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Abstract 

Just as happy people see the proverbial glass as half-full, ‘optimistic’ or ‘pessimistic’ responses to 

ambiguity might also reflect affective states in animals. Judgement bias tests, designed to 

measure these responses, are an increasingly popular way of assessing animal affect and there is 

now a substantial, but heterogeneous, literature on their use across different species, affect 

manipulations, and study designs. By conducting a systematic review and meta-analysis of 459 

effect sizes from 71 studies of non-pharmacological affect manipulations on 22 non-human 

species, we show that animals in relatively better conditions, assumed to generate more positive 

affect, show more ‘optimistic’ judgements of ambiguity than those in relatively worse conditions.  

Overall effects are small when considering responses to all cues, but become more pronounced 

when non-ambiguous training cues are excluded from analyses or when focusing only on the 

most divergent responses between treatment groups. Task type (go/no-go; go/go active choice), 

training cue reinforcement (reward-punishment; reward-null; reward-reward) and sex of 

animals emerge as potential moderators of effect sizes in judgement bias tests. 

Keywords: research synthesis, affective state, cognitive bias, animal welfare   
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Introduction 

Accurate assessment of affect (emotion) in non-human animals is an important goal in 

disciplines including animal welfare science, neuroscience, psychopharmacology and drug 

development. A prevailing view in the study of human emotion is that affective states comprise 

subjective, behavioural, neural and physiological components (Paul et al., 2020; Scherer, 2005). 

Whilst the subjective component of animal affective states (feelings) is not currently accessible 

to direct measurement and we cannot be certain which species consciously experience such 

states (see Paul et al., 2020), we can objectively assess the other components. In his book The 

Expression of Emotions in Man and Animals, Darwin (1872) focused on behavioural 

manifestations of animal emotion, namely “expressive movements of the face and body"", and 

such measures continue to be used as indicators of animal affect today (e.g. Girard & Bellone, 

2020). But other measures focus more directly on the role of affect in behavioural control and 

decision-making. A relatively new and promising approach is to measure biases in decision-

making under ambiguity as indicators of animal affect (Harding et al., 2004; Mendl et al., 2009). 

This is because there are empirical and theoretical reasons to expect that responses to such 

ambiguity reflect affective valence (positivity or negativity of an affective state). For example, 

people in negative states are more likely to make negative (‘pessimistic’) judgements about 

ambiguous events or stimuli than people in more positive states (Blanchette and Richards, 2010; 

Paul et al., 2005). Such assessments could reflect an adaptive use of background affect (or mood) 

as a Bayesian prior over the likelihood of future positive or negative outcomes (Mendl et al., 

2010; see Mendl & Paul, 2020 for a fuller discussion).  

In line with these findings and ideas, a generic assay for measuring these so-called ‘judgement 

biases’ has been developed for animals and has now been used in a large number of studies 

across a range of species. The original assay (Harding et al., 2004) involves training subjects to 

make one response (positive response) to a ‘positive’ cue (a single frequency tone) in order to 

achieve a positive outcome (e.g. food) and a different response (negative response) to a 

‘negative’ cue (a tone of a different frequency) in order to avoid a negative outcome (e.g. white 



 4 

noise) (Figure 1a). Once subjects have learnt this conditional discrimination task, training 

continues but includes occasional ambiguous cues (tones of intermediate frequency) designed to 

assess whether subjects would make the positive response indicating anticipation of a positive 

outcome, or the negative response indicating anticipation of a negative outcome. This allows one 

to test whether, for example, animals in a putative negative affective state (e.g. as a result of 

some sort of experimental treatment, Figure 1b) are more likely to make the negative response, 

as predicted (Figure 1c,d). Making the positive or negative response under ambiguity can be 

operationally defined as ‘optimistic’ or ‘pessimistic’ (Bateson, 2016) without implying that 

animals experience optimism or pessimism as humans do.  

Published studies using this judgement bias task (also referred to as an ‘ambiguous cue 

interpretation’ task (Rygula et al., 2013)), and variants of it, have supported the general 

prediction, but also generated null and opposite results. These findings have been summarised 

narratively in a number of review papers that have also identified various methodological and 

theoretical questions regarding the task and approach (Baciadonna and McElligott, 2015; 

Bethell, 2015; Gygax, 2014; Hales et al., 2014; Mendl et al., 2009; Mendl & Paul 2020; Roelofs et 

al., 2016). What has been lacking, and much needed, is a systematic review and meta-analysis of 

the findings to date to evaluate whether the general predictions behind the approach are 

supported, and how results may be influenced by a variety of moderators, including aspects of 

task design, methods used to manipulate affect, species studied, and age and sex of subjects. 

Recently, we published the first such meta-analysis focusing on the effects of pharmacological 

manipulations of affective state on judgement biases (Neville et al., 2020). Here we 

systematically review and meta-analyse the much larger number of studies that have used non-

pharmacological affect manipulations.  

We focus on judgement bias tasks based on the Harding et al. (2004) method, since these have 

been more widely studied in animals than other cognitive biases such as attention (Bethell et al., 

2016; Crump et al., 2018) and memory biases (Burman and Mendl, 2018). Although details of 
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the procedures and criteria used to select suitable studies and extract appropriate data for the 

meta-analysis are explained in the Methods section, three points should be noted here. 

First, a major challenge in any study of animal affect is to establish a ‘ground truth’ for the 

affective state that the animal is in when under study. This is necessary, for example, if an aim of 

a study is to determine what behavioural, physiological or neural changes occur in animals in 

particular affective states, and hence to develop reliable indicators of such states. Therefore, in 

studies which seek to evaluate whether judgement bias is a valid indicator of affective valence, 

we need to know whether the animal is in a relatively positive or negative state, so that we can 

test whether animals that are in a more positive state do indeed show more optimistic decisions 

under ambiguity, than those in a more negative state. In most judgement bias studies, 

researchers attempt to use an experimental treatment to induce a relatively positive or negative 

affective state compared to a control or ‘benign’ treatment group, or they impose both a positive 

and a negative treatment, and compare these. Because we cannot know for certain where the 

intermediate ‘neutral’ state lies, we use terminology that emphasises the relative nature of these 

manipulations. Thus, we refer to ‘better’ (more positive), ‘benign/control’, and ‘worse’ (more 

negative) treatments, and assign them to either ‘relatively better’ or ‘relatively worse’ groups for 

pair-wise comparison in the meta-analysis. 

Second, there are two main types of task used in judgement bias trials: active choice (go/go) and 

go/no-go (Figure 1a). In go/go active choice tasks, the animal has to choose between two 

alternative responses (e.g. press the left or right lever), while in go/no-go tasks the animal’s 

options are to perform a response (e.g. approach a location or press a lever) or supress it. The 

response of animals can be reported as a proportion (e.g. proportion of trials in which the 

subject pressed the left lever or approached the location), or a latency (e.g. time taken to press 

the lever or approach the location). Latency and proportion data have different statistical 

distributions; they require different transformations and use of different formulae to calculate 

effect sizes. There are also biological reasons for separating latency and proportion data. 
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Different measures may represent different aspects of cognitive processes and their utility 

depends on the type of cognitive bias task used. In go/no-go tasks, latency to perform the 

response under ambiguity is a direct measure of judgement bias. For example, if the positive 

response is to approach the cue, then quick approach to an ambiguous cue indicates an 

‘optimistic’ response. In contrast, go/go active choice tasks require responses to both cues (e.g. 

press left or right lever), meaning that the latency to perform whichever response the animal 

selects is more difficult to interpret in terms of ‘optimism’ or ‘pessimism’. Rather, the proportion 

of positive or negative responses provides more definitive information about ‘optimistic’ or 

‘pessimistic’ decisions. This measure is also of use in go/no-go tasks. Therefore, proportion of 

positive vs. negative responses is preferable to latency as a measure of judgment bias for go/go 

active choice tasks, whereas for the go/no-go tasks both measures are, in principle, suitable.  

Third, many judgement bias studies use more than one ambiguous cue during test trials (Figure 

1c). Often three such cues are used; one (MID) which is assumed to be perceived by the animal 

as being at the mid-point of the sensory scale (e.g. sound frequency) between the positive (P) 

and negative (N) training cues, one (near positive: NP) which is half way between MID and the 

positive (P) cue, and one (near negative: NN) which is halfway between MID and the negative 

(N) cue. There are theoretical and methodological reasons for why an affect manipulation 

treatment might have an influence at one ambiguous cue but not at others in the same study. For 

example, non-midpoint ambiguous cues (NP, NN) may be perceptually too similar to the P and N 

training cues for animals to moderate their responses to them, whilst the midpoint (MID) cue is 

usually ambiguous enough for background affect to influence responses to it. In some studies 

MID could be perceived as closer to P or N and the most ambiguous cue becomes either NN or 

NP, respectively. Moreover, the perceived payoff of the positive and negative response 

outcomes, and hence associated decisions, may be asymmetrical. For example, if the perceived 

negative value of a foot-shock outcome is much stronger than the perceived positive value of a 

food pellet, animals may be strongly motivated to avoid shock risk and thus respond negatively 

to both MID and NN ambiguous cues, with variation in r response limited to the ’safest’ NP 
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ambiguous cue (Mendl et al., 2009). Conversely, in a test variant where negative cues are simply 

lacking a reward instead of bearing a punishment, animals may respond positively even to 

negative cues, because the cost of doing so is negligible. Because it is likely that biased responses 

are unevenly spread across ambiguous cues – in fact some studies report effects which are 

strongest or only statistically significant at one ambiguous cue location (e.g. Bethell and Koyama, 

2015; Zidar et al., 2018) – we investigate the effect of relative cue position and also conduct 

sensitivity analyses. These additional analyses use data subsets with different decision rules for 

selecting the most representative data points from response curves (e.g. using only the 

ambiguous cue with the largest absolute between-treatment effect size; more details in the 

Methods section). 

This systematic review and meta-analysis aims to: (i) quantify the overall effect size that affect 

manipulations have on measures of judgement bias in animals; (ii) estimate heterogeneity of the 

results among different studies; (iii) explore the influences of different biological and 

methodological moderators (explanatory variables for variation in effect sizes). 

Methods 

Literature search 

We conducted a systematic literature search and recorded relevant information required in the 

Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA; 

Moher et al., 2009; see Supplementary Materials for additional search details). We ran the first 

online database search on 29 October 2015, a second search in December 2017, and a final 

database search to update the dataset again on 27 March 2019. For these searches, we used the 

broad-coverage interdisciplinary databases Scopus and Web of Science, covering the titles, 

abstracts and keywords of academic publications. 

The initial search string used in Scopus was: TITLE-ABS-KEY (("cognitive bias*" OR "judgment 
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bias*" OR "judgement bias*" OR "cognitive affective bias*") AND (pessimis* OR optimis* OR 

valence OR mood* OR emotion* OR "affective state*" OR "emotional state*" ambig* OR animal* 

OR "animal welfare")) AND PUBYEAR > 2003 and in Web of Science: TS=(( "cognitive bias*" OR 

"judgment bias*" OR "judgement bias*" OR "cognitive affective bias*" ) AND ( pessimis* OR 

optimis* OR valence OR mood* OR emotion* OR "affective state*" OR "emotional state*" ambig* 

OR animal* OR "animal welfare" ) ) AND LANGUAGE: (English) AND DOCUMENT TYPES: 

(Article), Indexes=SCI-EXPANDED, SSCI Timespan=2004-2015. We restricted the publication 

years to those following the seminal paper on animal judgement bias (Harding et al., 2004). We 

restricted the subsequent updates of the literature search to the years since the previous search 

update (i.e. 2015-2017 and 2017-2019, respectively) and otherwise used the same search 

strings. We collected additional relevant studies from the authors whom we contacted to 

request data or other additional information that was missing from their publications. We also 

performed searches of reference lists of relevant review articles and research articles citing the 

seminal study by Harding et al. (2004). 

The searches of the online databases generated over 900 potential article references and 

searches of other sources generated almost 500 additional references for screening (Figure 2). 

We removed duplicated results from these separate search paths. Two authors (J.Z. and E.S.) 

independently screened 482 abstracts from the articles identified in the 2015 search using the 

software AbstrackR (Wallace et al., 2012). M.L. performed two updates of literature searches in 

2017 and 2019, following the same methodology as in the first search. Overall, we identified 74 

published studies as potentially suitable for inclusion in our meta-analysis after screening of full 

texts and removal of duplicated studies. We excluded three studies during the data extraction 

stage (due to missing data), resulting in data from 71 studies being included in the meta-

analysis. 

Inclusion and exclusion criteria 

We screened titles and abstracts from bibliometric records to identify empirical studies on 
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judgement bias in animals in which subjects were exposed to an affect manipulation aimed at 

inducing either a relatively positive or negative state. We then screened full text versions of the 

articles that passed this initial screening stage. At the full-text screening stage, the following six 

criteria had to be met for the study to be included in the meta-analysis: i) study had to be 

experimental and designed to investigate variation in judgement bias (i.e. ‘optimistic’ or 

‘pessimistic’ interpretation of stimuli) in non-human animals; ii) experiments had to include at 

least two treatment groups (or control/’benign’ and treatment groups); iii) experimental 

treatments had to be designed to induce ‘relatively better’ or ‘relatively worse’ affective states 

(see decision-tree in Supplementary Materials Figure S1); iv) for go/no-go tasks studies had to 

report either latency to make a response to ambiguous cues, or proportion of go or no-go 

responses towards ambiguous cues; for active choice tasks, studies had to report proportion of 

positive or negative responses; if the data available could be translated into such latencies or 

proportions, they were included; v) studies had to present data usable for effect size calculation; 

if suitable data could not be retrieved by contacting the authors, the study was excluded from 

the meta-analysis; vi) studies had to be published in peer-reviewed journals, but student reports 

and data from unpublished work, as well as articles that were written in languages other than 

English, could have been included if they met the above criteria. 

We also excluded studies for the following additional reasons. We only considered data from 

studies investigating judgement bias, i.e. we excluded studies investigating other cognitive 

biases, such as attention bias and memory bias. We also excluded studies only describing 

judgement bias theory or methods or reviewing previous findings and studies that used the 

generic judgement bias task for humans, because our focus was on non-human animals. As 

studies investigating effects of drugs on judgement bias often include several doses that cannot 

easily be assigned into relatively better and relatively worse treatment groups, we also excluded 

all drug studies from this meta-analysis. As mentioned earlier, the drug studies were recently 

subjected to a separate meta-analysis by our group (Neville et al., 2020). 
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Data extraction 

After compiling a final list of included studies, we extracted measurements representing 

behavioural responses to cues in the judgement bias tests. Each pairwise comparison consisted 

of a pair of outcome measures comparing behaviour of animals from ‘relatively better’ to 

‘relatively worse’ affect manipulation groups. Our classification of treatments as inducing 

‘relatively better’ or ‘relatively worse’ affective states was based on a decision tree involving 

screening articles and assessing treatments based on the following three criteria. First, if stated, 

we used the a priori hypothesis and reasoning outlined in the research article. Second, where 

possible, we employed Rolls’ (2005, p.11) operational definition of emotion as “states elicited by 

rewards and punishers”, where “a reward is anything for which an animal will work” and “a 

punisher is anything that an animal will work to escape or avoid”. Thus, if a treatment involved 

stimuli that the subject animal is known to actively avoid, we deemed it to induce a relatively 

worse affective state than one which involved neutral or preferred stimuli. Third, we considered 

evidence from previous studies on the effects of the treatments in question on affective state 

(e.g. their effects on other putative indicators of affective state, such as abnormal repetitive 

behaviour or physiological stress indicators). 

The decision tree for assigning affect treatments to relative affect manipulation categories is 

presented in Supplementary Materials Figure S1. If the first criterion in the decision tree was 

fulfilled (i.e. the authors of the original paper explicitly stated whether the treatment is expected 

to have positive/negative effect on animals’ affective state), we ignored the subsequent decision 

criteria. If not, we evaluated the subsequent decision criteria. We classified all extracted 

treatment groups within a study relative to each other. For example, in a study with a control 

(benign/unmanipulated) and enriched housing group, the enriched group would be considered 

‘relatively better’ and the control/benign group ‘relatively worse’. Conversely, in a study with 

control/benign and stress-induction groups, the stress group would be considered ‘relatively 

worse’, and the control/benign group would be considered ‘relatively better’. 
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We tackled variation in study design and outcome measurement as follows. First, for the go/no-

go judgement bias tasks we extracted either or both (depending on which was reported) latency 

and proportion outcome measures (the signs of the effect sizes calculated from latency 

measurements were later inverted, so that interpretation of the effect direction was consistent 

with that for the proportion data). For active choice go/go judgement bias tasks, we extracted 

only proportion outcome measures (as explained earlier, latency measures in active choice tasks 

cannot be clearly linked to more 'optimistic' or ‘pessimistic’ responding). The extracted mean 

and standard error (or standard deviation) of responses to ambiguous and non-ambiguous cues 

during the tests were used to calculate values of effect sizes (and their variances) for each 

pairwise comparison of the relatively better and relatively worse treatment groups at the same 

cue. Relevant sample sizes were also recorded representing the number of animals from each 

group participating in the judgement bias test. 

Second, included studies used varying numbers of ambiguous cues (range 1-13, mean 2.99, 

mode 3). We only extracted data for a maximum of three ambiguous cues per measurement 

(response curve). We always extracted data for the middle cue (midpoint between the positive 

and negative cues, MID) and, if available, two intermediate cues between the middle cue and 

positive and negative cues (near-positive NP and near-negative NN, respectively). If response 

data to positive (P) and negative (N) cues were reported for judgement bias tests, these were 

also extracted. 

