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Abstract:  
  
Data  across  scales  are  required  to  monitor  ecosystem  responses  to  rapid  warming  in  the               
Arctic  and  to  interpret  tundra  greening  trends.  Here,  we  tested  the  correspondence  among              
satellite-  and  drone-derived  seasonal  change  in  tundra  greenness  to  identify  optimal  spatial             
scales  for  vegetation  monitoring  on  Qikiqtaruk  -  Herschel  Island  in  the  Yukon  Territory,              
Canada.  We  combined  time-series  of  the  Normalised  Difference  Vegetation  Index  (NDVI)            
from  multispectral  drone  imagery  and  satellite  data  (Sentinel-2,  Landsat  8  and  MODIS)  with              
ground-based  observations  for  two  growing  seasons  (2016  and  2017).  We  found  high             
cross-season  correspondence  in  plot  mean  greenness  (drone-satellite  Spearman’s  ⍴          
0.67-0.87)  and  pixel-by-pixel  greenness  (drone-satellite  R 2  0.58-0.69)  for  eight  one-hectare           
plots,  with  drones  capturing  lower  NDVI  values  relative  to  the  satellites.  We  identified  a               
plateau  in  the  spatial  variation  of  tundra  greenness  at  distances  of  around  half  a  metre  in  the                  
plots,  suggesting  that  these  grain  sizes  are  optimal  for  monitoring  such  variation  in  the  two                
most  common  vegetation  types  on  the  island.  We  further  observed  a  notable  loss  of               
seasonal  variation  in  the  spatial  heterogeneity  of  landscape  greenness  (46.2  -  63.9%)  when              
aggregating  from  ultra-fine-grain  drone  pixels  (approx.  0.05  m)  to  the  size  of  medium-grain              
satellite  pixels  (10  –  30  m).  Finally,  seasonal  changes  in  drone-derived  greenness  were              
highly  correlated  with  measurements  of  leaf-growth  in  the  ground-validation  plots  (mean            
Spearman’s  ⍴  0.70).  These  findings  indicate  that  multispectral  drone  measurements  can            
capture  temporal  plant  growth  dynamics  across  tundra  landscapes.  Overall,  our  results            
demonstrate  that  novel  technologies  such  as  drone  platforms  and  compact  multispectral            
sensors  allow  us  to  study  ecological  systems  at  previously  inaccessible  scales  and  fill  gaps               
in  our  understanding  of  tundra  ecosystem  processes.  Capturing  fine-scale  variation  across            
tundra  landscapes  will  improve  predictions  of  the  ecological  impacts  and  climate  feedbacks             
of   environmental   change   in   the   Arctic.  
 
Keywords : Arctic   tundra,   vegetation   monitoring,   landscape   phenology,   satellite,   drones,   

UAV   and   RPAS,   NDVI,   scale  
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Introduction  
 
Identifying  the  scales  at  which  ecological  processes  operate  is  a  fundamental,  yet  often              
neglected  element  of  ecological  research (1–3) .  Cross-scale  ecological  information  can           
inform  our  understanding  of  the  causes  and  consequences  of  global  change (2) .  In  tundra               
ecosystems,  vegetation  responses  triggered  by  rapid  Arctic  warming  could  influence           
ecosystem  functions  through  altered  carbon  and  nutrient  cycles  with  potential  feedbacks  to             
the  global  climate  system (4–8) .  Yet,  challenging  logistics  have  limited  the  extent  of              
field-based  observations  in  Arctic  ecosystems (9–11) .  The  grain  sizes  of  global-extent            
satellite  products  (tens  of  meters  to  kilometres)  are  too  coarse  to  capture  the  fine-scale               
dynamics  of  tundra  plants (12–14)  and  to  link  vegetation  change  to  key  ecosystem  functions               
(13) .  Thus,  by  bridging  this  “scale-gap”,  we  can  transform  our  understanding  of  pan-Arctic              
tundra   vegetation   change   and   associated   global-scale   climate   feedbacks.  
  
