments [66]. However, PHYLDOG does not consider other sources of gene 220 

tree incongruence (e.g. ILS) and the computational costs are high, preventing its application to 221 

large genomic datasets [63].  222 

 223 

De Oliveira Martins et al. [67] introduced guenomu, a probabilistic supertree approach to infer 224 

species trees in the presence of both ILS and GDL. Guenomu implements a hierarchical 225 

Bayesian model: it takes as input a posterior distribution of gene trees and uses a multivariate 226 

distance metric based on ILS and GDL to infer a posterior distribution of species trees. However, 227 

like PHYLDOG, guenomu is computationally intensive, and therefore neither approach truly 228 

expands the number of loci one could use in phylogenomics.   229 

 230 

Methods based on Neighbor Joining (and other clustering approaches) 231 

 232 

Neighbor Joining (NJ; [68]) and other distance-based approaches are popular methods for 233 

species tree inference using orthologs. Newer application of these approaches can accommodate 234 

ILS by calculating a distance matrix from a collection of gene trees inferred from separate loci, 235 

and then NJ or another clustering algorithm is used to estimate a species tree from this distance 236 

matrix. Distance methods applicable to gene trees can broadly be divided into two classes: those 237 

that construct distance matrices based on sequence distances and those that construct distance 238 

matrices based on internode distances. The former approach includes the methods implemented 239 

in STEAC [69] and METAL [70]. Methods based on internode distances include STAR [69], 240 
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NJst [14], and ASTRID [21]. Distance-based approaches have been proven to return the correct 241 

species tree under high levels of ILS [70–72]. 242 

 243 

Extending distance methods to cases including paralogs is straightforward, because distance 244 

matrices can be calculated as averages over multiple samples from a species. Application to 245 

datasets containing orthologs and paralogs has already been done using NJst [63,73] and 246 

ASTRID [74]. STAG [4] is another distance method introduced specifically to estimate species 247 

trees from multi-copy gene trees, though it requires that loci have no missing species. Testing the 248 

accuracy of distance methods using orthologs and paralogs, Chaudhary et al. [63] found that NJst 249 

was outperformed by methods based on GTP, RF distances, and probabilistic models. In 250 

contrast, Yan et al. [73] found that NJst performed comparably to quartet-based methods, and 251 

Legried et al. [74] found that ASTRID had similar or higher accuracy than all other methods 252 

evaluated.  Overall, distance-based methods appear to be a generally accurate and efficient 253 

method for inferring species trees using paralogs.  254 

 255 

Quartet-based Methods 256 

 257 

Methods to build species trees from quartet sub-trees have been around for some time [75–79], 258 

but have found renewed popularity due to the introduction of more accurate, more efficient 259 

algorithms. These methods scale well to genomic datasets and are robust to both high levels of 260 

ILS [80,81], and, as mentioned earlier, large amounts of missing data. ASTRAL [13,19,80] is 261 

among the most popular of these methods: it infers a species tree from a set of input gene trees, 262 

extracting quartets from them automatically, and finding the phylogeny that maximizes the 263 

number of shared quartet trees. ASTRAL was designed for use with single-copy orthologs, but 264 

can accommodate multiple haplotypes sampled within species (ASTRAL-multi [82]). In these 265 

cases, ASTRAL-multi effectively averages over haplotypes by sampling quartets with at most 266 

one sequence per species.  267 

 268 

Gene trees with paralogs in them take advantage of the same sampling scheme used by 269 

ASTRAL-multi, and perform very well because the most common quartet in multi-copy gene 270 

trees is still the quartet that matches the species tree (Figure 2; [73,74]). ASTRAL-multi has 271 
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multiple mathematical guarantees about its accuracy in the presence of both ILS and GDL, at 272 

least under some models [74], and simulation studies have also demonstrated its accuracy 273 

[73,74]. Most recently, a version of the software explicitly built for the inclusion of paralogs, 274 