Third, when judgement bias was measured on several consecutive days following a treatment, 

we extracted the first measure only as it was usually closest in time to the acute affect 

manipulation treatment (Destrez et al., 2013; Doyle et al., 2011). In a few studies, animals were 

exposed to several judgement bias tests during a long-term treatment (Douglas et al., 2012; 

Hales et al., 2016; Rygula et al., 2013). In these cases, we extracted the last test occurring during 

each treatment, thus maximising the time available for it to exert its effects. 
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Fourth, some studies with a within-subject design measured judgement bias before, during and 

after an affect manipulation (e.g. pre-stress, stress, post-stress), or repeated the ‘baseline’ 

treatment (e.g. enriched, barren, enriched) (Brilot et al., 2010; da Cunha Nogueira et al., 2015; 

Hales et al., 2016; Murphy et al., 2013). In these studies, we compared measures taken before 

treatment (‘baseline’) to those taken during it and did not include measures taken after it. 

Fifth, studies using a between-subject design sometimes tested both control/benign and 

treatment groups before, during and after a manipulation. In these cases, we compared the 

control/benign group to the treatment group during treatment and ignored the pre- and post-

treatment measurements (Hales et al., 2016; Oliveira et al., 2016; Rygula et al., 2013). 

Finally, if several treatments were applied where one or more treatments were hypothesized to 

be intermediate in effect to the two most extreme treatments, only the two extreme treatments 

were included (Ash and Buchanan-Smith, 2016; Burman et al., 2009; Keen et al., 2014; Wheeler 

et al., 2015). 

For each experiment, we gathered information on the potential moderator variables to 

characterise our dataset and explain potential heterogeneity in the data. Detailed descriptions of 

all the originally extracted moderators are included in Table S1. In brief, the three key groups of 

extracted moderators considered information about the article, biological variables, and test 

design. Paper-specific information included authors, title, journal, and publication year. For each 

data point (i.e. comparison between two groups of animals), we extracted the following 

biological variables: taxa studied (mammals, birds, insects), sex (female, male, mixed-sex), age 

class (juvenile, adult) and source of animals (captive, wild-caught). Test-specific information 

included affect manipulation category (enrichment, stress, other), affect manipulation timing 

(before/during test, long-term), comparison category (Better-Worse, Benign-Worse, Better-

Benign), type of cue used in judgement bias test (spatial, visual, auditory, tactile, olfactory), 

whether animals were food deprived prior to behavioural trials (yes, no/no information), 

automation of response measurement (yes, no/no information), blinding of personnel 
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performing trials (yes, no/no information), combination of  reinforcement used during training 

(Reward Vs. Null, Reward Vs. Punishment; Reward Vs. Smaller Reward), task type (active choice 

go/go, go/no-go), whether ambiguous cues were reinforced (yes, no/no information), 

measurement type (latency, proportion), location of ambiguous cues relative to positive and 

negative cues (P – positive, NP – near-positive, MID – midpoint, NN – near-negative, N – 

negative). We also noted any pertinent additional details about study designs (between-subjects, 

within-subjects), affect manipulations, source of the data in the original studies, and any 

associated comments. When data were provided in a graph instead of a table or text, we 

extracted the values using GraphClick 3.0.3 (http://www.arizona-software.ch/graphclick/). 

Data extraction was performed by J.Z., M.L. and V.N. and was checked by M.L., V.N. and E.S. 

Effect-size calculation 

We used Hedges’ unbiased standardized mean difference (Hedges’ g) as the measure of effect 

size. Because latency and proportion data are bounded (i.e. latencies start at 0 and are often 

censored, and percentages are bounded between 0 and100, proportions between 0 and 1), we 

used natural log (for latencies) or logit-transformed data (for proportions, and percentages 

expressed as proportions) to calculate Hedges’ g (details provided in Supplementary Materials 

Methods and Figure S2). In brief, to calculate Hedges’ g, we focused on positive responses (i.e. 

those which indicated that the subject was anticipating a more rewarding outcome) and 

subtracted the mean value of the relatively worse treatment from the mean of the relatively 

better treatment, and divided the difference by the pooled standard deviation (SD) with 

correction for small sample sizes (Hedges and Olkin, 1985). Thus, if animals from the relatively 

better treatment group were making a higher proportion of positive responses than animals 

from the relatively worse treatment, the difference between the means would be positive and 

the effect size too. However, the expected pattern would be reversed when latencies to make the 

positive response were measured in go/no-go tasks: if animals from the relatively better 

treatment group were quicker to make the positive response (i.e. had lower latencies), than 
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animals from the relatively worse treatment, the difference between the means (and the 

resulting effect size) would be negative. To allow for easier comparison and interpretation of the 

effect sizes from latency and proportion measures, we reversed the sign of the effect sizes based 

on latency measures. Thus, after the sign adjustment, across all data positive values of Hedges’ g 

can be interpreted as optimistic responses of animals exposed to relatively better treatments 

compared to those exposed to relatively worse treatments. For the go/no-go tests that reported 

the outcomes as both latency and proportion, we calculated Pearson's correlation between these 

two measures. 

Meta-analysis and meta-regression models 

We ran all statistical analyses in R version 3.6.0 (R Development Core Team, 2019); we created 

main forest-like (orchard) plots of effects using orchaRd package (Nakagawa et al., 2020). For 

multilevel meta-analysis and meta-regression we used the rma.mv function from the package 

metafor (Viechtbauer, 2010). 

To estimate the overall mean of the effect sizes we constructed intercept-only models (i.e. meta-

analysis) with study ID, experiment ID, cue ID, and effect size ID as random effects. To explore 

effect of species identity and phylogenetic relatedness, we also evaluated meta-analytic models 

with phylogeny and species ID added to the random effects list. We calculated I
2 values for each 

random factor and the overall heterogeneity, I
2

Total, in the meta-analytic models (Nakagawa and 

Santos, 2012). 

To evaluate the effects of moderators of interest (e.g. subject sex or age class, test task type, test 

cue type and level of cue ambiguity), we ran univariate multilevel phylogenetic meta-regression 

models with moderators as fixed effects, and the same random effects as in the meta-analytic 

models (except species ID). In the multivariate meta-regression models (i.e. models with 

multiple moderators), we included only moderators that were significant in the univariate meta-

regression models. We then performed AICc-based model selection using MuMIn package 
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(Barton, 2009) to infer relative contributions of included moderators. To assess the fit of meta-

regression models, we calculated marginal R2 values (sensu Nakagawa and Schielzeth, 2013; 

Nakagawa et al., 2017). 

Publication bias 

Statistically significant results are more likely to be published, resulting in a non-random sample 

of data available for meta-analysis (Rosenthal, 1979). To examine publication bias in our data 

set, we visually inspected a funnel plot for asymmetry in the distribution of the residuals of 

effect sizes (which are the sum of effect size level effects and sampling variance effects; i.e. meta-

analytic residuals: sensu Nakagawa and Santos, 2012). We also performed Egger’s regression on 

the residuals and measurement errors from the full meta-regression model (multilevel version 

of the publication bias test; Nakagawa and Santos, 2012). Egger’s regression indicates 

publication bias if the regression intercept is significantly different from 0 (Egger et al., 1997). 

Finally, we tested for a special type of publication bias, a time-lag bias, i.e. a tendency for studies 

with larger effects to be published earlier (Jennions and Møller, 2002). 

Sensitivity analyses (robustness of results) 

To test robustness of our results to the estimation method, we ran a meta-regression model and 

a multilevel mixed-effect full meta-regression model (with subject sex, task type, cue type, and 

reinforcement type as moderators), using a Bayesian approach, as implemented in the 

MCMCglmm package (Hadfield, 2010). These models were run with 110,000 iterations, 10,000 

burn-in periods, and thinning by every 100 resulting in an effective sample size of 1000. We 

used a parameter-expanded prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000), with EffectID 

(units) fixed at one. 

We also ran the meta-analytic models using four additional data configurations representing 

different ways of interpreting results from pairs of response curves with multiple cues tested. 

First, we used a dataset with positive and negative test cues excluded, so that only responses to 
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ambiguous cues were used (maximum of 3 effect sizes per comparison of pair of response 

curves: for near-positive, midpoint, near-negative cues). In the remaining data subsets, we 

selected only one cue per response curve comparison. Thus, to create the second data subset, we 

only included data from the mid-point ambiguous cue location (MID data points and effect 

sizes). In the third data subset, we selected the effect sizes data from the cue location with the 

largest absolute value within each response curve comparison; notably, in 71.3% of the 

comparisons, the largest absolute effect size was not located at the mid-point ambiguous cue. In 

the fourth data subset, we used effect sizes with the biggest absolute value in the direction of the 

mean value, within each response curve comparison, as in Neville et al. (2020). 
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Results 

Description of data set 

The workflow and outcomes of our systematic literature searches are presented in a PRISMA 

diagram (Figure 2). The list of included studies is provided in Supplementary Table S2. Excluded 

studies, with reasons for exclusion, are listed in Supplementary Table S3. To retrieve missing 

data, or additional information, we contacted 39 authors about 35 studies. We attained raw data 

for 18 studies and additional information for 10 studies. Ultimately, we extracted 459 effect 

sizes, representing 91 experiments published in 71 articles. These studies were performed on 22 

species, ranging from bees to monkeys. The main characteristics of the included studies are 

summarised in Figure 3, showcasing significant variation in study subjects and methodologies. 

Individual studies contributed between 1 and 30 effect sizes to our final data set. 

Mammals were the best-represented taxonomic group (56 out of 71 studies; 330 out of 459 

effect sizes), and almost all studies were performed on captive animals (65 studies; 414 effect 

sizes). Females were more frequently used in experiments than males or mixed-sex groups (225, 

118, 116 effect sizes, respectively; for the numbers of studies see Figure 3), and adults were 

more commonly used than juveniles (333 and 126 effect sizes, respectively). Most often, affect 

manipulation was a form of stress induction compared to standard/benign conditions (benign-

worse comparison: 230 effect sizes). Enrichment compared to control/benign conditions was 

the next most common manipulation (better-benign comparison: 135 effect sizes), and a few 

studies compared positive treatments (e.g. enrichment) to negative treatments (e.g. handling) 

(better-worse comparison: 94 effect sizes). Manipulations were usually long-term (292 effect 

sizes), lasting for days or weeks before affect was measured. 

Between-subject designs (independent groups of animals exposed to manipulation or 

control/benign treatment) accounted for 302 effect sizes and within-subject designs accounted 

for 157 effect sizes. Go/no-go tasks dominated over active choice go/go tasks (389 and 70 effect 
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sizes, respectively). Spatial and visual cues were most commonly used in judgement bias tests 

(177 and 167 effect sizes respectively), and reward-punishment training schemes were more 

common than reward-null (283 and 132 effect sizes, respectively), with the remaining studies 

using different reward strengths (44 effect sizes). Most studies did not report whether the 

personnel performing measurements of animal behaviour were blinded to treatments (only 113 

effect sizes came from blinded trials), or whether the measurements were automated (only 71 

effect sizes came from automated trials). Finally, latency and proportion outcome measures 

were reported at similar levels (258 and 201 effect sizes, respectively). Only 5 studies using 

go/no-go tasks reported outcome measures as both latency and proportion, and these were 

moderately correlated (r = 0.578, t = 3.085, df = 19, p-value = 0.006), although not for the data 

subset using only the largest effect sizes from each experiment to remove non-independence 

(r = 0.443, t = 0.857, df = 3, p-value = 0.455). 

An overall effect and heterogeneity among effect sizes 

Overall, we found a statistically significant effect of experimental treatments on judgement bias 

in animals (phylogenetic multilevel meta-analysis: Hedges’ g (Hg)[overall mean] = 0.201, 95% 

Confidence Interval (CI) = 0.028 to 0.374; Figure 4, Table S4). A similar model, but without 

controlling for phylogeny, also showed a statistically significant overall effect (multilevel meta-

analysis: Hg[overall mean] = 0.204, 95% CI = 0.087 to 0.320, Table S5). Therefore, animals in a 

relatively better treatment usually behaved in a more ‘optimistic’ way than animals in a 

relatively worse treatment, whereas animals in a relatively worse treatment were more 

‘pessimistic’. Notably, this overall effect is comparable to a small effect, as suggested by the 

benchmark values (0.2, 0.5 and 0.8 as small, medium and large effects; Cohen, 1969). The total 

heterogeneity in the whole data set was high (I2total = 76.4%; according to Higgins’ benchmark 

25, 50 and 75% can be interpreted as low, moderate and high heterogeneity, respectively; 

Higgins and Thomson, 2002). About 68.1% of the variability across studies was due to sampling 
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error, while phylogeny contributed little to account for this heterogeneity (2.0%), suggesting a 

weak phylogenetic signal (see Nakagawa & Santos, 2012). 

High observed total heterogeneity in the data set warrants investigation of potential moderators 

of heterogeneity. We, thus, present findings of the univariate multilevel phylogenetic meta-

regression models examining the effects of different moderators (see Figures 5, Figure 6, Figure 

S3). 

Species-specific effects 

A meta-regression model estimating mean effect for each included species did not show a clear 

pattern of differences among species (Figure 5; R2 = 0.070, Table S6). Some of the species-

specific point estimates were medium or large, but they were accompanied by wide confidence 

intervals crossing zero (no-effect) line. We note that the distribution of studies among species 

was not balanced, with the data set being dominated by studies on rats, cattle, and pig (15, 11 

and 8 studies, respectively), while most of remaining species are each represented by a single 

study (Figure 5). 

Sex-effects 

Effects of judgement bias manipulations on males were small-to-medium and statistically 

different from zero (Hg[males] = 0.365, 95% CI = 0.155 to 0.575), while effects on females were, on 

average, close to zero (Hg[females] 0.104, 95% CI = -0.063 to 0.271; Figure 6a). The difference 

between mean effects in males and females was small (Hg[male vs. female difference] = 0.261, 95% CI = -

0.001 to 0.522; R2 = 0.024, Table S7), indicating that affect manipulations on judgement bias 

measurements tend to be more pronounced in studies on males than females. 

Tasks type effects 

Effects of judgement bias manipulations tended to be larger in studies using active choice tasks 

in comparison to studies using go/no-go tasks (Hg[go/no-go vs. active choice difference] = -0.277, 95% CI = -

0.567 to 0.012; Figure 6b). On average, tasks with active choice had a medium effect size and 
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were statistically different from zero (Hg[active choice] = 0.432, 95% CI = 0.151 to 0.712), while the 

average effect size in in go/no-go tasks was small, but still statistically different from zero 

(Hg[go/no-go] = 0.154, 95% CI = 0.005 to 0.304; R2 = 0.021, Table S8). 

Cue types used during judgement bias tests 

Across the five categories of cues used during judgement bias tests, only tests using auditory and 

tactile cues consistently revealed differences between control and affect-manipulated groups of 

animals (Hg[auditory cues] = 0.393, 95% CI = 0.136 to 0.651; Hg[tactile cues] = 0.658, 95% CI = 0.136 to 

1.118; Figure 6c). These two categories of cues were only significantly different from the results 

from studies using visual cues, which on averaged had the weakest effect (Hg[visual cues] = 0.067, 

95% CI = -0.133 to 0.268; R2 = 0.044, Table S9). 

Reinforcement scheme during judgement bias tests 

Studies using Reward-Punishment and Reward-Reward training cue reinforcement schemes 

usually generated small-medium statistically significant effect sizes in the predicted direction 

(Hg[Reward-Punishment] = 0.216, 95% CI = 0.036 to 0.396; Hg[Reward-Reward] = 0.488, 95% CI = 0.137 to 

0.839), but not the Reward-Null reinforcement scheme (Figure 6d). Reward-Reward studies 

generally showed significantly larger judgement bias than those that used a Reward-Null 

reinforcement scheme (Hg[Reward-Reward vs. Reward-Null] = 0.436, 95% CI = 0.045 to 0.827; R2 = 0.030, 

Table S10). Studies using non-reinforced ambiguous cues (which was the vast majority of 

included studies) generated effect sizes in the predicted direction (Hg[ambig. cue not reinforced] = 0.204, 

95% CI = 0.026 to 0.382), although not statistically different from studies in which ambiguous 

cues were reinforced (Hg[ambig. cue not reinforced vs. reinforced] = 0.080, 95% CI = -0.527 to 0.686; R2 = 

0.001), whose effect sizes were close to zero (Table S11). 

Cue ambiguity level 

Ambiguous cues that were halfway between the positive and negative cues, as well as cues that 

were closer to the negative cues, were most likely to reveal judgement bias in tested animals 



 21 

(Hg[mid-point cue] = 0.250, 95% CI = 0.042 to 0.458; Hg[near-negative cue] = 0.303, 95% CI = 0.075 to 0.530; 

R2 = 0.014, Figure 6e). Ambiguous near-negative cues were also significantly different from the 

effects of positive training cues, with the latter on average being least likely to show judgement 

bias effect (Hg[positive cues] = 0.063, 95% CI = -0.153 to 0.278, Table S12). 

Other moderators in univariate models 

Variation in the other considered moderators did not appear to significantly influence the 

magnitude of judgement bias effects. These moderators were: source of animals (captive 

vs. wild-caught), animal age, type of affect manipulation (stress vs. enrichment), timing of affect 

manipulation (short vs. long-term), whether manipulation was compared to benign or worse 

reference condition, type of study design (within-individual vs. between-individuals), food 

deprivation during judgement bias tests, measurement type of behavioural response (latency vs. 

proportion), automation and blinding of measurements of animal responses (Figure S3; Tables 

S13 – S22; R2 = 0 to 0.010). 