Satellites   show   greening   of   the   tundra  
 
Satellite  observations  indicate  a  ‘greening’  of  tundra  ecosystems (13,15–20)  and  shifts  in             
growing  season  phenology  over  recent  decades (21–24) .  Observations  of  increasing  tundra            
greenness  are  often  reported  from  surface-reflectance-derived  Normalised  Difference         
Vegetation  Index  (NDVI) (16,18,25,26) .  Satellite-observed  tundra  greening  has  occurred          
concurrently  with  ground-based  observations  of  vegetation  change  in  Arctic  ecosystems (27)            
including  increased  shrub  cover (28–31)  and  taller  community  level  plant  height (32) ,  as  well               
as  earlier  leaf  emergence  and  flowering  at  some (33–36) ,  but  not  all  tundra  sites (37–39) .                
However,  mismatches  between  ground  and  satellite-based  observations  suggest  the          
potential   for   an   observational   scale   gap    (13) .  
 
Arctic   vegetation   change   and   phenology   have   been   linked   to   warming  
 
Satellite-observed  Arctic  greening  trends  have  been  linked  directly  to  warming  air            
temperatures (19,20,40–46)  and  indirectly  to  sea-ice  declines (17,47–51) .  Ground-based          
observations  of  tundra  vegetation  change  correspond  with  warming (27,32,52) ,  but  do  not             
always  co-occur  with  satellite  greening  trends  in  the  regions  around  the  ecological             
monitoring  sites (13,53) .  While  satellite-based  phenology  observations  from  the  Arctic  have            
been  mainly  linked  to  temperature (22,54,55) , in  situ  phenology  in  the  tundra  has  been               
shown  to  be  influenced  by  a  suite  of  interacting  factors  rarely  tested  in  satellite-based               
analysis  of  Arctic  phenology.  These  factors  include,  but  are  not  limited  to:  snowmelt,              
temperature,  day  length,  and  the  proximal  influences  of  sea-ice  on  localised  climate  affect              
(34–36,38,56,57) .  Thus,  ecological  studies  indicate  greater  complexity  of  drivers  than           
analyses   of   satellite-derived   greening   trends   to   date.  
  
Inconsistencies   amongst   satellite   platforms   and   heterogenous   greening   trends  
 
Greening  trends  and  phenology  measures  derived  from  different  satellite  platforms  do  not             
always  correspond  with  each  other (13,18) .  Additionally,  satellite-derived  greening  trends           
vary  at  global (18) ,  continental (42,58–60)  and  regional  scales (46–48,61–64) .  Many  areas             
of  the  Arctic  show  no  trends  in  NDVI,  with  only  around  20%  of  the  Arctic  spectrally  greening                  

https://www.zotero.org/google-docs/?B9Itcr
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https://www.zotero.org/google-docs/?TTWNvT
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and  around  1  -  4%  of  the  Arctic  spectrally  browning (13,62,65,66) .  Recent  analyses  suggest               
a  slowdown  of  the  Arctic-wide  spectral  greening  trend  over  the  past  decade (43,67) .              
Furthermore,  despite  NDVI  being  related  to  the  photosynthetically  active  biomass  in  the             
tundra (14,68–70) ,  geophysical,  environmental  and  ecological  factors,  such  as  low  solar            
angle,  atmospheric  effects  (including  cloud  and  fog),  snow  cover,  soil  moisture  and  standing              
water,  in  addition  to  the  non-linearity  of  NDVI-biomass  relationships,  complicate  the            
interpretation  of  satellite-derived  NDVI  time-series  at  high  latitudes (13,71) .  The  growing            
complexity  highlighted  in  Arctic  greening  trends  has  led  to  repeated  calls  for  ground              
validation   of   satellite   observations    (11,18,59,60,66,72,73) .  
  
The   scale   discrepancy   problem   in   Arctic   greening  
 
A  major  problem  in  linking  satellite-derived  trends  of  spectral  greenness  and  phenology  to in               
situ  observations  of  ecological  processes  in  the  tundra  is  the  discrepancy  in  observational              
scales (13,29,61,72,74) .  Satellite  datasets  with  long-term  records  are  limited  by  their            
moderate-  to  coarse-grain  sizes,  ranging  from  30  m  (Landsat)  to  250  m  (MODIS)  and  8  km                 
(AVHRR-GIMMS3g). In  situ  ecological  monitoring  in  the  Arctic  is  logistically  challenging  and             
therefore  restricted  in  extent  to  a  limited  number  of  sites  and  often  metre-squared  plots               
(10,75) .  Only  a  few  studies  have  linked  on-the-ground  vegetation  or  phenology  change  to              
satellite  trends  in  NDVI  in  Arctic  tundra (13,14,47,48,53,76–78) .  However,  drones  equipped            
with  compact  sensors  now  allow  for  the  collection  of  ultra-fine-grain  multispectral  imagery  at              
landscape  extents  that  can  potentially  bridge  the  scale-gap  between  satellite  and            
ground-based   observations    (14,79–82) .  
  