ASTRAL-Pro, outperformed ASTRAL-multi, MulRF, and GTP methods [65].  275 

 276 

Quartet-based methods are also robust to the hidden paralog problem, as can be illustrated by an 277 

extreme example. Yan et al. [73] suggested that such methods should be accurate even if a single 278 

gene is randomly selected from each species for each gene tree and used as input to ASTRAL (a 279 

sampling scheme that has been referred to as “ASTRAL-ONE” [73,74]). In such a scenario, 280 

there are more combinations of sampled genes that result in pseudo-orthologs than in true 281 

orthologs (Figure 2B). However, one-third of the pseudo-ortholog combinations match the 282 

species tree topology, and the other two-thirds are split evenly between the two alternative 283 

topologies. Together, the orthologs and pseudo-orthologs matching the species tree ensure that 284 

this quartet is always the most common [74,83]; simulations show that with even a few hundred 285 

loci accurate species trees can be recovered using this approach [73]. Although the numbers of 286 

tree topologies given here only involve four species (including the outgroup) and one duplication 287 

event, they should hold for all larger trees since these can be deconstructed into quartets (cf. 288 

[84]). In biological scenarios involving similarly extreme gene loss, both orthologs and pseudo-289 

orthologs matching the species tree are more likely to be sampled because they require fewer 290 

losses to produce them than the pseudo-ortholog trees that do not match (Figure 2B). This makes 291 

the species tree even more likely to be accurately inferred using quartet methods. 292 

 293 

Because of their relative simplicity, ease-of-use, speed, accuracy, and robustness to multiple 294 

issues that confound other phylogenetic methods, quartet methods have become a mainstay of 295 

standard phylogenetic inference using single-copy orthologs. For all of the same reasons, they 296 

are likely to become widely used when sampling both orthologs and paralogs. We also suspect 297 

that methods related to ASTRAL that have not yet been evaluated under the inclusion of 298 

paralogs (e.g., [20]) will perform equally well under these conditions. 299 

 300 

Considerations when inferring phylogenies with paralogs 301 

 302 
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Although multiple of the methods discussed here ensure accurate inference of species tree 303 

topologies when paralogs are used, there are important caveats and implications that merit 304 

specific consideration. Below, we discuss several of these. 305 

 306 

Branch lengths 307 

 308 

Although topology estimates should not be biased by the inclusion of paralogs, the same is not 309 

true for branch lengths. When branch lengths are estimated as substitutions per site [85,86], the 310 

inclusion of pseudo-orthologs will force branches to be longer than they actually are (e.g. Figure 311 

2; [84]). Conversely, when branch lengths are estimated in coalescent units [13,24], the 312 

additional gene tree heterogeneity introduced by paralogs (hidden or not) will result in the 313 

underestimation of branch lengths. No matter what type of branch lengths are to be estimated, we 314 

recommend that the dataset used be restricted to orthologs. Thus, a reasonable approach would 315 

be to estimate a species tree topology using all genes, and then to estimate branch lengths on this 316 

topology with a dataset including only orthologs (allowing for sampling among species-specific 317 

paralogs; Figure 1D).  318 

 319 

Alignment  320 

 321 

One of the most error-prone, but underappreciated, steps in phylogenomics is alignment. 322 

Automated alignment of thousands of loci means that many errors can creep in, especially when 323 

non-homologous (alternative) exons are sampled from different species. Fortunately, there are 324 

good methods for identifying regions with low alignment quality (e.g. GUIDANCE2; [87]). A 325 

related problem involves deciding how to choose among lineage-specific paralogs (Figure 1D) in 326 

order to maximize alignment length while minimizing alignment error. One promising approach 327 

would be to co-opt methods designed to choose among alternative isoforms at a single locus: 328 

some of these try to pick the set of genes that are most similar in length across species to avoid 329 

the inclusion of non-homologous exons [88]. Combining such methods with tools that identify 330 

and filter unreliable portions of alignments [87,89–92] should minimize error. 331 

 332 

Polyploidy 333 
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 334 

Polyploidy is a special case of gene duplication and loss in which the whole genome is 335 

duplicated, and offers a particular challenge both to methods for identifying orthologs and to 336 

species tree inference. In autopolyploidy both sets of chromosomes come from the same species, 337 

and gene copies are paralogs that behave in much the same manner as the smaller duplication 338 

events described above. Therefore, the gene tree methods discussed here should not be misled by 339 

autopolyploidy.  340 

 341 

Allopolyploidy occurs when the chromosome number doubles via hybridization between species; 342 

the resulting gene copies are referred to as homeologs [93]. Since gene copies found in the same 343 

allopolyploid genome are related through speciation between the parental species, homeologs are 344 

not paralogs in the traditional sense. Similarly, there is not a single bifurcating species tree that 345 

describes relationships involving allopolyploids. While this makes it difficult to evaluate the 346 

effect of including homeologs on traditional species tree inference, gene-tree-based methods 347 

should identify one of the two potentially correct species tree topologies as the correct topology 348 