Multivariate (full) meta-regression models and model selection 

The full meta-regression model included four moderators that were significant or close to 

statistical significance in univariate models (after confirming they were not co-linear with each 

other): sex of test animals, task type (go/no-go vs. active choice go/go), type of cue used in the 

test, and type of reinforcement for positive and negative training cues. In the multivariate meta-

regression, none of the considered moderators was significant (Table S23). These moderators 

can jointly explain only about 7% of variation in the data (R2 = 0.072). Model selection analysis 

indicated that type of the task and type of reinforcement used could be the most influential 

moderators, followed by the sex of animals (Table S24). 

Publication bias 

We conducted 3 kinds of publication bias analyses: 1) contour-enhanced funnel plots of 

residuals, 2) a variant of Egger’s regression, and 3) a regression-based time-lag bias test. Visual 
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inspection of enhanced-contour funnel plots of residuals did not reveal skewness indicative of 

publication bias (Figure S4). Further, the intercept of Egger’s multivariate regression, controlling 

for potentially important moderators from univariate models, was not significantly different 

from zero (t = 0.017, df = 457, p = 0.986), confirming lack of publication bias in the full data set. 

Finally, we found no evidence for time-lag bias, as the slope of linear regression between 

publication year and effect size was not significantly different from zero (Slope [Year] = -0.002, 

95% CI = -0.121 to 0.118, p = 0.980, Table S25). 

Sensitivity analyses (robustness of results)  

The estimates from Bayesian models run on full data set gave qualitatively identical results to 

the REML models used in the main data analyses. Namely, the overall effect was small and 

statistically significant (Hg[overall mean] = 0.206, 95% CI = 0.041 to 0.383; I2total = 76.8%; Table S26). 

In the Bayesian multivariate meta-regression, none of the moderators significantly influenced 

judgement bias test outcomes, as in the equivalent log-likelihood model. 

Finally, we ran meta-analytic models on four data subsets, representing different ways of 

looking at the results from response curves with multiple cues: i) including only data from 

ambiguous cues (81 NP, 108 MID, and 80 NN effect sizes for cue locations included in this data 

subset), ii) including only data from mid-point ambiguous cues (108 MID effect sizes included), 

iii) including only data for maximum response, in absolute terms (26 P, 13 NP, 31 MID, 22 NN, 

and 16 N effect sizes included), iv) including only data for maximum response in the overall 

direction of response (19 P, 12 NP, 34 MID, 28 NN, and 15 N effect sizes included). All these data 

subsets tended to have larger overall effect size estimates, than in the full data set meta-analyses 

(Figure 4, Tables S4 and S5). Univariate and multivariate meta-regression models usually 

showed similar patterns to these observed in the analyses on the full dataset (Tables S6-S23). 
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Discussion 

Our meta-analysis revealed that non-pharmacological affect manipulations generally influenced 

judgement bias in the predicted direction (i.e. manipulations assumed to generate a relatively 

positive state were likely to generate an ‘optimistic’ response to cues). However, effects were 

usually small to large (average Hedges’ g of 0.2 – 0.6), and they were highly variable, with total 

observed heterogeneity (I2) over 75%. The moderators that potentially influenced magnitude of 

effects included cue type, type of task used in judgement bias trials, reinforcement combination 

used for the training positive and negative cues, cue ambiguity level, and sex of tested animals. 

However, small R2 values (1.4 to 4.4%) indicated that these moderators explained only small 

proportion of variance.  We discuss these findings in detail below. 

Validity and efficacy of judgement bias tests 

Our main finding generally supports judgement bias tests as a valid approach to measure affect 

in non-human animals. This is in line with conclusions of a narrative cross-species review 

(Bethell, 2015) and a recent systematic review of 20 rodent studies on judgement bias (Nguyen, 

et al. 2020). However, the latter considered both pharmacological and non-pharmacological 

manipulations and only conducted a qualitative synthesis of their rodent data set. Effects of 

pharmacological manipulations across species were recently quantitatively synthesised by our 

team (Neville, et al. 2020) and our current work provides first quantification of non-

pharmacological manipulations across different taxa. 

Our quantitative results show that the observed behavioural effect of the affect manipulations 

investigated is, on average, small (Hedges’ g of 0.2) and highly heterogeneous. However, we base 

this conclusion on the analyses of the full dataset, which included mean latency and/or 

proportion data from all cues used in the judgement bias tests. Thus, we likely underestimated 

the overall effect size, due to the inclusion of positive and negative training (unambiguous) cues, 

in the analysis. It is possible that the affect manipulations used in many of the included studies 
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were rather ”mild” – for welfare reasons, not many authors used severe stressors or pain 

stimuli. Some manipulations may not even have had an effect on the animal affect. 

As noted earlier, there are theoretical and empirical reasons for why judgement biases may not 

occur at training cues, and also for why they may not occur at all ambiguous cues. When we 

restricted analysis to the cue with the largest absolute effect size in the direction of the overall 

mean effect size from each response curve – the estimated overall effect sizes were between 

moderate to large (Hedges’ g of 0.6). The overall effect sizes were moderate when we used other 

three data subsets: (i) ambiguous cues only; (ii) middle cue only; (iii) cue with the largest 

absolute effect size. Yet, analyses on the full dataset are most powerful, given that they include 

data points representing the whole response curve (Gygax, 2014). 

The high observed high data heterogeneity is congruent with the levels observed in most 

ecological and evolutionary meta-analyses (70 – 95%; Senior et al., 2016). High heterogeneity (> 

75%) of the effect sizes in our data set indicates variability in the influences of non-

pharmacological manipulations of affective state on judgement bias in animals, but is perhaps 

not surprising given how diverse the studies were in terms of, for example, species used (22 

diverse species; Figure 5), task variants, affect manipulations, and other methodological 

specifics. Accordingly, the lack of phylogenetic effects in our data set is consistent with the 

observation that meta-analyses on phylogenetically diverse sets of species are unlikely to show 

a strong phylogenetic signal (Chamberlain et al., 2012).  

Key moderators of judgement bias tests 

We have also revealed five important moderators of responses in the judgement bias task. Four 

are related to methodology and one is a biological factor. First, active choice go/go tasks tended 

to yield larger effects than go/no-go tasks. It is possible that the former are more cognitively 

challenging given that the response needs to be deployed to different stimuli. Such a potential 

cognitive load might render go/go tasks less susceptible to habitual responding and thereby 

more sensitive to affect manipulations. Furthermore, go/no-go tasks are likely to be vulnerable 
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to the influence of Pavlovian action predispositions (e.g. go-for-reward; no-go to avoid 

punishment; Guitart-Masip et al., 2014; Jones et al., 2017), that could inadvertently bias 

responding (Mendl & Paul, 2020) and obscure affect manipulation effects. Additionally, subjects 

may sometimes perform no-go responses for reasons unrelated to affect manipulations (e.g. 

failing to detect or attend to a cue; Bethell, 2015; Jones et al., 2018), making these tests less 

dependable. Still, we observed that go/no-go tasks are more commonly used in judgement bias 

studies (in 57 vs. 14 studies; Figure 3), probably because they are easier and quicker to train. 

Second, Reward-Reward tasks usually generated larger effect sizes than Reward-Null tasks. Part 

of the reason for this may be that Reward-Reward tasks usually involve a go/go active choice 

response and this itself predisposes stronger effects, as just discussed. The most frequently used 

Reward-Punishment tasks had a largest observed average effect size. It is possible that Reward-

Punishment design, providing a more affectively-laden task (i.e. decision outcomes can range 

from a desired reward to an aversive punisher), is more sensitive to manipulations of affective 

state (see Mendl et al. 2009). 

Third, the use of auditory and tactile cues tended to reveal the largest effects compared to when 

spatial, visual and olfactory cues were employed. There may be a number of reasons for this, 

some of which may be linked to differences in species biology (Bethell, 2015). For example, 

whilst people are strongly visually focused when information gathering, many other animal 

species are not, and may not readily exhibit human-like processing of visual cues. Conversely, 

olfactory sensitivity in humans is poor, relative to many other species, and this may impair the 

ability of researchers to design or use meaningful cues in this sensory dimension. It is also 

possible that cue modality and presentation method can influence the uncertainty of 

information provided by ‘ambiguous’ cues. For example, there may be greater uncertainty about 

the information provided by a single tone intermediate between two training tones, than by a 

spatial location situated between two training locations. Such differences in uncertainty may 

have knock-on effects on animal’s decisions. 



 26 

Fourth, cue ambiguity level (P, NP, MID, NN, N) was important. We found predicted judgement 

bias only at ambiguous cues in the full dataset analysis, and not at positive or negative training 

cues, on average. Still, some individual studies in the dataset yielded large effects at positive or 

negative training cues (e.g. Deakin, 2018; Horváth et al., 2016; Zidar et al., 2018). In line with 

this, Neville et al. (2020) noted that pharmacological manipulations of affect altered judgement 

bias principally at ambiguous cues, but also at the negative training cue. Large effects at non-

ambiguous cues could occur in at least two ways. First, if affect manipulations altered valuation 

of decision outcomes (e.g. by decreasing food valuation and hence generating a weaker response 

to the positive cue), the manipulations could change propensities to perform specific responses 

(e.g. go vs. no-go) and interfere with memory of training cue-outcome associations. Second, large 

effects at non-ambiguous cues might occur if training was brief or ineffective such that there was 

considerable ambiguity about the training cue-outcome association during testing (see Mendl et 

al., 2009; Bateson et al. 2011; Bethell, 2015; Mendl and Paul, 2020). 

Finally, in all analyses, larger predicted effect sizes tended to be reported for male subjects than 

for females or mixed sex groups. This pattern could be due to existence of sex differences in 

neurobiology of learning and memory (Jonasson et al., 2005) or sex differences in stress effects 

on memory, with different patterns for acute and prolonged stress (Andreano and Cahill, 2009). 

Effects of enrichment may also be sex-specific (Lin et al., 2011; ter Horst et al., 2012). 

Potential limitations and recommendations 

The results of our meta-analysis come with six caveats, which we list here alongside 

recommendations for future studies of judgement bias. First, captive and domesticated 

mammals dominate the dataset making our conclusions particularly relevant to research on 

welfare of such animals. Conversely, the analyses are less informative for wild animals, 

vertebrates other than mammals, and invertebrates. Indeed, Bethell’s narrative review (2015) 

highlighted biased taxonomic representation in empirical evidence. Thus, future work in this 

area could aim to increase the representation of non-domesticated species, such as these kept in 



 27 

zoos and for research (where animal welfare is of concern; Baumans, 2005; Bethell, 2015; 

Wolfensohn et al., 2018) and invertebrates (where welfare is an emerging issue; Drinkwater et 

al., 2019). 

Second, we had limited statistical power to detect clear differences between the levels of 

number of the tested moderators. Also, the small sample sizes at some levels of the considered 

moderators might have introduced some spurious findings. For example, relatively few studies 

used tactile or olfactory cues (e.g. in Barker et al., 2017; Novak et al., 2016), and very few used 

reinforced ambiguous cues during tests (e.g. in Bailoo et al., 2018; Keen et al., 2014). To address 

this limitation, future studies of commonly used laboratory and domesticated species should 

systematically investigate the role of different cue types. Researchers should also attempt to 

make cue types relevant for a given species, and vary the perceptual closeness of training cues 

and hence the difficulty of the task and uncertainty of ambiguous cues. 

Third, for some moderators, especially these related to study quality, poor reporting might have 

obscured statistical relationships. Very few of the included studies explicitly stated that they 

used automation or blinding, and we had to assume that the remaining studies did not use these. 

Thus, automation of measurements could be used more often, and/or their use should be clearly 

reported. Notably, Nguyen et al. (2020) in their systematic review of 20 rodent studies 

highlighted limited information on the details of experimental procedures and analyses in 65% 

of assessed studies, undermining confidence in the findings. Nevertheless, we found no 

statistical evidence for publication bias in our meta-analytic data set. The lack of publication bias 

is potentially due to our full data set containing data points across the whole response curve, 

which are usually a mixture of small and large positive effects (in the expected direction) and 

even some negative ones (not in the expected direction). Also related to reporting, mixed-sex 

groups of animals comprised almost one-third of the data in our meta-analysis, potentially 

obscuring sex-specific effects. Providing sex-disaggregated data in research is absolutely 
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essential for improving our understanding of animal behaviour and cognition (Shansky and 

Woolley, 2016; Palanza and Parmigiani, 2017). 

Fourth, we were also not able to include strength of manipulation in our analyses (there is no 

common scale for the diverse types of manipulations included in our data set). To overcome this 

problem, in future studies it would be valuable to test and synthesize relationships between 

measures of cognitive bias and different biomarkers of stress, such as cortisol, adrenaline, alpha-

amylase, testosterone, leucocyte profiles (Keay et al., 2006; Davis et al., 2008). 

Fifth, we also noted some outliers in the dataset, which usually came from studies with severe 

manipulations and/or small sample sizes. We, however, conducted extensive sensitivity analyses 

to test robustness of our conclusions, with the results generally conforming to our predictions 

and being robust across different statistical approaches. Further, in individual empirical studies 

comparing two means, to achieve power of 0.8 at alpha of 0.05, it is necessary to have sample 

sizes of at least 50 animals per group for detecting moderate effect sizes (Hedges’ g = 0.4). Best-

case scenario, when effect is large (Hedges’ g = 0.8), would require only 13 animals per group to 

achieve the same power. Conducting power analyses to determine suitable sample sizes for 

planned experiments can help reducing animal use and also prevent wasting animals on 

underpowered studies. 

Finally, the largest responses often do not appear at the most intermediate/ambiguous cue. 

Because of this, we suggest that multiple ambiguous (probe) cues (at least 3) are needed for 

robust and comprehensive judgement bias tests although 25% of response curves in our data set 

included only one ambiguous cue. 

Conclusions 

In summary, judgement bias tests are a valid method of measuring animal affective state. 

However, high heterogeneity among studies, which can be only partially explained by simple 
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influences of considered moderators, warrants care in designing and interpreting judgement 

bias manipulations and tests. We call for better reporting of experimental designs, especially 

blinding and automation, disaggregation of data by sex of subjects, and other experimental 

details that might influence study results. Also, there is a need for more empirical studies that 

compare different experimental designs and setups, including using different types of tasks, 

cues, and cue ambiguity levels. 
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Figure captions 

Figure 1 
Conceptual diagram presenting the main elements of a typical judgement bias study. a) The 

basic task is trained using either a go/no-go, or active choice (go/go) design. b) Manipulations of 

affective state usually, but not always, occur after training of the task and may be acute or 

longer-term. c) Tests involve the standard training protocol plus the addition of occasionally 

presented ambiguous cues whose properties are usually intermediate between the trained 

positive and negative cues (NP = near positive cue, MID = intermediate between positive and 

negative cue, NN = near negative cue). d) ‘Optimistic’ and ‘pessimistic’ responding to the cues is 

inferred from the proportion of positive responses and/or the latency to make positive 

responses, which are inversely related. 

Figure 2 
PRISMA flow diagram. Articles identified and number of articles included and excluded during 

each screening stage. 

Figure 3 
Main characteristics of the included studies. Blue bars represent numbers of studies represented 

in each level of categorical variables. Between one and 30 effect sizes were extracted per study 

and the distribution of effect sizes generally follows the pattern of the presented data 

aggregated to the study level (e.g. some studies reported data for only one sex, others reported 

data for both sexes together, and 3 studies that included both sexes reported data for females 

and males separately, shown here as ‘female and male sep.’). Numbers do not add up to 71 for 

some of the variables due to multiple experiments being present within some studies, or 

complex experimental designs being used. 

Figure 4 
Forest-like (orchard) plots showing effect size (Hedges’ g) estimates from meta-analyses on:  a) 

whole data set (all cues reported for judgement bias tests), and b-e) four subsets of this data set, 

representing different ways of interpreting the judgement bias test results. Positive effect sizes 

indicate a positive effect of affect manipulation treatments on judgement bias in a relatively 

better condition compared to a relatively worse condition, i.e. affect manipulations working in 
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the expected direction. The effects are statistically significant when the thick horizontal error 

bars (95% confidence intervals) do not cross zero. Thin horizontal whiskers indicate prediction 

intervals. k is number of effect sizes. Dots represent individual effect sizes scaled proportionally 

to their precision. 

Figure 5 
Forest plot showing mean effect size (Hedges’ g) estimates from meta-regression analysis using 

species identity as a moderator. Positive effect sizes indicate a positive effect of affect 

manipulation treatments on judgment bias in a relatively better condition compared to a 

relatively worse condition, i.e. affect manipulations working in the expected direction. The 

effects are statistically significant when the horizontal error bars (95% confidence intervals) do 

not cross zero. k is number of effect sizes, K is number of studies. 