Novel   drone   data   to   study   variation   in   greenness  
 
Here,  we  set  out  to  test  whether  drones  can  be  used  to  identify  the  key  ecological  scales  for                   
studying  tundra  greenness  on  Qikiqtaruk  in  the  Canadian  Arctic  by  bridging  the  scale  gap               
between  satellite  and in  situ  data.  First,  we  tested  whether  satellite-  and  drone-derived              
measures  of  mean  landscape-scale  greenness  (NDVI)  agree  across  two  growing  seasons            
while  controlling  for  the  potentially  confounding  effects  of  topography  and  land  cover.             
Second,  we  identified  the  key  spatial  scales  for  ecological  variation  in  landscape  greenness              
within  the  two  most  common  vegetation  types  at  our  study  site  using  variograms.  Third,  we                
tested  how  the  magnitude  of  seasonal  variation  in  tundra  greenness  scales  across  grain              
sizes  from  fine-resolution  drone  imagery  to  medium-grain  satellite  imagery.  Finally,  we            
assessed  whether  drone-derived  NDVI  corresponds  with  on-the-ground  measures  of  within           
growing  season  change  in  plant  growth  based  on  methods  frequently  used  by  long-term              
field-based  monitoring  networks.  Thus,  in  our  analysis  we  validated  satellite-derived           
landscape  estimates  of  vegetation  greenness  with  ultra-fine-grain  drone  data  and  described            
spatial  and  temporal  variation  in  tundra  productivity  at  landscape  extents  (1-100  ha)  with              
grain   sizes   that   were   previously   not   accessible.  
 
Methods  
 
Site   description:   Qikiqtaruk   -   Herschel   Island   
 

https://www.zotero.org/google-docs/?PV2kCe
https://www.zotero.org/google-docs/?EwgiVm
https://www.zotero.org/google-docs/?RphbDF
https://www.zotero.org/google-docs/?jKjpPC
https://www.zotero.org/google-docs/?HfXAMr
https://www.zotero.org/google-docs/?Oh6ZMd
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https://www.zotero.org/google-docs/?tYBHrs
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Qikiqtaruk  (69.57  N,  138.91  W)  is  located  in  the  Beaufort  Sea  along  the  coastline  of  the                 
North  Slope  of  the  Yukon  Territory,  Canada.  The  vegetation  is  the  moist  acidic  shrub  tundra                
(83)  characteristically  found  in  the  Western  Arctic  regions  of  North  America,  which  has              
experienced  strong  spectral  greening  in  recent  decades (13) .  The  two  most  common  plant              
communities  on  the  island  are  the  tussock  sedge  (“Herschel“)  and  Dryas-vetch  (“Komakuk”)             
vegetation  types (84,85) .  The  tussock  sedge  vegetation  is  dominated  by  the  name-giving             
tussock  sedge Eriophorum  vaginatum  L.  with  varying  cover  of Salix  pulchra  Cham.  The              
top-soils  of  the  island  are  underlain  by  ice-rich  permafrost  and  undergo  frequent  disturbance              
(85) .  The  Dryas-vetch  vegetation  is  particularly  found  on  ground  disturbed  by  soil  creep  and               
is  characterised  by  the  near  ubiquitous  presence  of Dryas  integrifolia  Vahl.,  the  willow Salix               
arctica  Phall.,  various  grass  species  including Arctagrostis  latifolia .  (R.Br.)  Griseb.  and  forb             
species (86) .  The  relative  abundances  of  these  species  are  shown  in  (Figure  S1).  Though               
the  two  vegetation  types  are  specific  to  the  region,  these  plant  communities  would  group               
with   tundra   types   S1,   W2   and   G3/4   of   the   Circumpolar   Arctic   Vegetation   Map    (87) .   
 