[e.g., 94].  349 

 350 

Detecting introgression 351 

 352 

Much less consideration has been given to the effect of including paralogs when attempting to 353 

detect introgression. The most commonly used phylogenetic methods for detecting introgression 354 

are based on the expectation that, for any quartet of species, the two minor topologies (i.e. the 355 

topologies that do not match the species tree) should occur at the same frequency; therefore, 356 

asymmetries between topologies can provide evidence for introgression [95–98]. We suggest 357 

here that, for methods that depend on the frequencies of minor topologies to detect introgression, 358 

the inclusion of paralogs should not bias inference. Consider the example shown in Figure 2: as 359 

discussed above, the most common topology matches the species tree. However, four topologies 360 

do not match the species tree. These four potential trees all require three lineage-specific losses 361 

(one in each taxon), and should occur at equal frequency under a model of GDL in the absence 362 

of introgression, similarly to under cases without duplication. Thus, methods for detecting 363 

introgression based on asymmetry in minor topologies should perform well in the presence of 364 
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paralogs. This proposal merits additional consideration, however, as does the effect of paralogs 365 

on additional methods for detecting introgression not discussed here. 366 

 367 

Concatenation 368 

 369 

To carry out a concatenated analysis, one gene copy must be sampled per species per locus and 370 

put into a single alignment. If the intention is to include only orthologs (whether single-copy or 371 

not), a small number of pseudo-orthologs can have an extreme, negative influence on 372 

phylogenetic relationships [27,99]. This occurs because pseudo-orthologs have internal branches 373 

that are longer than those of true orthologs (Figure 2B), giving them more phylogenetically 374 

informative changes. To minimize these potential problems, it may in fact help to instead include 375 

all of the data, rather than attempting to include only orthologs. We imagine here a sampling 376 

scheme similar to the approach taken in [73], where a single copy is randomly sampled per 377 

species (i.e. “ASTRAL-ONE”). Not only are more underlying tree topologies guaranteed to 378 

match the species tree topology, but the pseudo-orthologs matching the species tree have longer 379 

internal branches than those matching alternate topologies (Figure 2B). Thus, with enough data, 380 

the topology matching the species tree should be favored by concatenated analyses, even in the 381 

presence of pseudo-orthologs. While certainly not a standard phylogenetic analysis, we suggest 382 

that this may be a fruitful way forward in the future. 383 

 384 

Concluding Remarks 385 

 386 

Despite the massive amount of genomic data being collected across the tree of life, phylogeny 387 

inference is often restricted to a small portion of this data due to filtering for single-copy 388 

orthologs and minimal missing data. Recent work has demonstrated that several leading methods 389 

for species tree inference perform well in the presence of paralogs, suggesting a source of 390 

additional data for phylogenomic inference. Additionally, recent work has shown that missing 391 

data may not be as much of an issue as feared. Thus, the amount of data available for 392 

phylogenomic inference may be much larger than previously thought. Future work should 393 

consider branch length estimation when paralogs are present, as well as the potential effects of 394 

paralog inclusion on inferences of introgression.  395 
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Box 1. Types of homologous relationships and implications for phylogenetic inference 402 

 403 

 404 
Homologous loci share a common ancestor. Orthologous loci share a common ancestor due to 405 

speciation (e.g. a1 and b1), while paralogous loci share a common ancestor due to duplication 406 

(e.g. a1 and a3; [5]). Orthology relationships can be classified as one-to-one, one-to-many, and 407 

many-to-many based on whether speciation was followed by duplication in neither, either, or 408 

both lineages [100]. For example, b1 and c1, are one-to-one orthologs. These are the orthologs 409 

that are typically used in phylogenetic inference. Specifically, researchers target single-copy 410 

orthologs, which exist in only a single copy in all species considered. However, many-to-one or 411 

many-to-many orthologs may also be useful. Since the duplication event leading to paralogs a1 412 

and a3 occurred after the speciation event with b1, they have a many-to-one orthologous 413 

relationship. Such lineage-specific duplications should not affect phylogenetic inference because 414 

a1 and a3 are co-orthologous to b1 and c1, meaning that either copy has an orthologous 415 

relationship with b1 and c1. Similarly, a2 and a4 have a many-to-one orthologous relation to c2. 416 