Figure 6 
Forest plots showing effect size (Hedges’ g) estimates from the univariate meta-regression 

analyses (one moderator at a time) with potentially influential moderators. Effect sizes with 

positive values indicate a positive effect of affect manipulations on judgement bias in a relatively 

better condition compared to a relatively worse condition, i.e. affect manipulation treatment 

working in the expected direction. The mean effects (black unfilled circles) for each group of 

individual effect sizes (grey filled circles) are statistically different from zero when their 

horizontal error bars (95% confidence intervals) do not cross zero. Thin horizontal whiskers 

indicate prediction intervals. k is number of effect sizes. Dots represent individual effect sizes 

scaled proportionally to their precision. 
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Appendix A 
	

Optimism,	pessimism	and	judgement	bias	in	animals:		

a	systematic	review	and	a	meta-analysis	
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Addresses:	
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2	The	Department	of	Physics,	Chemistry	and	Biology,	IFM	Biology,	Linköping	University,	SE-581	

83	Linköping,	Sweden	

3	Centre	for	Behavioural	Biology,	Bristol	Veterinary	School,	University	of	Bristol,	Langford,	BS40	
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Data	and	code	available	at	OSF:	https://osf.io/anfhm/ 	



	 2	

Supplementary Methods  

Decision	tree	for	the	classification	of	treatments	as	inducing	‘relatively	better’	or	‘relatively	

worse’	affective	states	is	presented	in	Figure	S1.	The	overview	of	the	effect	size	extraction	and	

calculations	are	presented	as	a	diagram	in	Figure	S2.	In	the	original	papers,	measurements	of	

animal	behaviour	during	judgement	bias	trials	were	reported	either	as	latencies	(time	to	

task/outcome)	or	proportions/percentages	of	trials	where	given	outcome/action	was	achieved	

during	specified	time	period.	Because	latency	and	proportion	data	are	bounded	(i.e.	latencies	

start	at	0	and	are	often	censored,	and	proportions	are	between	0-100),	we	used	natural	

log(latencies)	or	logit(proportions)	transformed	data	to	calculate	our	effect	sizes,	Hedges’	g.	To	

calculate	Hedges’	g,	we	subtracted	the	ln-transformed	or	logit-transformed	mean	value	of	the	

relatively	worse	treatment	from	the	ln-	transformed	or	logit-transformed	mean	of	the	relatively	

better	treatment,	and	divided	the	difference	by	the	pooled	SD	with	correction	for	small	sample	

sizes	(Hedges	&	Olkin,	1985).	The	formulas	used	to	calculate	effect	sizes	and	their	variances	are	

shown	in	Figure	S2.	

As	indicated	in	the	main	text,	to	be	able	to	compare	latency	and	proportion	data	(e.g.	short	

latencies	to	go	to	an	ambiguous	location	are	interpreted	as	an	‘optimistic’	response,	whilst	a	high	

proportion	of	decisions	to	visit	the	ambiguous	locations	are	also	interpreted	as	‘optimistic’),	we	

reversed	the	sign	of	Hedges’	g	for	the	latency	data.	Thus,	after	reversing	Hedges’	g	for	latency	

data,	all	positive	effect	sizes	can	be	interpreted	as	optimistic	responses	of	animals	in	relatively	

better	affective	states	compared	to	those	in	relatively	worse	affective	states.	

Supplementary Results  

Funnel	plots	for	publication	bias	assessment	is	presented	in	Figure	S4.	Table	S1	contains	

detailed	descriptions	of	the	extracted	data	(meta-data),	while	Tables	S2	and	S3	present	lists	of	

included	and	excluded	(at	full-text	screening	stage)	papers,	respectively.		Tables	S4	to	S22	show	

results	of	meta-analytic	and	meta-regression	models	for	the	full	data	set	and	data	subsets.	

Tables	S23	to	S26	show	results	of	sensitivity	analyses.	

Supplementary References  

Hedges,	L.,	Olkin,	I.	(1985).	Statistical	methods	for	meta-analysis.	Academic	Press,	New	York.	
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Figure	S1	
Decision	tree	for	classification	of	treatments	within	a	study	as	inducing	‘relatively	better’	or	

‘relatively	worse’	affective	states.	

Do	authors	of	original	study	provide	an	
a	priori	statement	as	to	which	treatment	
should	have	posi7ve/nega7ve/no	effect	on	

the	affec7ve	state	of	subjects?	

yes	 no	

Did	a	treatment	involve	s7muli	that	the	
subject	animal	ac7vely	prefers	or	avoids	and	

hence,	following	Rolls	(2005),	can	be	
assumed	to	induce,	respec7vely,	a	rela7vely	

posi7ve	or	rela7vely	nega7ve	state?	

use	

yes	 no	

use	 Is	there	evidence	from	previous	research	on	
how	treatments	used	in	the	current	study	

influence	affec7ve	state	in	the	study	species?	

yes	 no	

use	 Does	this	evidence	exist	
for	related	species?	yes	
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Figure	S2	
Workflow	of	data	extraction,	transformation	and	calculation	of	effect	sizes.	
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(figure	continued	on	next	page)	
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(figure	continued	from	previous	page)	
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Figure	S3	
Forest	plots	showing	effect	size	(Hedges’	g)	estimates	from	the	univariate	meta-regression	

analyses	(one	moderator	at	a	time)	with	potentially	non-influential	moderators.	Effect	sizes	with	

positive	values	indicate	a	positive	effect	of	affect	manipulations	on	judgement	bias	in	a	relatively	

better	condition	compared	to	a	relatively	worse	condition,	i.e.	affect	manipulation	treatment	

working	in	the	expected	direction.	The	mean	effects	(black	unfilled	circles)	for	each	group	of	

individual	effect	sizes	(grey	filled	circles)	are	statistically	different	from	zero	when	their	

horizontal	error	bars	(95%	confidence	intervals)	do	not	cross	zero.	Thin	horizontal	whiskers	

indicate	prediction	intervals.	k	is	number	of	effect	sizes.	Dots	represent	individual	effect	sizes	

scaled	proportionally	to	their	precision.	
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Figure	S4	
Funnel	plots	for	the	estimated	effect	sizes	for	meta-analytic	(intercept-only)	models	for	the	

difference	between	better	and	worse	treatments	(Hedges’	g,	Hg).	a)	Raw	effect	sizes	and	their	

precision	(inversed	standard	errors);	vertical	solid	lines	indicate	zero	(i.e.	where	there	is	no	

effect	of	the	affect	manipulations)	and	the	dashed	line	the	meta-analytic	mean.		b)	The	residual	

values	from	the	full	meta-regression	models,	containing	animals’	sex,	task	type,	cue	type	and	

reinforcement	scheme	used	in	judgement	bias	tests,	plotted	against	inversed	standard	errors.	

Positive	values	of	Hg	can	be	interpreted	as	animals	in	relatively	better	treatment	group	being	

more	‘optimistic’	than	animals	in	the	relatively	worse	treatment	group,	i.e.	affect	manipulation	

treatment	working	in	the	expected	direction.		
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Table	S1	
Column	names	and	descriptions	of	the	contents	of	each	column	in	the	unprocessed	data	

extracted	from	the	original	experimental	papers.	For	the	definition	of	Better/Worse	groups	see	

the	main	text,	main	text	Methods	section,	and	Figure	S1.	

Column name Column description and code values 

EffectID Unique ID for each pairwise comparison used to calculate effect sizes 

ArticleID Unique ID for each extracted original experimental paper 

ExperimentID Unique ID for each extracted experiment within the original paper 

GroupID Unique ID for each group of animals used in experiment within the original 
paper 

Authors Authors of the original paper 

Journal Publication journal of the original paper 

JournalType Type of journal: 

• peer-reviewed = any academic journal 
• unpublished = data and descriptions from the authors only 

Year Publication year of the original paper 

ArticleTitle Title of the original paper 

Species Common name of an animal species used in the experiment 

ScientificName Scientific name of an animal species used in the experiment 

Taxa High-level taxon of the species: 

• mammal = species from class Mammalia 
• bird = species from class Aves 
• insect = species from class Insecta 

Breed Breed of an animal species used in the experiment, for domesticated animals, as 
eported by the study authors, otherwise (for non-domesticated animals) coded as 
not applicable [n/a] 

Captive_Wild-caught Source of animals used in the experiment, as reported in the paper: 

• captive = all used animals were captive, or source not reported 
• wild-caught = all used animals were wild-caught 

Age Age of animals used in the experiment: 

• juvenile = all used animals were not sexually mature 
• adult = all used animals were sexually mature, mixed age, or age not reported 

WithinBetween Whether between-individual or within-individual study design was used: 

• between = two or more groups of animals were simultaneously subject to 
different treatments (or treatment vs. control/benign) 

• within = same group of animals was subject sequentionally to different 
treatments (or treatment vs. control/beningn), includes cross-over design 

CrossoverDesign Whether crossover experimental design was used, if within-subject design was 
used: 

• yes = all groups of animals received treatment in a different order, so that all 
animals received each treatment at some time point 

• no = each group of animals was subject to only one treatment (or 
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control/benign) at the same time 
• n/a = for between-individual study design 

StudyDesign Combined information about study design from WithinBetween and 
CrossoverDesign columns: 

• within (before-after) = same group of animals was subject first to no 
treatment and then to treatment 

• within (crossover) = same group of animals was subject sequentially to 
different treatments (or treatment vs. control/benign) in different order 

• between = two or more groups of animals were simultaneously subject to 
different treatments (or treatment vs. control/benign) 

Blind Whether testing animals for judgement bias was blinded, as reported by the study 
authors: 

• yes = authors of the original study explicitly state that researchers performing 
trials were blinded to the treatment groups of the tested animals 

• no = authors state that state that researchers performing trials were not 
blinded to the treatment groups of the tested animals, or blinding was not 
possible. If not info was provided on blinding being used, we assumed no 
blinding 

Automated Whether measuring animal behaviour during trials was automated: 

• yes = authors explicitly state that the trials/measurements were automated 
• no = the methodological description of the experiment does not include any 

mention of automation of the testing process  

FoodDeprived Whether animals were food-deprived before the behavioural trials: 

• yes = authors explicitly state that the animals were food-deprived before the 
trials 

• no = the methodological description of the experiment does not include any 
mention that the animals were food restricted before the trials 

TaskType  Type of the task used during behavioural trials: 

• active choice = go/go tasks in which an animal is required to make an active 
response to cues perceived as positive and to cues perceived as negative  

• go/no-go = tasks in which an animal is required to suppress a response to 
cues perceived as negative and actively respond only to cues perceived as 
positive 

CueTypeDetails Type of the cue used during training and trials: 

• auditory = any sound-based cues 
• colour = places, objects, shapes differing only in colour parameters 
• light = any light-based cues, but not related to colour or location (e.g. light 

on/off) 
• location = different places in physical space (e.g. left vs. right side, coded as 

spatial in CueTypeCat) 
• odour = any odour-based cues 
• shape = objects differing only in shape  
• tactile = any tactile-based cues 
• visual = any other visual cues not covered by other categories above  

CueTypeCat Alternative, simplified, classification of type of the cue used: 

• auditory = any sound-based cues 
• spatial = different places in physical space, e.g. left vs. right side (usually 

different locations within the test chamber) 
• olfactory = any odour-based cues 
• tactile = any tactile-based cues 
• visual = any visual cues 
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ResponseTypeDetails Details of what type of animal response was measured as an outcome 

OutcomeCorrectPosCue Details of an outcome for an animal correctly responding to positive cue 

OutcomeIncorrectPosCue Details of an outcome for an animal incorrectly responding to positive cue 

OutcomeCorrectNegCue Details of an outcome for an animal correctly responding to negative cue 

OutcomeIncorrectNegCue Details of an outcome for an animal incorrectly responding to negative cue 

ReinforcementCat How reinforcement (R = reward; P = punishment; Null = no reward/punishment) 
was used during training: 

• R-Null = reward for the positive cue and nothing for the negative cue 
• R-P = reward for the positive cue and punishment for the negative cue 
• R-R = larger reward for the positive cue and smaller reward for the negative 

cue 

AffectManipDetails Brief details of affect manipulation (what was actually manipulated, potentially 
influencing affect), based on the description in the original paper 

AffectManipCat Category of affect manipulation type (manipulation potentially influencing 
affect): 

• enrichment = environmental enrichment or other positive events used as an 
affect manipulation treatment 

• stress = stress or potentially negative events used as an affect manipulation 
treatment 

AffectManipTiming Timing of affect manipulation: 

• before/during = affect manipulation was applied within hours before the 
judgement bias test and/or during the judgement bias test (usually in acute 
treatments)  

• long-term = affect manipulation was applied for longer than a few hours 
before the judgement bias test (usually in chronic treatments) 

AmbigReinforced Whether ambiguous cues were reinforced: 

• yes = ambiguous cues were rewarded fully, partially or randomly during the 
judgement bias test 

• no = ambiguous cues were not rewarded during the judgement bias trials. If 
no information provided, we assumed no reinforcement 

NoAmbigCues Number of different ambiguous cues used in the judgement bias trials 

NoTestSessions Number of test sessions (e.g. separate days) with the judgement bias trials 

NoTrialsAmbigCue Number of tests per ambiguous cue/session 

NoTrialsTrainingCue Number of tests per training cue/session during training 

MeasureType Whether outcome measure was reported as latency or proportion: 

• latency = outcome measure reported as a time from trial start to certain action 
or criteria 

• proportion = proportion (or percentage) of trials/tests in which animal 
performed certain action or met certain criteria 

BetterSampleSizeMale Number of males in the Better group, if reported; n/a if not reported 

BetterSampleSizeFemale Number of females in the Better group, if reported; n/a if not reported 

WorseSampleSizeMale Number of males in the Worse group, if reported; n/a if not reported 

WorseSampleSizeFemale Number of females in the Worse group, if reported; n/a if not reported 

Sex Sex of tested animals in the compared groups: 

• female = only female animals were used 
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• male = only male animals were used 
• both = both female and male animals were used 

TreatmentComp Details of affect manipulation performed on animals, i.e. what types of groups 
were compared (e.g. stressed vs. control, enriched vs. barren) 

ComparisonCat Comparison category according to the direction of comparison and affect 
manipulation type of the compared animal groups: 

• Better-Worse = when one group of animals was subject to manipulation that 
was better (or could be expected to induce positive affect) than benign 
condition and the other group of animals was subject to a treatment that was 
worse than benign condition (or could be expected to induce negative affect) 

• Benign-Worse = when one group of animals was subject to a treatment 
considered as benign condition (no change to affect or neutral affect) and the 
other group of animals was subject to a treatment that was worse than benign 
condition (or could be expected to induce negative affect)  

• Better-Benign = when one group of animals was subject to a treatment that 
was better than benign condition (or could be expected to induce positive 
affect) and the other group of animals was subject to a treatment considered 
as benign condition (no change to affect or neutral affect) 

ScalePoint Codes of the positions of the ambiguous cues relatively to the the trained positive 
and negative cues: 

• A = ‘near positive’ = extracted intermediate cue between the middle 
(midpoint) cue and the rewarded cue, if more than 1 ambiguous cue was used 

• B = ‘midpoint’ = extracted middle cue between the trained cues 
• C = ‘near negative’ = extracted intermediate cues between the middle cue 

(midpoint) and the unrewarded cue, if more than 1 ambiguous cue was used 

Better Mean value of outcome for the Better group 

BetterSE Standard error of outcome for the Better group 

BetterN Sample size (number of animals tested) of outcome for the Better group 

BetterSD Standard deviation of outcome for the Better group 

Worse Mean value of outcome for the Worse group 

WorseSE Standard error of outcome for the Worse group 

WorseN Sample size (number of animals tested) of outcome for the Worse group 

WorseSD Standard deviation of outcome for the Worse group 

DataScale Whether the extracted data is on logit or natural scale 

DataSE Whether Standard Error for the outcome was reported in the original study: 

• yes = Standard Error for the outcome measure reported in the original paper 
• no = Standard Error for the outcome measure not reported in the original 

paper 

DataSource Details of location in the original paper (Figure, Table) from which the outcome 
data was extracted  

Notes Any other relevant information 

Exclude “Y” denotes any data points that were excluded after data extraction and before 
analyses. Reasons for exclusions are recorded in Notes 
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Table	S2	
List	of	included	studies.	Main	characteristics	of	the	included	studies	are	summarised	in	

Supplementary	File	1,	while	the	complete	data	set	(as	extracted)	is	provided	on	GitHub.	Stars	

indicate	studies	where	raw	data	or	additional	data	was	received	from	the	authors	upon	request.	

Nr ArticleID Authors Year Journal ArticleTitle 

      
1 Ash2016 Ash, H., 

Buchanan-Smith, 
H.M. 

2016 Applied 
Animal 
Behaviour 
Science 

The long-term impact of infant rearing 
background on the affective state of 
adult common marmosets (Callithrix 
jacchus) 

2 Asher2016 Asher, L., Friel, 
M., Griffin, K., 
Collins, L.M. 

2016 Biology 
Letters 

Mood and personality interact to 
determine cognitive biases in pigs 

3 Baciadonna20
16 

Baciadonna, L., 
Nawroth, C., 
McElligott, A.G. 

2018 PeerJ Judgement bias in goats (Capra hircus): 
investigating the effects of human 
grooming 

4 Bailoo2018* Bailoo, J.D., 
Murphy, E., 
Boada-Saña, M., 
Varholick, J.A., 
Hintze, S., 
Baussière, C., 
Hahn, K.C., 
Göpfert, C., 
Palme, R., Voelkl, 
B., Würbel, H. 

2018 Frontiers in 
Behavioral 
Neuroscience 

Effects of cage enrichment on 
behavior, welfare and outcome 
variability in female mice 

5 Barker2017a* Barker, T.H., 
George, R.P., 
Howarth, G.S., 
Whittaker, A.L. 

2017 PLOS One Assessment of housing density, space 
allocation and social hierarchy of 
laboratory 
rats on behavioural measures of 
welfare 
the absence of a physiological stress 
response 

6 Barker2017b Barker, T.H., 
Bobrovskaya, L., 
Howarth, G.S., 
Whittaker, A.L. 

2017 Physiology 
and Behavior 

Female rats display fewer optimistic 
responses in a judgment bias test in 
the absence of a physiological stress 
response 

7 Bateson2007 Bateson, M., 
Matheson, S. M. 

2007 Animal 
Welfare 

Performance on a categorisation task 
suggests that removal of environmental 
enrichment induces 'pessimism' in 
captive European starlings (Sturnus 
vulgaris) 

8 Bateson2011 Bateson, M., 
Desire, S., 
Gartside, S. E., 
Wright, G. A. 

2011 Current 
Biology 

Agitated honeybees exhibit pessimistic 
cognitive biases 

9 Bateson2015b Bateson, M., 
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2015 PLOS One Opposite effects of early-life 
competition and developmental 
telomere attrition on cognitive biases in 
juvenile European starlings 
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2010 Animal 
Cognition 
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Leach, M., Nicol, 
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Holmes, M. C., 
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Making in Adulthood: A Rat Model 

19 Burman2008 Burman, O. H. P., 
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laboratory rats, Rattus norvegicus 

20 Burman2009* Burman, O. H. P., 
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Housing conditions do not alter 
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Paul, E. S., 
Mendl, M. 
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2013 Journal of 
Veterinary 
Behavior: 
Clinical 
Applications 
and Research 
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35 Duranton2019 Duranton, C., 
Horowitz, A. 
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non-verbal cognitive judgement bias 
test in sheep  
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39 Harding2004 Harding, E. J., 
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2014 Animal 
Cognition 

Validation of a novel cognitive bias 
task based on difference in quantity of 
reinforcement for assessing 
environmental enrichment 



	 17	

J., Newberry, R. 
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and Research 
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Responses of conventional pigs and 
Gottingen miniature pigs in an active 
choice judgement bias task 
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63 Seehuus2013
* 
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Gygax, L. 
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68 Walker2014 Walker, J. K., 
Waran, N. K., 
Phillips, C. J. C. 
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Science 
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69 Wheeler2015 Wheeler, R. R., 
Swan, M. P., 
Hickman, D. L. 

2015 Laboratory 
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Effect of multilevel laboratory rat 
caging system on the well-being of the 
singly-housed Sprague Dawley rat 

70 Wichman201
2 

Wichman, A., 
Keeling, L. J., 
Forkman, B. 

2012 Applied 
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Behaviour 
Science 

Cognitive bias and anticipatory 
behaviour of laying hens housed in 
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71 Zidar 2018* Zidar, J., 
Campderrich, I., 
Janson, E., 
Whichman, A., 
Winberg, S., 
Keeling, L., 
Løvlie, H. 

2018 Scientific 
Reports 

Environmental complexity buffers 
against stress-induced negative 
judgement bias in female chickens 
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Table	S3	
	List	of	studies	excluded	during	full-text	screening	stage,	with	reasons	for	exclusion.	

Nr Reference Main reason for exclusion 

1 Anderson, M.H., MunafÃ, M.R., Robinson, E.S.J. (2013) 

Investigating the psychopharmacology of cognitive affective bias in 

rats using an affective tone discrimination task. 

Psychopharmacology 226: 601–613 

no affect manipulation or 

drug-based manipulation 

2 Barker, T.H., Howarth, G.S., Whittaker, A.L. (2016) The effects of 

metabolic cage housing and sex on cognitive bias expression in rats. 

Applied Animal Behaviour Science 177: 70–76 

data missing or not 

extractable 

3 Bellegarde, L.G.A., Haskell, M.J., Duvaux-Ponter, C., Weiss, A., 

Boissy, A., Erhard, H.W. (2017) Face-based perception of emotions 

in dairy goats. Applied Animal Behaviour Science 193: 51–59 

non-standard judgement 

bias test 

4 Brilot, B.O., Bateson, M. (2012) Water bathing alters threat 

perception in starlings.  Biology Letters 8: 379–381 

non-standard judgement 

bias test 

5 Brilot, B.O., Normandale, C.L., Parkin, A., Bateson, M. (2009) Can 

we use starlings' aversion to eyespots as the basis for a novel 

'cognitive bias' task? Applied Animal Behaviour Science 118: 182–

190 

non-standard judgement 

bias test 

6 Brydges, N.M., Hall, L. (2017) A shortened protocol for assessing 

cognitive bias in rats. J. Neurosci. Methods 286: 1–5 

no affect manipulation or 

drug-based manipulation 

7 Carreras, R., Arroyo, L., Mainau, E., PeÃ±a, R., Bassols, A., 

Dalmau, A., Faucitano, L., Manteca, X., Velarde, A. (2016) Effect 

of gender and halothane genotype on cognitive bias and its 

relationship with fear in pigs. Applied Animal Behaviour Science 

177: 41973 

no affect manipulation or 

drug-based manipulation 

8 Carreras, R., Mainau, E., Rodriguez, P., Llonch, P., Dalmau, A., 

Manteca, X., Velarde, A. (2015) Cognitive bias in pigs: Individual 

classification and consistency over time. Journal of Veterinary 

Behavior: Clinical Applications and Research 10: 577–581 

no affect manipulationor 

drug-based manipulation 

9 Chaby, L.E., Cavigelli, S.A., White, A., Wang, K., Braithwaite, 

V.A. (2013) Long-term changes in cognitive bias and coping 

response as a result of chronic unpredictable stress during 

adolescence. Frontiers in Human Neuroscience 7: 328 

data missing or not 

extractable 

10 Curzytek, K.,  Kubera, M.,  Trojan, E.,  Wójcik, K.,  Basta-Kaim, 

A.,  Detka, J.,  Maes, M.,  Rygula, R. (2018) The effects of 

pessimism on cell-mediated immunity in rats. Progress in Neuro-

Psychopharmacology and Biological Psychiatry 80: 295–303 

no affect manipulation or 

drug-based manipulation 
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11 Destrez, A., Boissy, A., Guilloteau, L., Andanson, S.,  Souriau, A.,  

Laroucau, K., Chaillou, E., Deiss, V. (2017) Effects of a chronic 

stress treatment on vaccinal response in lambs. Animal 11: 872–880 

data missing or not 

extractable 

12 Destrez, A., Deiss, V., Belzung, C., Lee, C., Boissy, A. (2012) Does 

reduction of fearfulness tend to reduce pessimistic-like judgment in 

lambs? Applied Animal Behaviour Science 139: 233–241 

no affect manipulation or 

drug-based manipulation 

13 Doyle, R.E., Hinch, G.N., Fisher, A.D., Boissy, A., Henshall, J.M., 

Lee, C. (2011) Administration of serotonin inhibitor p-

Chlorophenylalanine induces pessimistic-like judgement bias in 

sheep. Psychoneuroendocrinology 36: 279–288 

no affect manipulation or 

drug-based manipulation 

14 Doyle, R.E., Lee, C., McGill, D.M., Mendl, M. (2015) Evaluating 

pharmacological models of high and low anxiety in sheep. PeerJ 3: 

e1510 

no affect manipulation or 

drug-based manipulation 

15 Doyle, R.E., Vidal, S., Hinch, G.N., Fisher, A.D., Boissy, A., Lee, 

C. (2010) The effect of repeated testing on judgement biases in 

sheep. Behavioural Processes 83: 349–352 

no affect manipulation or 

drug-based manipulation 

16 Drozd, R., Cieslak, P.E., Rychlik, M., Parkitna, J.R., Rygula, R. 

(2016) Cognitive judgment bias interacts with risk-based decision 

making and sensitivity to dopaminergic challenge in male rats. 

Frontiers in Behavioral Neuroscience 10: 163 

no affect manipulation or 

drug-based manipulation 

17 Drozd,. R., Rychlik, M., Fijalkowska, A., Rygula, R. (2019) Effects 

of cognitive judgement bias and acute antidepressant treatment on 

sensitivity to feedback and cognitive flexibility in the rat version of 

the probabilistic reversal-learning test. Behavioural Brain Research 

359: 619–629 

no affect manipulation or 

drug-based manipulation 

18 Düpjan, S., Stracke, J., Tuchscherer, A., Puppe, B. (2017) An 

improved design for the spatial judgement task in domestic pigs.  

Applied Animal Behaviour Science 187: 23-30 

no affect manipulation or 

drug-based manipulation 

19 Enkel, T., Gholizadeh, D., Von Bohlen Und Halbach, O., Sanchis-

Segura, C., Hurlemann, R., Spanagel, R., Gass, P., Vollmayr, B. 

(2010) Ambiguous-cue interpretation is biased under stress-and 

depression-like states in rats. Neuropsychopharmacology 35: 1008–

1015 

no affect manipulation or 

drug-based manipulation 

20 Gordon, D.J., Rogers, L.J. (2015) Cognitive bias, hand preference 

and welfare of common marmosets. Behavioural Brain Research 

287: 100–108 

no affect manipulation or 

drug-based manipulation 

21 Graulich, D.M., Kaiser, S., Sachser, N., Richter, S.H. (2016) 

Looking on the bright side of bias: Validation of an affective bias 

test for laboratory mice. Applied Animal Behaviour Science 181: 

173–181 

non-standard judgement 

bias test 



	 22	

22 Henry, S., Fureix, C., Rowberry, R., Bateson, M. (2017) Do horses 

with poor welfare show ‘pessimistic’ cognitive biases? The Science 

of Nature 104: 8 

no affect manipulation or 

drug-based manipulation 

23 Hernandez, C.E., Hinch, G., Lea, J., Ferguson, D., Lee, C. (2015) 

Acute stress enhances sensitivity to a highly attractive food reward 

without affecting judgement bias in laying hens. Applied Animal 

Behaviour Science 163: 135–143 

data missing or not 

extractable 

24 Hintze, S., Roth, E., Bachmann, I., Würbel, H.  (2017) Toward a 

Choice-Based Judgment Bias Task for Horses. Journal of Applied 

Animal Welfare Science 20: 123–136 

no affect manipulation or 

drug-based manipulation 

25 Hymel, K.A., Sufka, K.J. (2012) Pharmacological reversal of 

cognitive bias in the chick anxiety-depression model. 

Neuropharmacology 62: 161–166 

non-standard judgement 

bias test 

26 Jones, S., Paul, E.S., Dayan, P., Robinson, E., Mendl, M. (2017). 

Pavlovian influences on learning differ between rats and mice in a 

counter-balanced Go/NoGo judgement bias task. Behavioural Brain 

Research 331: 214–224 

no affect manipulation or 

drug-based manipulation 

27 Karagiannis, C.I., Burman, O.H.P., Mills, D.S. (2015) Dogs with 

separation-related problems show a "less pessimistic" cognitive bias 

during treatment with fluoxetine (Reconcile TM) and a behaviour 

modification plan. BMC Veterinary Research 11: 42277 

data missing or not 

extractable 

28 Kis, A., Hernádi, A., Kanizsár, O., Gácsi, M., Topál, J. (2015) 

Oxytocin induces positive expectations about ambivalent stimuli 

(cognitive bias) in dogs. Hormones and Behavior 69: 42185 

no affect manipulation or 

drug-based manipulation 

29 Kregiel, J., Golebiowska, J., Popik, P., Rygula, R. (2016) 

Dopamine induces an optimism bias in rats-Pharmacological proof 

for the translational validity of the ambiguous-cue interpretation 

test. Behavioural Brain Research 297: 84–90 

study retracted 

30 Kregiel, J., Malek, N., Popik, P., Starowicz, K., Rygula, R. (2016) 

Anandamide mediates cognitive judgement bias in rats. 

Neuropharmacology 101: 146–153 

no affect manipulation or 

drug-based manipulation 

31 McGuire, M.C., Vonk, J. (2018) Gorillas (Gorilla gorilla gorilla) 

Fail to Learn Abstract Cues of Differential Outcomes in a Novel 

Cognitive Bias Test. Animal Behavior and Cognition 5: 103–117 

non-standard judgement 

bias test 

32 McGuire, M.C., Vonk, J., Fuller, G., Allard, S. (2017) Using an 

Ambiguous Cue Paradigm to Assess Cognitive Bias in Gorillas 

(Gorilla gorilla gorilla) during a Forage Manipulation. Animal 

Behavior and Cognition 4: 91–104 

non-standard judgement 

bias test 

33 McGuire, M.C., Vonk, J., Johnson-Ulrich, Z. (2017) Ambiguous 

Results When Using the Ambiguous-Cue Paradigm to Assess 

no affect manipulation or 

drug-based manipulation 
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Learning and Cognitive Bias in Gorillas and a Black Bear. 

Behavioral Sciences 7: 51 

34 McGuire, M.C., Williams, K.L., Welling, L L., Vonk, J. (2015). 

Cognitive bias in rats is not influenced by oxytocin. Frontiers in 

Psychology 6: 1306 

no affect manipulation or 

drug-based manipulation 

35 McHugh, S.B., Barkus, C., Lima, J., Glover, L.R., Sharp, T., 

Bannerman, D.M. (2015) SERT and uncertainty: serotonin 

transporter expression influences information processing biases for 

ambiguous aversive cues in mice. Genes Brain and Behavior 14: 

330–336 

non-standard judgement 

bias test 

36 Mendl, M., Brooks, J., Basse, C., Burman, O., Paul, E., Blackwell, 

E., Casey, R. (2010) Dogs showing separation-related behaviour 

exhibit a 'pessimistic' cognitive bias. Current Biology 20: R839–

R840 

no affect manipulation or 

drug-based manipulation 

37 Monk, J.E., Belson, S., Colditz, I.G., Lee, C. (2018) Attention Bias 

Test Differentiates Anxiety and Depression in Sheep. Frontiers in 

Behavioral Neuroscience 12: 246 

no judgement bias test 

38 Muehlemann, T., Reefmann, N., Wechsler, B., Wolf, M., Gygax, L. 

(2011) In vivo functional near-infrared spectroscopy measures 

mood-modulated cerebral responses to a positive emotional 

stimulus in sheep. NeuroImage 54: 1625–1633 

no judgement bias test 

39 Murphy, E., Kraak, L., van den Broek, J., Nordquist, R.E., van der 

Staay, F.J. (2014) Decision-making under risk and ambiguity in 

low-birth-weight pigs. Animal Cognition 18: 561–572 

no affect manipulation or 

drug-based manipulation 

40 Novak, J., Bailoo, J.D., Melotti, L., Rommen, J., Würbel, H. (2015) 

An exploration based cognitive bias test for mice: Effects of 

handling method and stereotypic behaviour. PLOS One 10: 

e0130718 

data missing or not 

extractable 

41 Novak, J., Bailoo, J.D., Melotti, L., Wurbel, H. (2016) Effect of 

Cage-Induced Stereotypies on Measures of Affective State and 

Recurrent Perseveration in CD-1 and C57BL/6 Mice. PLOS One 

11: e0153203 

no affect manipulation or 

drug-based manipulation 

42 Pomerantz, O., Terkel, J., Suomi, S.J., Paukner, A. (2012) 

Stereotypic head twirls, but not pacing, are related to a 'pessimistic'-

like judgment bias among captive tufted capuchins (Cebus apella). 

Animal Cognition 15: 689–698 

no affect manipulation or 

drug-based manipulation 

43 Rafa, D., Kregiel, J., Popik, P., Rygula, R. (2015) Effects of 

optimism on gambling in the rat slot machine task. Behavioural 

Brain Research 300: 97–105 

no affect manipulation or 

drug-based manipulation 

44 Rafa, D., Kregiel, J., Popik, P., Rygula, R. (2016) Effects of no affect manipulation or 
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optimism on gambling in the rat slot machine task. Behavioural 

Brain Research 300: 97–105 

drug-based manipulation 

45 Reefmann, N., Muehlemann, T., Wechsler, B., Gygax, L. (2012) 

Housing induced mood modulates reactions to emotional stimuli in 

sheep. Applied Animal Behaviour Science 136: 146–155 

no judgement bias test 

46 Roelofs, S., Boleij, H., Nordquist, R.E., van der Staay, F.J. (2016) 

Making decisions under ambiguity: Judgment bias tasks for 

assessing emotional state in animals. Frontiers in Behavioral 

Neuroscience 10: 119 

no affect manipulation or 

drug-based manipulation 

47 Roelofs, S., Nordquist, R.E., Staay, F.J. (2017) Female and male 

pigs’ performance in a spatial holeboard and judgment bias task. 

Applied Animal Behaviour Science 191: 5–16 

no affect manipulation or 

drug-based manipulation 

48 Rygula, R., Golebiowska, J., Kregiel, J., Holuj, M., Popik, P. 

(2015) Acute administration of lithium, but not valproate, 

modulates cognitive judgment bias in rats. Psychopharmacology 

232: 2149–2156 

no affect manipulation or 

drug-based manipulation 

49 Rygula, R., Golebiowska, J., Kregiel, J., Kubik, J., Popik, P. (2015) 

Effects of optimism on motivation in rats. Frontiers in Behavioral 

Neuroscience 9: 32 

no affect manipulation or 

drug-based manipulation 

50 Rygula, R., Popik, P. (2016) Trait "pessimism" is associated with 

increased sensitivity to negative feedback in rats. Cognitive 

Affective & Behavioral Neuroscience 16: 516–526 

no affect manipulation or 

drug-based manipulation 

51 Rygula, R., Szczech, E., Kregiel, J., Golebiowska, J., Kubik, J., 

Popik, P. (2015) Cognitive judgment bias in the psychostimulant-

induced model of mania in rats. Psychopharmacology 232: 651–660 

no affect manipulation or 

drug-based manipulation 

52 Sahin, C., Doostdar, N., Neill, J.C. (2016) Towards the 

development of improved tests for negative symptoms of 

schizophrenia in a validated animal model. Behavioural Brain 

Research 312: 93–101 

no affect manipulation or 

drug-based manipulation 

53 Saito, Y., Yuki, S., Seki, Y., Kagawa, H., Okanoya, K. (2016) 

Cognitive bias in rats evoked by ultrasonic vocalizations suggests 

emotional contagion. Behavioural Processes 132: 42312 

no affect manipulation or 

drug-based manipulation 

54 Salmeto, A.L., Hymel, K. A., Carpenter, E.C., Brilot, B.O., 

Bateson, M., Sufka, K.J. (2011) Cognitive bias in the chick anxiety-

depression model. Brain Research 1373: 124–130 

no affect manipulation or 

drug-based manipulation 

55 Starling, M. J., Branson, N., Cody, D., Starling, T.R., McGreevy, 

P.D. (2014). Canine sense and sensibility: tipping points and 

response latency variability as an optimism index in a canine 

judgement bias assessment. PLOS	One	9: e107794 

no affect manipulation or 

drug-based manipulation 

56 Stuart, S.A., Butler, P., MunafÃ², M.R., Nutt, D.J., Robinson, E.S.J. no judgement bias test 
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(2013) A translational rodent assay of affective biases in depression 

and antidepressant therapy. Neuropsychopharmacology 38: 1625–

1635 

57 Sümegi, Z., Gácsi, M., Topál, J. (2014) Conditioned placebo effect 

in dogs decreases separation related behaviours. Applied Animal 

Behaviour Science 159: 90–98 

no affect manipulation or 

drug-based manipulation 

58 Svendsen, P.M., Malmkvist, J., Halekoh, U., Mendl, M. (2012) 

Responses of mink to auditory stimuli: Prerequisites for applying 

the 'cognitive bias' approach. Behavioural Processes 91: 291–297 

no judgement bias test 

59 Tami, G., Torre, C., Compagnucci, M., Manteca, X. (2011) 

Interpretation of ambiguous spatial stimuli in cats. Animal Welfare 

20: 185–189 

no affect manipulation or 

drug-based manipulation 

60 Titulaer, M., Blackwell, E.J., Mendl, M., Casey, R.A. (2013) Cross 

sectional study comparing behavioural, cognitive and physiological 

indicators of welfare between short and long term kennelled 

domestic dogs. Applied Animal Behaviour Science 147: 149–158 

data missing or not 

extractable 

61 Verbeek, E., Ferguson, D., Quinquet de Monjour, P., Lee, C. (2014) 

Generating positive affective states in sheep: The influence of food 

rewards and opioid administration. Applied Animal Behaviour 

Science 154: 39–47 

no affect manipulation or 

drug-based manipulation 

62 Vonk, J., McGuire, M.C., Johnson-Ulrich, Z. (2019) Seasonal 

changes in affect in an American black bear (Ursus americanus). 