The large numbers of complex many-to-many relationships that can arise (for instance, the 417 

relationship between a1, a2, e1, and e2 in Figure 1D) make ortholog group delimitation a 418 

difficult task, though these loci can still be used in many types of phylogenetic inference.  419 

420 
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Box 2. Identifying orthologous genes and sampling lineage-specific paralogs. 421 

 422 

Due to interest in identifying orthologs both for phylogeny reconstruction and for functional 423 

prediction, several methods for ortholog detection have been developed (reviewed in [100]). The 424 

most commonly used approaches for ortholog detection are graph-based approaches [100] which 425 

rely on the identification of reciprocal best hits (RBHs).This is based on the assumption that the 426 

two most closely related homologs between a pair of species should be orthologs. After RBHs 427 

are identified, some approach must be used to construct groups of orthologous sequences; for 428 

example, in OrthoMCL [101] a Markov clustering algorithm is used to identify orthogroups, 429 

which consist of orthologs and recent paralogs. Typically, for downstream phylogenomic 430 

inference, single-copy orthologs present in most species are extracted from these results. While 431 

lineage-specific duplicates need not be excluded from datasets for phylogenetic inference (see 432 

main text), it is not straightforward to extract these from the output of many graph-based 433 

approaches. The most obvious way to identify and include these genes is by reconstructing gene 434 

trees for all orthogroups, identifying lineage-specific duplicates, and selecting one copy per 435 

species for downstream inference. Some recently introduced branch-cutting methods can also 436 

sample such genes from orthogroups containing duplicates. Yang and Smith [102] consider 437 

several different branch-cutting algorithms to extract orthologs appropriate for phylogeny 438 

estimation, and these considerably increase the number of genes available for phylogenetic 439 

inference. For example, in a Hymenoptera dataset analyzed by these authors, the number of 440 

orthologs present in at least eight taxa increased from 4,937 using only single-copy-orthologs to 441 

9,128 under one branch-cutting technique [102]. Thus, even when including paralogs is not 442 

desirable, orthologs can be extracted from many datasets not traditionally considered in 443 

phylogenetic inference. 444 

445 



 18 

Figure 1. Sampling orthologs and paralogs  (Key Figure) 446 

 447 
Figure 1. Sampling orthologs and paralogs. There are several potential sampling strategies in 448 

phylogenetic inference. Here, we illustrate a few of these, although these categories are not 449 

mutually exclusive. (A)  Phylogenies can be constructed from complete sampling of single-copy 450 

orthologs. (B) Phylogenies can be reconstructed from sets of paralogs. The tree shown has a 451 

single duplication event in the ancestor of all species. (C) Phylogenies can be constructed from 452 

genes with missing data, either due to incomplete sampling or to gene loss. (D) Phylogenies can 453 

be constructed from loci with lineage-specific duplications. Duplications in lineages a and e 454 

result in two copies in each of these species in the tree shown. Sampling a single copy from each 455 

species should not affect phylogenetic inference.  456 

457 
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Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies. 458 

 459 
 460 
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Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies. (A) The full history of a locus in 461 

three species and an outgroup, including one duplication event and two speciation events (which 462 

are shown separately for each set of orthologs). (B) Scenarios where only a single gene copy is 463 

sampled per species; the outgroup is assumed to be sampled in each, but is not shown for clarity. 464 

The single copies may be present because of gene losses (shown here as X’s), or simply because 465 

a single copy is randomly chosen per species. The latter case is also what would happen if there 466 

were no missing copies but quartets were sampled from the full gene tree as input to ASTRAL 467 

[73, 74]. There are four quartets that match the species tree: the two orthologs and the two left-468 

most pseudo-orthologs (“hidden paralogs”). The remaining pseudo-orthologs either place 469 

lineages b and c sister to one another (center) or a and c sister to one another (right). Therefore, 470 

quartet methods should perform well even when paralogs are included, because the most 471 

common set of relationships should still match the species tree. Note that if genes are single-copy 472 

because of gene losses, the species tree relationship is likely to become even more common: the 473 

orthologs require only one loss in their history and the matching pseudo-orthologs require two 474 

losses. Pseudo-orthologs not matching the species tree can only be generated when there are 475 

three separate loss events. 476 

477 
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