Wildlife Biology 10: 277–284 

no affect manipulation or 

drug-based manipulation 
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Table	S4	
Phylogenetic	Meta-Analytical	(intercept-only)	model	estimating	the	overall	effect	of	the	

experimental	manipulations	on	the	judgement	bias	in	animals.	Mean	=	overall	meta-analytic	

effect;	CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	

Interval.	Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	

statistically	significant).		I2	=	estimates	of	heterogeneity	values	accounted	for	by	different	

random	effects.	ArticleID	=	identity	of	an	original	paper	from	which	data	was	extracted;	

ExperimentID	=	identity	of	an	experiment	from	which	data	originated;	Phylogeny	=	phylogenetic	

variance-covariance	matrix	representing	evolutionary	relationships	among	species;	EffectID	=	

residual	variance.	N	levels	=	number	of	levels	of	each	random	effect.	

Data   Fixed effects   Random effects 

    Mean CI.lb CI.ub   I2 N 
levels 

       
 

All data Intercept 0.201 0.028 0.374 Total 76.4 459 

  
   

Phylogeny 2.0 22 

  
   

ScalePoint 0.4 5 

  
   

ArticleID 2.8 71 

  
   

ExperimentID 3.1 91 

  
   

EffectID 68.1 459 

       
 

Ambiguous cues subset Intercept 0.291 -0.002 0.584 Total 77.5 269 

  
   

Phylogeny 7.5 22 

  
   

ScalePoint 0 3 

  
   

ArticleID 9.3 71 

  
   

ExperimentID 14.6 91 

  
   

EffectID 46.1 269 

  
     

 
Mid-cue effect subset Intercept 0.291 -0.051 0.634 Total 78.4 108 

  
   

Phylogeny 9.4 22 

  
   

ScalePoint 0.0 1 

  
   

ArticleID 27.9 71 

  
   

ExperimentID 11.4 91 

  
   

EffectID 29.7 108 

       
 

Largest absolute effect 
subset Intercept 0.376 -0.049 0.801 Total 89.8 108 

 
    Phylogeny 4.3 22 

 
    ScalePoint 0.6 5 

 
    ArticleID 0.0 71 

 
    ExperimentID 47.5 91 

 
    EffectID 37.4 108 

 
       

Dominant effect subset Intercept 0.609 0.119 1.099 Total 88.6 108 

 
    Phylogeny 9.1 22 

 
    ScalePoint 0.0 5 
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    ArticleID 0.0 71 

 
    ExperimentID 19.8 91 

 
    EffectID 59.6 108 

Table	S5	
Meta-analytical	(intercept-only)	model	estimating	the	overall	effect	of	the	experimental	

manipulations	on	the	judgement	bias	in	animals	without	controlling	for	phylogeny.	Mean	=	

overall	meta-analytic	effect;	CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	

bound	of	95%	Confidence	Interval.	Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	

crossing	zero	(considered	statistically	significant).	SpeciesID	=	identity	of	a	species	from	which	

data	originated;	ArticleID	=	identity	of	an	original	paper	from	which	data	was	extracted;	

ExperimentID	=	identity	of	an	experiment	from	which	data	originated;	EffectID	=	residual	

variance.	I2	=	estimates	of	heterogeneity	values	accounted	for	by	different	random	effects.	N	

levels	=	number	of	levels	of	each	random	effect.		

Data   Fixed effects   Random effects 

    Mean CI.lb CI.ub   I2 N 
levels 

        
All data Intercept 0.204 0.087 0.320 Total 76.3 459 

     
SpeciesID 0.0 22 

     
ScalePoint 0.3 5 

     
ArticleID 4.8 71 

     
ExperimentID 2.6 91 

      
68.5 459 

        Ambiguous cues subset Intercept 0.261 0.103 0.419 Total 76.9 269 

     
SpeciesID 1.8 22 

     
ScalePoint 0.0 3 

     
ArticleID 13.3 71 

     
ExperimentID 14.3 91 

     
EffectID 47.4 269 

        Mid-cue effect subset Intercept 0.251 0.056 0.446 Total 77.6 108 

     
SpeciesID 2.8 22 

     
ScalePoint 0.0 1 

     
ArticleID 33.3 71 

     
ExperimentID 9.9 91 

     
EffectID 31.6 108 

        Largest absolute effect 
subset Intercept 0.386 0.080 0.692 Total 89.7 108 

     
SpeciesID 1.1 22 

     
ScalePoint 1.1 5 

     
ArticleID 6.7 71 

     
ExperimentID 42.9 91 

     
EffectID 38.1 108 
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        Dominant effect subset Intercept 0.577 0.326 0.827 Total 88.2 108 

     
SpeciesID 0.0 22 

     
ScalePoint 0.0 5 

     
ArticleID 8.1 71 

     
ExperimentID 15.5 91 

     
EffectID 64.5 108 

        

Table	S6	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	identity	of	species	used	in	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	each	species.	Models	

include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	Mean	=	overall	meta-analytic	

effect	for	each	species	(intercept);	CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	

bound	of	95%	Confidence	Interval.	Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	

crossing	zero	(considered	statistically	significant).	R2	=	variance	explained	(R2[marginal]),	k	=	

number	of	effect	sizes	per	each	level	of	the	moderator.	

Data Species name Fixed effects R2 
  Mean CI.lb CI.ub  

All data  
   

0.070 
 Apis mellifera carnica 0.237 -0.698 1.173 15 
 Bombus terrestris audax 0.538 -0.732 1.808 5 
 Bos taurus 0.335 -0.646 1.317 15 
 Callithrix jacchus 0.569 -0.889 2.026 3 
 Canis lupus familiaris 0.198 -0.654 1.050 17 
 Capra hircus -0.193 -1.229 0.842 15 
 Coturnix japonica -0.333 -1.362 0.696 20 
 Drosophila melanogaster 0.651 -1.132 2.434 3 
 Equus caballus -0.217 -1.240 0.806 14 
 Felis catus 0.653 -0.745 2.052 5 
 Gallus gallus -0.033 -0.858 0.792 41 
 Macaca mulatta 0.433 -0.745 1.612 10 
 Mesocricetus auratus 0.324 -0.807 1.455 5 
 Mus musculus 0.271 -0.640 1.181 43 
 Ovis aries 0.163 -0.606 0.932 65 
 Pecari tajacu 0.069 -1.289 1.427 3 
 Rattus norvegicus 0.401 -0.357 1.159 76 
 Serinus canaria 0.263 -0.881 1.407 5 
 Sturnus vulgaris 0.066 -0.761 0.894 40 
 Sus scrofa domesticus 0.223 -0.565 1.010 51 
 Tayassu pecari 0.935 -0.436 2.307 3 
 Ursus arctos horribilis 0.403 -0.830 1.636 5 
Ambiguous cues subset     0.186 
 Apis mellifera carnica 0.346 -0.642 1.334 9 
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 Bombus terrestris audax 1.052 -0.380 2.483 3 
 Bos taurus 0.594 -0.443 1.632 9 
 Callithrix jacchus 0.829 -1.037 2.695 1 
 Canis lupus familiaris 0.298 -0.583 1.179 11 
 Capra hircus -0.433 -1.557 0.691 9 
 Coturnix japonica -0.724 -1.776 0.328 12 
 Drosophila melanogaster 2.457 0.146 4.767 1 
 Equus caballus -0.400 -1.496 0.697 8 
 Felis catus 0.683 -0.869 2.236 3 
 Gallus gallus -0.061 -0.897 0.775 23 
 Macaca mulatta 0.681 -0.648 2.01 6 
 Mesocricetus auratus 0.513 -0.774 1.801 3 
 Mus musculus 0.240 -0.729 1.208 25 
 Ovis aries 0.110 -0.663 0.882 39 
 Pecari tajacu -0.230 -1.966 1.506 1 
 Rattus norvegicus 0.544 -0.211 1.299 44 
 Serinus canaria 0.410 -0.890 1.709 3 
 Sturnus vulgaris 0.182 -0.654 1.019 24 
 Sus scrofa domesticus 0.386 -0.417 1.189 31 
 Tayassu pecari 1.022 -0.744 2.788 1 
 Ursus arctos horribilis 0.307 -1.075 1.688 3 
Mid-cue effect subset     0.270 
 Apis mellifera carnica 0.327 -0.804 1.459 3 
 Bombus terrestris audax 1.569 -0.209 3.347 1 
 Bos taurus 0.797 -0.396 1.991 3 
 Callithrix jacchus 0.829 -1.025 2.683 1 
 Canis lupus familiaris 0.334 -0.558 1.226 5 
 Capra hircus -0.396 -1.684 0.892 3 
 Coturnix japonica -0.845 -2.205 0.515 4 
 Drosophila melanogaster 2.457 0.156 4.757 1 
 Equus caballus -0.673 -1.906 0.559 3 
 Felis catus 0.443 -1.436 2.323 1 
 Gallus gallus -0.166 -1.048 0.716 9 
 Macaca mulatta 0.786 -0.780 2.352 2 
 Mesocricetus auratus -0.042 -1.602 1.518 1 
 Mus musculus 0.276 -0.733 1.285 9 
 Ovis aries 0.030 -0.710 0.771 13 
 Pecari tajacu -0.230 -1.952 1.492 1 
 Rattus norvegicus 0.600 -0.087 1.287 24 
 Serinus canaria 0.796 -0.801 2.392 1 
 Sturnus vulgaris 0.081 -0.787 0.950 8 
 Sus scrofa domesticus 0.261 -0.508 1.029 13 
 Tayassu pecari 1.022 -0.731 2.775 1 
 Ursus arctos horribilis -0.079 -1.748 1.591 1 
Largest absolute effect subset     0.218 
 Apis mellifera carnica 1.353 -0.480 3.186 3 
 Bombus terrestris audax 1.569 -1.237 4.375 1 
 Bos taurus 2.477 0.389 4.565 3 
 Callithrix jacchus 0.829 -2.025 3.683 1 
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 Canis lupus familiaris 0.385 -1.177 1.948 5 
 Capra hircus -0.395 -2.468 1.677 3 
 Coturnix japonica -0.902 -2.668 0.865 4 
 Drosophila melanogaster -3.069 -6.358 0.219 1 
 Equus caballus -1.076 -3.011 0.858 3 
 Felis catus 1.195 -1.711 4.100 1 
 Gallus gallus -0.130 -1.566 1.306 9 
 Macaca mulatta 0.878 -1.650 3.407 2 
 Mesocricetus auratus 1.111 -1.577 3.799 1 
 Mus musculus 0.415 -1.234 2.064 9 
 Ovis aries 0.094 -1.229 1.417 13 
 Pecari tajacu 0.314 -2.460 3.088 1 
 Rattus norvegicus 0.714 -0.515 1.943 24 
 Serinus canaria 0.796 -1.899 3.490 1 
 Sturnus vulgaris 0.132 -1.366 1.629 8 
 Sus scrofa domesticus 0.682 -0.684 2.049 13 
 Tayassu pecari 1.022 -1.768 3.812 1 
 Ursus arctos horribilis 0.740 -2.026 3.505 1 
Dominant effect subset     0.190 
 Apis mellifera carnica 1.354 -0.366 3.074 3 
 Bombus terrestris audax 1.569 -1.086 4.224 1 
 Bos taurus 2.411 0.430 4.391 3 
 Callithrix jacchus 0.829 -1.877 3.535 1 
 Canis lupus familiaris 0.384 -1.075 1.843 5 
 Capra hircus -0.392 -2.301 1.516 3 
 Coturnix japonica -0.901 -2.566 0.764 4 
 Drosophila melanogaster 2.457 -0.573 5.486 1 
 Equus caballus -0.844 -2.672 0.984 3 
 Felis catus 1.195 -1.565 3.954 1 
 Gallus gallus 0.149 -1.176 1.474 9 
 Macaca mulatta 0.879 -1.377 3.135 2 
 Mesocricetus auratus 1.111 -1.419 3.641 1 
 Mus musculus 0.874 -0.630 2.377 9 
 Ovis aries 0.684 -0.540 1.909 13 
 Pecari tajacu 0.314 -2.307 2.936 1 
 Rattus norvegicus 0.744 -0.391 1.879 24 
 Serinus canaria 0.796 -1.742 3.333 1 
 Sturnus vulgaris 0.110 -1.293 1.513 8 
 Sus scrofa domesticus 0.621 -0.634 1.876 13 
 Tayassu pecari 1.022 -1.616 3.660 1 
 Ursus arctos horribilis 0.740 -1.872 3.352 1 

Table	S7	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	sex	of	animals	used	in	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	
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Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub K 

All data  
   

0.024 
 Females intercept 0.104 -0.063 0.271 225 
 Males intercept 0.365 0.155 0.575 118 
 Mixed-sex intercept 0.202 -0.009 0.414 116 
 Females – Males contrast 0.261 -0.001 0.522  
 Females – Mixed-sex contrast 0.098 -0.165 0.361  
 Males – Mixed-sex contrast -0.163 -0.455 0.130  
Ambiguous cues subset  

   
0.052 

 Females intercept 0.124 -0.133 0.382 133 
 Males intercept 0.523 0.194 0.853 68 
 Mixed-sex intercept 0.294 -0.015 0.603 68 
 Females – Males contrast 0.399 0.032 0.766  
 Females – Mixed-sex contrast 0.170 -0.180 0.519  
 Males – Mixed-sex contrast -0.229 -0.640 0.181  
Mid-cue effect subset  

   
0.094 

 Females intercept 0.052 -0.217 0.320 49 
 Males intercept 0.574 0.256 0.892 32 
 Mixed-sex intercept 0.238 -0.093 0.569 27 
 Females – Males contrast 0.522 0.112 0.933  
 Females – Mixed-sex contrast 0.186 -0.240 0.612  
 Males – Mixed-sex contrast -0.336 -0.795 0.123  
Largest absolute effect subset  

   
0.067 

 Females intercept 0.153 -0.263 0.570 49 
 Males intercept 0.875 0.388 1.361 32 
 Mixed-sex intercept 0.215 -0.320 0.749 27 
 Females – Males contrast 0.721 0.114 1.329  
 Females – Mixed-sex contrast 0.061 -0.596 0.719  
 Males – Mixed-sex contrast -0.660 -1.361 0.041  
Dominant effect subset  

   
0.025 

 Females intercept 0.514 -0.009 1.038 49 
 Males intercept 0.902 0.248 1.557 32 
 Mixed-sex intercept 0.484 -0.133 1.102 27 
 Females – Males contrast 0.388 -0.270 1.046  
 Females – Mixed-sex contrast -0.030 -0.650 0.591  
 Males – Mixed-sex contrast -0.418 -1.163 0.327  
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Table	S8	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	type	of	task	used	in	judgement	

bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	moderators	and	

contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	Models	include	

ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	of	95%	

Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	effects	

with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data  
   

0.021 
 Active choice intercept 0.432 0.151 0.712 70 
 Go/no-go intercept 0.154 0.005 0.304 389 
 Active choice – Go/no-go contrast -0.277 -0.567 0.012  
Ambiguous cues subset  

   
0.059 

 Active choice intercept 0.688 0.297 1.080 38 
 Go/no-go intercept 0.193 -0.042 0.428 231 
 Active choice – Go/no-go contrast -0.495 -0.878 -0.113  
Mid-cue effect subset  

   
0.095 

 Active choice intercept 0.708 0.286 1.130 22 
 Go/no-go intercept 0.160 -0.080 0.400 86 
 Active choice – Go/no-go contrast -0.548 -0.992 -0.103  
Largest absolute effect 
subset  

   
0.008 

 Active choice intercept 0.590 -0.071 1.251 22 
 Go/no-go intercept 0.327 -0.076 0.731 86 
 Active choice – Go/no-go contrast -0.263 -0.939 0.414  
Dominant effect subset  

   
0.015 

 Active choice intercept 0.882 0.184 1.579 22 
 Go/no-go intercept 0.539 0.065 1.014 86 
 Active choice – Go/no-go contrast -0.342 -0.985 0.301  

Table	S9	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	type	of	the	cue	used	in	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		
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Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.044 
 Auditory cue intercept  0.393 0.136 0.651 81 
 Olfactory cue intercept 0.280 -0.215 0.775 18 
 Spatial cue intercept 0.165 -0.003 0.334 177 
 Tactile cue intercept 0.658 0.136 1.180 16 
 Visual cue intercept 0.067 -0.133 0.268 167 
 Auditory – Olfactory contrast -0.113 -0.668 0.441  
 Auditory – Spatial contrast -0.228 -0.530 0.074  
 Auditory – Tactile contrast 0.265 -0.313 0.843  
 Auditory – Visual contrast -0.326 -0.647 -0.005  
 Olfactory – Spatial contrast -0.115 -0.634 0.405  
 Olfactory – Tactile contrast 0.378 -0.338 1.095  
 Olfactory – Visual contrast -0.213 -0.743 0.318  
 Spatial – Tactile contrast 0.493 -0.052 1.038  
 Spatial – Visual contrast -0.098 -0.353 0.157  
 Tactile – Visual contrast -0.591 -1.147 -0.035  
Ambiguous cues subset     0.082 
 Auditory cue intercept  0.626 0.261 0.99 39 
 Olfactory cue intercept 0.551 -0.130 1.232 10 
 Spatial cue intercept 0.148 -0.066 0.361 111 
 Tactile cue intercept 0.693 0.106 1.280 12 
 Visual cue intercept 0.125 -0.139 0.388 97 
 Auditory – Olfactory contrast -0.075 -0.847 0.698  
 Auditory – Spatial contrast -0.478 -0.900 -0.056  
 Auditory – Tactile contrast 0.067 -0.624 0.758  
 Auditory – Visual contrast -0.501 -0.951 -0.051  
 Olfactory – Spatial contrast -0.403 -1.117 0.310  
 Olfactory – Tactile contrast 0.142 -0.757 1.041  
 Olfactory – Visual contrast -0.426 -1.157 0.304  
 Spatial – Tactile contrast 0.545 -0.080 1.170  
 Spatial – Visual contrast -0.023 -0.362 0.316  
 Tactile – Visual contrast -0.568 -1.212 0.075  
Mid-cue effect subset     0.133 
 Auditory cue intercept  0.625 0.209 1.041 21 
 Olfactory cue intercept 0.666 -0.209 1.540 4 
 Spatial cue intercept 0.060 -0.209 0.330 40 
 Tactile cue intercept 0.808 0.147 1.469 8 
 Visual cue intercept 0.145 -0.191 0.481 35 
 Auditory – Olfactory contrast 0.041 -0.928 1.009  
 Auditory – Spatial contrast -0.565 -1.061 -0.069  
 Auditory – Tactile contrast 0.183 -0.598 0.964  
 Auditory – Visual contrast -0.480 -1.015 0.055  
 Olfactory – Spatial contrast -0.605 -1.520 0.310  
 Olfactory – Tactile contrast 0.142 -0.954 1.238  
 Olfactory – Visual contrast -0.521 -1.457 0.416  
 Spatial – Tactile contrast 0.747 0.033 1.461  
 Spatial – Visual contrast 0.085 -0.346 0.515  
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 Tactile – Visual contrast -0.663 -1.404 0.079  
Largest absolute effect subset     0.061 
 Auditory cue intercept  0.816 0.200 1.432 21 
 Olfactory cue intercept 0.561 -0.754 1.875 4 
 Spatial cue intercept 0.166 -0.258 0.591 40 
 Tactile cue intercept 1.037 0.076 1.997 8 
 Visual cue intercept 0.243 -0.273 0.759 35 
 Auditory – Olfactory contrast -0.255 -1.702 1.192  
 Auditory – Spatial contrast -0.650 -1.388 0.088  
 Auditory – Tactile contrast 0.221 -0.911 1.352  
 Auditory – Visual contrast -0.573 -1.368 0.222  
 Olfactory – Spatial contrast -0.395 -1.772 0.983  
 Olfactory – Tactile contrast 0.476 -1.150 2.102  
 Olfactory – Visual contrast -0.318 -1.724 1.088  
 Spatial – Tactile contrast 0.870 -0.170 1.911  
 Spatial – Visual contrast 0.077 -0.581 0.734  
 Tactile – Visual contrast -0.794 -1.878 0.291  
Dominant effect subset     0.077 
 Auditory cue intercept  0.809 0.237 1.380 21 
 Olfactory cue intercept 1.579 0.353 2.805 4 
 Spatial cue intercept 0.378 -0.025 0.780 40 
 Tactile cue intercept 1.154 0.268 2.040 8 
 Visual cue intercept 0.386 -0.090 0.862 35 
 Auditory – Olfactory contrast 0.770 -0.582 2.123  
 Auditory – Spatial contrast -0.431 -1.104 0.242  
 Auditory – Tactile contrast 0.346 -0.684 1.375  
 Auditory – Visual contrast -0.422 -1.148 0.303  
 Olfactory – Spatial contrast -1.201 -2.490 0.088  
 Olfactory – Tactile contrast -0.425 -1.937 1.088  
 Olfactory – Visual contrast -1.193 -2.508 0.122  
 Spatial – Tactile contrast 0.776 -0.181 1.734  
 Spatial – Visual contrast 0.009 -0.592 0.609  
 Tactile – Visual contrast -0.768 -1.760 0.224  

Table	S10	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	cue	reinforcement	scheme	

used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	

categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	

levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	

bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	

indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	

significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	

moderator.		
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Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.030 
 Reward-Null intercept 0.052 -0.192 0.295 132 
 Reward-Punishment intercept 0.216 0.036 0.396 283 
 Reward-Reward intercept 0.488 0.137 0.839 44 

 Reward-Null – Reward-
Punishment contrast 0.164 -0.087 0.415  

 Reward-Null – Reward-Reward 
contrast 0.436 0.045 0.827  

 Reward-Punishment – Reward-
Reward contrast 0.272 -0.082 0.626  

Ambiguous cues subset     0.062 
 Reward-Null intercept 0.046 -0.313 0.405 82 
 Reward-Punishment intercept 0.325 0.030 0.620 159 
 Reward-Reward intercept 0.654 0.187 1.121 28 

 Reward-Null – Reward-
Punishment contrast 0.279 -0.052 0.609  

 Reward-Null – Reward-Reward 
contrast 0.608 0.122 1.094  

 Reward-Punishment – Reward-
Reward contrast 0.329 -0.110 0.768  

Mid-cue effect subset     0.075 
 Reward-Null intercept -0.024 -0.461 0.413 29 
 Reward-Punishment intercept 0.352 0.012 0.691 65 
 Reward-Reward intercept 0.595 0.046 1.144 14 

 Reward-Null – Reward-
Punishment contrast 0.376 -0.050 0.801  

 Reward-Null – Reward-Reward 
contrast 0.619 0.015 1.224  

 Reward-Punishment – Reward-
Reward contrast 0.243 -0.289 0.776  

Largest absolute effect subset     0.045 
 Reward-Null intercept -0.053 -0.640 0.534 29 
 Reward-Punishment intercept 0.519 0.110 0.929 65 
 Reward-Reward intercept 0.580 -0.199 1.359 14 

 Reward-Null – Reward-
Punishment contrast 0.572 -0.070 1.215  

 Reward-Null – Reward-Reward 
contrast 0.633 -0.288 1.554  

 Reward-Punishment – Reward-
Reward contrast 0.061 -0.757 0.879  

Dominant effect subset     0.059 
 Reward-Null intercept 0.139 -0.461 0.738 29 
 Reward-Punishment intercept 0.780 0.306 1.253 65 
 Reward-Reward intercept 0.710 -0.070 1.491 14 

 Reward-Null – Reward-
Punishment contrast 0.641 0.061 1.222  

 Reward-Null – Reward-Reward 
contrast 0.572 -0.274 1.417  

 Reward-Punishment – Reward-
Reward contrast -0.069 -0.821 0.682  
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Table	S11	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	reinforcement	category	for	

ambiguous	cues	used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	

levels	of	categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	

among	these	levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	

CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	

Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	

statistically	significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	

level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.001 
 No intercept  0.204 0.026 0.382 421 
 Yes intercept 0.124 -0.490 0.738 38 
 No – Yes contrast 0.080 -0.527 0.686  
Ambiguous cues subset     0.003 
 No intercept  0.297 -0.004 0.598 247 
 Yes intercept 0.156 -0.666 0.978 22 
 No – Yes contrast 0.141 -0.650 0.931  
Mid-cue effect subset     0.014 
 No intercept  0.306 -0.054 0.666 100 
 Yes intercept -0.031 -0.993 0.932 8 
 No – Yes contrast 0.337 -0.587 1.261  
Largest absolute effect 
subset     0.069 
 No intercept  0.421 -0.067 0.909 100 
 Yes intercept -0.832 -2.248 0.585 8 
 No – Yes contrast 1.253 -0.122 2.628  
Dominant effect subset     0.02 
 No intercept  0.636 0.119 1.153 100 
 Yes intercept 0.015 -1.275 1.305 8 
 No – Yes contrast 0.622 -0.604 1.847  

Table	S12	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	position	of	the	cue	(i.e.	

ScalePoint)	used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	

levels	of	categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	

among	these	levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	

CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	

Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	
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statistically	significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	

level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.014 
 P cue intercept  0.063 -0.153 0.278 95 
 NP cue intercept 0.225 -0.002 0.451 81 
 MID cue intercept 0.250 0.042 0.458 108 
 NN cue intercept 0.303 0.075 0.530 80 
 N cue intercept 0.181 -0.034 0.396 95 
 P – NP contrast 0.162 -0.057 0.381  
 P – MID contrast 0.187 -0.014 0.389  
 P – NN contrast 0.240 0.020 0.460  
 P – N contrast 0.118 -0.088 0.325  
 NP – MID contrast 0.025 -0.188 0.238  
 NP – NN contrast 0.078 -0.148 0.304  
 NP – N contrast -0.044 -0.262 0.175  
 MID – NN contrast -0.025 -0.238 0.188  
 MID – N contrast 0.053 -0.161 0.267  
 NN – N contrast -0.122 -0.341 0.098  
Ambiguous cues subset     0.003 
 P cue intercept     0 
 NP cue intercept 0.284 -0.042 0.610 81 
 MID cue intercept 0.260 -0.054 0.575 108 
 NN cue intercept 0.356 0.030 0.683 80 
 N cue intercept    0 
 P – NP contrast     
 P – MID contrast     
 P – NN contrast     
 P – N contrast     
 NP – MID contrast -0.024 -0.217 0.170  
 NP – NN contrast 0.072 -0.129 0.274  
 NP – N contrast     
 MID – NN contrast 0.096 -0.098 0.290  
 MID – N contrast     
 NN – N contrast     
Mid-cue effect subset     0 
 P cue intercept     0 
 NP cue intercept    0 
 MID cue intercept 0.291 -0.051 0.634 108 
 NN cue intercept    0 
 N cue intercept    0 
 P – NP contrast     
 P – MID contrast     
 P – NN contrast     
 P – N contrast     
 NP – MID contrast     
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 NP – NN contrast     
 NP – N contrast     
 MID – NN contrast     
 MID – N contrast     
 NN – N contrast     
Largest absolute effect subset     0.052 
 P cue intercept  -0.054 -0.664 0.557 26 
 NP cue intercept 0.517 -0.209 1.244 13 
 MID cue intercept 0.708 0.205 1.212 31 
 NN cue intercept 0.410 -0.196 1.016 22 
 N cue intercept 0.270 -0.380 0.920 16 
 P – NP contrast 0.571 -0.330 1.472  
 P – MID contrast 0.762 0.035 1.490  
 P – NN contrast 0.464 -0.350 1.278  
 P – N contrast 0.324 -0.528 1.176  
 NP – MID contrast 0.191 -0.597 0.979  
 NP – NN contrast -0.107 -1.011 0.796  
 NP – N contrast -0.247 -1.173 0.679  
 MID – NN contrast -0.191 -0.979 0.597  
 MID – N contrast -0.298 -1.041 0.444  
 NN – N contrast -0.140 -0.974 0.695  
Dominant effect subset     0.033 
 P cue intercept  0.161 -0.550 0.871 19 
 NP cue intercept 0.752 -0.068 1.571 12 
 MID cue intercept 0.733 0.140 1.325 34 
 NN cue intercept 0.698 0.037 1.358 28 
 N cue intercept 0.647 -0.073 1.368 15 
 P – NP contrast 0.591 -0.305 1.487  
 P – MID contrast 0.572 -0.132 1.276  
 P – NN contrast 0.537 -0.228 1.303  
 P – N contrast 0.487 -0.341 1.315  
 NP – MID contrast -0.019 -0.804 0.766  
 NP – NN contrast -0.054 -0.913 0.806  
 NP – N contrast -0.104 -1.017 0.808  
 MID – NN contrast 0.019 -0.766 0.804  
 MID – N contrast -0.035 -0.697 0.627  
 NN – N contrast -0.050 -0.828 0.727  

Table	S13	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	source	of	animals	used	in	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	
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effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.004 
 Captive intercept 0.224 0.040 0.408  
 Wild-caught intercept 0.073 -0.295 0.441  
 Captives – Wild-caught contrast -0.151 -0.535 0.233  
Ambiguous cues subset     0.000 
 Captive intercept 0.302 -0.023 0.627  
 Wild-caught intercept 0.261 -0.270 0.791  
 Captives – Wild-caught contrast -0.042 -0.579 0.496  
Mid-cue effect subset     0.003 
 Captive intercept 0.323 -0.065 0.711  
 Wild-caught intercept 0.180 -0.492 0.852  
 Captives – Wild-caught contrast -0.143 -0.831 0.546  
Largest absolute effect 
subset     0.006 
 Captive intercept 0.323 -0.173 0.819  
 Wild-caught intercept 0.682 -0.328 1.691  
 Captives – Wild-caught contrast 0.358 -0.682 1.399  
Dominant effect subset     0.000 
 Captive intercept 0.615 0.079 1.151  
 Wild-caught intercept 0.610 -0.369 1.588  
 Captives – Wild-caught contrast -0.005 -1.001 0.991  

Table S14 

Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	age	of	animals	used	in	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained (R2
[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.000 
 Adults intercept  0.210 0.025 0.395  
 Juveniles intercept 0.179 -0.068 0.426  
 Adults – Juveniles contrast -0.032 -0.279 0.215  
Ambiguous cues subset     0.001 
 Adults intercept  0.285 -0.036 0.606  
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 Juveniles intercept 0.325 -0.078 0.728  
 Adults – Juveniles contrast 0.040 -0.301 0.382  
Mid-cue effect subset     0.000 
 Adults intercept  0.290 -0.082 0.663  
 Juveniles intercept 0.308 -0.177 0.793  
 Adults – Juveniles contrast 0.018 -0.414 0.449  
Largest absolute effect 
subset     0.013 
 Adults intercept  0.298 -0.236 0.832  
 Juveniles intercept 0.615 -0.088 1.317  
 Adults – Juveniles contrast 0.316 -0.327 0.960  
Dominant effect subset     0.003 
 Adults intercept  0.586 0.033 1.139  
 Juveniles intercept 0.719 0.022 1.417  
 Adults – Juveniles contrast 0.133 -0.465 0.732  

Table	S15	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	type	of	affect	manipulation	

used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	

categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	

levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	

bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	

indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	

significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	

moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.008 
 Enrichment intercept 0.112 -0.129 0.353 157 
 Stress intercept 0.244 0.044 0.444 302 
 Enrichment – Stress contrast 0.132 -0.097 0.361  
Ambiguous cues subset     0.008 
 Enrichment intercept 0.201 -0.174 0.576 93 
 Stress intercept 0.339 0.011 0.667 176 
 Enrichment – Stress contrast 0.138 -0.172 0.448  
Mid-cue effect subset     0.02 
 Enrichment intercept 0.150 -0.296 0.596 37 
 Stress intercept 0.367 -0.020 0.753 71 
 Enrichment – Stress contrast 0.217 -0.162 0.595  
Largest absolute effect 
subset     0.008 
 Enrichment intercept 0.219 -0.370 0.808 37 
 Stress intercept 0.449 -0.027 0.924 71 
 Enrichment – Stress contrast 0.230 -0.345 0.804  
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Dominant effect subset     0.021 
 Enrichment intercept 0.372 -0.234 0.978 37 
 Stress intercept 0.721 0.203 1.240 71 
 Enrichment – Stress contrast 0.349 -0.171 0.870  

Table	S16	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	timing	of	affect	manipulation	

used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	

categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	

levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	

bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	

indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	

significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	

moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.002 
 Before/during intercept 0.238 0.029 0.446 167 
 Long-term intercept 0.173 -0.024 0.369 292 

 Before/during – Long-term 
contrast -0.065 -0.280 0.150  

Ambiguous cues subset     0.003 
 Before/during intercept 0.334 0.004 0.663 93 
 Long-term intercept 0.255 -0.063 0.572 176 

 Before/during – Long-term 
contrast -0.079 -0.374 0.215  

Mid-cue effect subset     0.008 
 Before/during intercept 0.362 -0.026 0.751 39 
 Long-term intercept 0.230 -0.142 0.603 69 

 Before/during – Long-term 
contrast -0.132 -0.490 0.226  

Largest absolute effect 
subset     0 
 Before/during intercept 0.404 -0.123 0.930 39 
 Long-term intercept 0.357 -0.128 0.843 69 

 Before/during – Long-term 
contrast -0.046 -0.600 0.507  

Dominant effect subset     0.016 
 Before/during intercept 0.771 0.240 1.301 39 
 Long-term intercept 0.468 -0.033 0.969 69 

 Before/during – Long-term 
contrast -0.303 -0.813 0.207  

Table	S17	
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Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	type	of	comparison	of	affect	

manipulations	used	in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	

levels	of	categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	

among	these	levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	

CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	

Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	

statistically	significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	

level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data  
   

0.010 
 Benign-Worse intercept  0.263 0.062 0.464 230 
 Better-Benign intercept 0.149 -0.104 0.402 135 
 Better-Worse intercept 0.102 -0.162 0.365 94 

 Benign-Worse – Better-
Benign contrast -0.114 -0.361 0.133  

 Benign-Worse – Better-Worse 
contrast -0.162 -0.414 0.090  

 Better-Benign – Better-Worse 
contrast -0.048 -0.347 0.251  

Ambiguous cues subset  
   

0.007 
 Benign-Worse intercept  0.338 0.017 0.659 132 
 Better-Benign intercept 0.275 -0.100 0.650 81 
 Better-Worse intercept 0.183 -0.218 0.583 56 

 Benign-Worse – Better-
Benign contrast -0.063 -0.381 0.256  

 Benign-Worse – Better-Worse 
contrast -0.155 -0.493 0.183  

 Better-Benign – Better-Worse 
contrast -0.092 -0.488 0.303  

Mid-cue effect subset  
   

0.007 
 Benign-Worse intercept  0.329 -0.049 0.706 55 
 Better-Benign intercept 0.309 -0.145 0.763 31 
 Better-Worse intercept 0.166 -0.317 0.649 22 

 Benign-Worse – Better-
Benign contrast -0.019 -0.431 0.392  

 Benign-Worse – Better-Worse 
contrast -0.163 -0.590 0.265  

 Better-Benign – Better-Worse 
contrast -0.144 -0.652 0.364  

Largest absolute effect 
subset  

   
0.006 

 Benign-Worse intercept  0.433 -0.032 0.898 55 
 Better-Benign intercept 0.221 -0.383 0.824 31 
 Better-Worse intercept 0.414 -0.246 1.073 22 

 Benign-Worse – Better-
Benign contrast -0.212 -0.830 0.406  

 Benign-Worse – Better-Worse 
contrast -0.019 -0.684 0.646  
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 Better-Benign – Better-Worse 
contrast 0.193 -0.577 0.963  

Dominant effect subset  
   

0.012 
 Benign-Worse intercept  0.713 0.194 1.232 55 
 Better-Benign intercept 0.484 -0.144 1.113 31 
 Better-Worse intercept 0.444 -0.236 1.123 22 

 Benign-Worse – Better-
Benign contrast -0.229 -0.807 0.349  

 Benign-Worse – Better-Worse 
contrast -0.269 -0.882 0.343  

 Better-Benign – Better-Worse 
contrast -0.040 -0.758 0.677  

Table	S18	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	experimental	design	type	used	

in	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.008 
 Between intercept  0.151 -0.061 0.364 302 
 Within intercept 0.279 0.044 0.514 157 
 Between – Within contrast -0.128 -0.353 0.097  
Ambiguous cues subset     0.03 
 Between intercept  0.199 -0.16 0.559 182 
 Within intercept 0.470 0.079 0.861 87 
 Between – Within contrast -0.271 -0.578 0.037  
Mid-cue effect subset     0.024 
 Between intercept  0.210 -0.205 0.625 71 
 Within intercept 0.453 -0.001 0.908 37 
 Between – Within contrast -0.243 -0.618 0.132  
Largest absolute effect 
subset     0.049 
 Between intercept  0.168 -0.420 0.755 71 
 Within intercept 0.756 0.098 1.415 37 
 Between – Within contrast -0.589 -1.158 -0.02  
Dominant effect subset     0.030 
 Between intercept  0.487 -0.170 1.143 71 
 Within intercept 0.921 0.206 1.636 37 
 Between – Within contrast -0.434 -0.967 0.098  
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Table	S19	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	food	deprivation	during	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub K 

All data     0.000 
 No intercept  0.201 0.011 0.391 324 
 Yes intercept 0.202 -0.039 0.444 135 
 No – Yes contrast -0.001 -0.243 0.240  
Ambiguous cues subset     0.003 
 No intercept  0.262 -0.038 0.561 192 
 Yes intercept 0.347 -0.010 0.704 77 
 No – Yes contrast -0.085 -0.407 0.236  
Mid-cue effect subset     0.022 
 No intercept  0.210 -0.119 0.540 77 
 Yes intercept 0.448 0.037 0.858 31 
 No – Yes contrast -0.237 -0.628 0.154  
Largest absolute effect 
subset     0.083 
 No intercept  0.167 -0.169 0.503 77 
 Yes intercept 0.948 0.439 1.458 31 
 No – Yes contrast -0.781 -1.360 -0.202  
Dominant effect subset     0.033 
 No intercept  0.454 0.039 0.869 77 
 Yes intercept 0.909 0.361 1.457 31 
 No – Yes contrast -0.455 -1.002 0.092  

Table	S20	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	measurement	type	used	during	

judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	

moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	

of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	

effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		
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Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.000 
 Latency intercept 0.193 0.001 0.386 201 
 Proportion intercept 0.192 0.006 0.378 258 
 Latency – Proportion contrast 0.002 -0.201 0.205  
Ambiguous cues subset     0.001 
 Latency intercept 0.266 -0.054 0.585 123 
 Proportion intercept 0.311 -0.001 0.624 146 
 Latency – Proportion contrast 0.046 -0.221 0.312  
Mid-cue effect subset     0.009 
 Latency intercept 0.211 -0.152 0.575 46 
 Proportion intercept 0.348 -0.003 0.700 62 
 Latency – Proportion contrast 0.137 -0.198 0.471  
Largest absolute effect 
subset     0.008 
 Latency intercept 0.264 -0.189 0.717 46 
 Proportion intercept 0.484 0.051 0.917 62 
 Latency – Proportion contrast 0.220 -0.285 0.726  
Dominant effect subset     0.032 
 Latency intercept 0.369 -0.083 0.820 46 
 Proportion intercept 0.777 0.342 1.212 62 
 Latency – Proportion contrast 0.409 -0.076 0.893  

Table	S21	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	automation	of	measurements	

during	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	

categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	

levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	

bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	

indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	

significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	

moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.000 
 No intercept  0.196 0.016 0.375 388 
 Yes intercept 0.237 -0.079 0.554 71 
 No – Yes contrast -0.042 -0.353 0.270  
Ambiguous cues subset     0.000 
 No intercept  0.289 -0.011 0.588 232 
 Yes intercept 0.314 -0.165 0.792 37 
 No – Yes contrast -0.025 -0.459 0.409  
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Mid-cue effect subset     0.002 
 No intercept  0.280 -0.068 0.628 91 
 Yes intercept 0.363 -0.210 0.937 17 
 No – Yes contrast -0.083 -0.614 0.448  
Largest absolute effect 
subset     0.004 
 No intercept  0.347 -0.073 0.767 91 
 Yes intercept 0.566 -0.194 1.326 17 
 No – Yes contrast -0.219 -0.979 0.541  
Dominant effect subset     0.000 
 No intercept  0.608 0.102 1.115 91 
 Yes intercept 0.620 -0.148 1.389 17 
 No – Yes contrast -0.012 -0.699 0.675  

Table	S22	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	blinding	of	measurements	

during	judgement	bias	tests	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	

categorical	moderators	and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	

levels.	Models	include	ArticleID,	ExperimentID,	and	ScalePoint	(position	of	the	cue),	as	random	

effects.	CI.lb	=	lower	bound	of	95%	Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	

Interval.	Bold	font	indicates	effects	with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	

statistically	significant).	R2	=	variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	

level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data     0.001 
 No intercept  0.186 0.002 0.369 346 
 Yes intercept 0.246 -0.009 0.501 113 
 No – Yes contrast -0.061 -0.315 0.194  
Ambiguous cues subset     0.000 
 No intercept  0.288 -0.020 0.597 204 
 Yes intercept 0.303 -0.091 0.697 65 
 No – Yes contrast -0.015 -0.361 0.331  
Mid-cue effect subset     0.001 
 No intercept  0.279 -0.082 0.640 80 
 Yes intercept 0.329 -0.139 0.797 28 
 No – Yes contrast -0.05 -0.472 0.373  
Largest absolute effect 
subset     0.000 
 No intercept  0.381 -0.080 0.842 80 
 Yes intercept 0.366 -0.253 0.985 28 
 No – Yes contrast 0.015 -0.598 0.627  
Dominant effect subset     0.004 
 No intercept  0.652 0.143 1.161 80 
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 Yes intercept 0.488 -0.151 1.127 28 
 No – Yes contrast 0.164 -0.403 0.730  

Table	S23	
Multivariate	Multilevel	Phylogenetic	Meta-Regression	models	with	four	moderators	that	were	

deemed	as	significant	in	the	univariate	models	(Tables	S7-S23)	as	fixed	effects.	Models	include	

ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	of	95%	

Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval	Bold	font	indicates	effects	

with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data      0.072 

 Females Active Choice Acoustic Cue 
intercept 0.028 -0.481 0.536  

 Sex: Female – Male contrast 0.194 -0.102 0.490  
 Sex: Female – Mixed-sex contrast 0.115 -0.160 0.391  

 
Task type: Active choice – Go/no-go 
contrast 0.080 -0.412 0.572  

 Cue type: Acoustic – Olfactory contrast 0.037 -0.585 0.658  
 Cue type: Acoustic – Spatial contrast -0.103 -0.497 0.292  
 Cue type: Acoustic – Tactile contrast 0.342 -0.302 0.986  
 Cue type: Acoustic – Visual contrast -0.242 -0.636 0.152  

 Reinforcement type: Reward-Null – 
Reward-Punishment 0.136 -0.147 0.420  

 Reinforcement type: Reward-Null – 
Reward-Reward 0.356 -0.161 0.873  

Ambiguous cues subset      0.136 

 Females Active Choice Acoustic Cue 
intercept 0.320 -0.366 1.007  

 Sex: Female – Male contrast 0.295 -0.083 0.673  
 Sex: Female – Mixed-sex contrast 0.196 -0.163 0.555  

 
Task type: Active choice – Go/no-go 
contrast -0.254 -0.934 0.426  

 Cue type: Acoustic – Olfactory contrast 0.246 -0.600 1.092  
 Cue type: Acoustic – Spatial contrast -0.163 -0.702 0.376  
 Cue type: Acoustic – Tactile contrast 0.050 -0.721 0.820  
 Cue type: Acoustic – Visual contrast -0.250 -0.789 0.289  

 Reinforcement type: Reward-Null – 
Reward-Punishment 0.198 -0.169 0.565  

 Reinforcement type: Reward-Null – 
Reward-Reward 0.245 -0.432 0.921  

Mid-cue effect subset      0.200 

 Females Active Choice Acoustic Cue 
intercept 0.265 -0.575 1.104  

 Sex: Female – Male contrast 0.360 -0.111 0.832  
 Sex: Female – Mixed-sex contrast 0.252 -0.201 0.705  
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Task type: Active choice – Go/no-go 
contrast -0.295 -1.099 0.508  

 Cue type: Acoustic – Olfactory contrast 0.347 -0.714 1.408  
 Cue type: Acoustic – Spatial contrast -0.229 -0.876 0.417  
 Cue type: Acoustic – Tactile contrast 0.270 -0.649 1.190  
 Cue type: Acoustic – Visual contrast -0.196 -0.845 0.454  

 Reinforcement type: Reward-Null – 
Reward-Punishment 0.272 -0.201 0.745  

 Reinforcement type: Reward-Null – 
Reward-Reward 0.070 -0.774 0.914  

Largest absolute effect 
subset      0.126 

 Females Active Choice Acoustic Cue 
intercept -0.327 -1.581 0.927  

 Sex: Female – Male contrast 0.597 -0.118 1.312  
 Sex: Female – Mixed-sex contrast 0.190 -0.516 0.896  

 
Task type: Active choice – Go/no-go 
contrast 0.648 -0.542 1.838  

 Cue type: Acoustic – Olfactory contrast -0.075 -1.688 1.539  
 Cue type: Acoustic – Spatial contrast -0.605 -1.596 0.385  
 Cue type: Acoustic – Tactile contrast 0.813 -0.563 2.189  
 Cue type: Acoustic – Visual contrast -0.452 -1.459 0.555  

 Reinforcement type: Reward-Null – 
Reward-Punishment 0.409 -0.314 1.132  

 Reinforcement type: Reward-Null – 
Reward-Reward 0.285 -0.978 1.548  

Dominant effect subset      0.138 

 Females Active Choice Acoustic Cue 
intercept 0.158 -1.004 1.320  

 Sex: Female – Male contrast 0.269 -0.410 0.947  
 Sex: Female – Mixed-sex contrast 0.093 -0.556 0.743  

 
Task type: Active choice – Go/no-go 
contrast -0.049 -1.142 1.044  

 Cue type: Acoustic – Olfactory contrast 0.887 -0.591 2.366  
 Cue type: Acoustic – Spatial contrast -0.202 -1.082 0.677  
 Cue type: Acoustic – Tactile contrast 0.873 -0.399 2.145  
 Cue type: Acoustic – Visual contrast -0.150 -1.056 0.755  

 Reinforcement type: Reward-Null – 
Reward-Punishment 0.602 -0.049 1.254  

 Reinforcement type: Reward-Null – 
Reward-Reward 0.008 -1.160 1.176  

Table	S24	
Results	of	multivariate	meta-regression	model	selection	for	the	full	data	set.	The	top	6	models	

(out	of	16	considered)	within	the	ΔAIC	difference	(delta)	of	less	than	2	are	shown.	The	models	

were	built	from	combinations	of	4	potentially	influential	moderators:	task	type,	reinforcement	

type,	cue	type	and	sex	of	animals.	K	=	the	number	of	parameters	in	the	model	including	the	

intercept	and	the	residual	error	estimates,	LogLik	=	Log	Likelihood,	AICc	=	Akaike	Information	

Criteria	with	correction	for	small	sample	sizes,	weight	=	model	weights.	
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Model K LogLik AICc delta weight 

Task type 6 -581.29 1174.76 0.000 0.346 
Reinforcement Category 7 -580.66 1175.56 0.802 0.232 
Sex + Task type  8 -580.07 1176.46 1.699 0.148 
Reinforcement Category + Task type 8 -580.14 1176.61 1.845 0.138 
Intercept-only (no moderators) 5 -583.25 1176.63 1.864 0.136 

Table	S25	
Univariate	Multilevel	Phylogenetic	Meta-Regression	models	with	(scaled)	year	of	study	

publication	as	a	fixed	effect.	Intercept	values	are	shown	for	all	levels	of	categorical	moderators	

and	contrasts	values	are	shown	for	the	pairwise	differences	among	these	levels.	Models	include	

ArticleID,	ExperimentID,	and	ScalePoint,	as	random	effects.	CI.lb	=	lower	bound	of	95%	

Confidence	Interval;	CI.lb	=	upper	bound	of	95%	Confidence	Interval.	Bold	font	indicates	effects	

with	Confidence	Intervals	(CI)	not	crossing	zero	(considered	statistically	significant).	R2	=	

variance	explained	(R2[marginal]),	k	=	number	of	effect	sizes	per	each	level	of	the	moderator.		

Data Levels and contrasts Fixed effects R2 
  Mean CI.lb CI.ub k 

All data      0.000 
 Intercept  0.201 0.028 0.375 459 
 Publication year slope -0.002 -0.121 0.118  
Ambiguous cues subset     0.000 
 Intercept  0.291 -0.003 0.586 269 
 Publication year slope 0.011 -0.143 0.165  
Mid-cue effect subset     0.009 
 Intercept  0.295 -0.055 0.644 108 
 Publication year slope 0.068 -0.117 0.253  
Largest absolute effect 
subset     0.009 
 Intercept  0.378 -0.024 0.779 108 
 Publication year slope -0.119 -0.407 0.169  
Dominant effect subset     0.000 
 Intercept  0.201 0.028 0.375 108 
 Publication year slope -0.002 -0.121 0.118  

Table	S26	
Bayesian	Multivariate	Multilevel	Phylogenetic	Meta-Regression	model	with	four	moderators	

that	were	deemed	as	significant	in	the	univariate	models	with	these	moderators	as	a	fixed	effect.	

Models	include	ArticleID,	ExperimentID,	and	ScalePoint	(position	of	the	cue),	as	random	effects.	

Bold	font	indicates	effects	with	Highest	Posterior	Density	(HPD,	i.e.	95%	Credible	Interval)	

interval	not	crossing	zero	(considered	statistically	significant).	HPD.lb	–	lower	bound	of	Highest	
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Posterior	Density	interval;	HPD.lb	=	upper	bound	of	Highest	Posterior	Density	interval.	SD	=	

Standard	Deviation,	DIC	=	Deviance	Information	Criteria.	

 Fixed effects        
  Mode Mean SD HPD.lb HPD.ub 

Intercept 0.217 0.206 0.086 0.041 0.383 
        
Random effects     
  Mode Mean SD HPD.lb HPD.ub 

Scale Point 0.003 0.019 0.072 0.000 0.079 
ArticleID 0.001 0.035 0.038 0.000 0.107 
ExperimentID 0.000 0.030 0.033 0.000 0.098 
residuals 0.405 0.416 0.042 0.339 0.501 
        
Heterogeneity    DIC DIC 

  Mode Mean SD Mean Range 

I2 ScalePoint 0.4 3.1 10.9 1037.90 (1037.73 - 1038.15) 

I2 ArticleID 0.1 5.4 5.4   

I2 ExperimentID 0.1 4.7 4.8   

I2 EffectID 68.2 66.7 5.3   

I2 total 75.9 76.8 2.0   

	