We  established  four  study  areas  on  the  east  end  of  the  island,  each  with  two  co-located                 
one-hectare  plots  in  the  two  key  vegetation  types  (Figure  1,  Table  S1).  We  selected  plots                
with  homogenous  terrain  and  land  cover  to  represent  the  two  key  vegetation  types  and  to                
control  for  the  potentially  confounding  effects  of  terrain  and  cover  heterogeneity.  The  island              
harbours  small  herds  of  caribou  (100s  of  individuals)  and  muskox  (3  -  35  individuals  in                
recent  years)  of  fluctuating  size,  as  well  as  cyclic  populations  of  voles  and  lemmings (88) .                
We  estimate  the  overall  impact  of  herbivory  on  the  vegetation  in  our  study  plots  to  be  low                  
particularly   in   2016   and   2017   when   there   were   few   muskox   on   the   island.  
 
Multispectral   drone   time-series  
 
We  analysed  a  total  of  62  drone  surveys  from  21  dates;  see  Table  S2  for  a  breakdown  by                   
one-hectare  monitoring  plots.  We  collected  multispectral  drone  imagery  using  Parrot           
Sequoia  (Paris,  France)  compact  multispectral  sensors  mounted  on  multi-rotor  drone           
platforms  in  June  to  August  in  2016  and  2017.  We  used  three  different  drone  platforms:  a                 
Tarot  680  Pro  hexacopter  with  camera  sensor  stabilisation  in  2016,  and  a  3DR  Iris+  and  a                 
DJI  Phantom  4  Pro  without  sensor  stabilisation  in  2017.  Surveys  were  flown  using  parallel               
flight  lines  (a  lawn-mower  flight  pattern)  at  an  altitude  of  ca.  50  m,  giving  ground-sampling                
distances  of  0.04  m  to  0.06  m.  Images  were  acquired  with  75%  front-  and  side-lap  as  close                  
as  possible  to  solar  noon  (mean  absolute  difference  to  solar  noon  2.16  h,  maximum  6-7  h).                 
See  Table  S2  and  the  methods  section  of  the  Supplementary  Materials  for  further  details  on                
the  drone  surveys,  including  additional  information  on  radiometric  calibration,  as  well  as             
temporal   and   spatial   coverage.   
 
We  processed  the  Sequoia  imagery  using  Pix4D  Mapper  v4.0.21  (Lausanne,  Switzerland)            
with  the agMultispectral  template  and  the  ‘merge  map  tiles’  option  set  to  true  to  generate                
co-registered  single-band  surface  reflectance  maps.  Radiometric  calibration  was  carried  out           
in  Pix4D  Mapper  using  pre-  or  post-flight  imagery  of  calibrated  reflectance  panels;  in  2016               
we  used  a  MicaSense  (Seattle,  USA)  panel  and  in  2017  a  SphereOptics  (Herrsching,              
Germany)  Zenith  Lite  panel.  We  measured  panel  reflectance  pre-  and  post-  season  and              
used  the  mean  values  for  radiometric  calibration.  We  also  calibrated  for  sensor  properties              

https://www.zotero.org/google-docs/?t0GAbB
https://www.zotero.org/google-docs/?7tqfx0
https://www.zotero.org/google-docs/?7mHRKt
https://www.zotero.org/google-docs/?Vfjas1
https://www.zotero.org/google-docs/?BOSTyR
https://www.zotero.org/google-docs/?VUz2O6
https://www.zotero.org/google-docs/?1gWfgK
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and  sun  irradiance  measured  by  the  incident  light  sensor.  We  used  four  to  six  ground  control                 
points  per  survey  that  were  precisely  geolocated  with  a  GNSS  system  to  spatially  constrain               
the  reconstructions  in  Pix4D  Mapper  with  an  estimated  accuracy  of  1-2  pixels  between              
bands  and  2-6  pixels  between  surveys (81) .  We  calculated  the  Sequoia  NDVI  as  the               
normalised  difference  between  the  near-infrared  (770  nm  –  810  nm)  and  red  (640  nm  –  680                 
nm)   bands   of   sensor.  
 
Satellite   time-series  
 
Satellite  time-series  were  obtained  from  three  different  satellite  sensors:  1)  the  Moderate             
Resolution  Imaging  Spectroradiometer  (MODIS)  on  the  USGS  Terra  satellite,  2)  the            
Multispectral  Instrument  (MSI)  on  Sentinel-2  A  &  B  and  3)  the  Operational  Land  Imager  (OLI)                
on   Landsat   8.   
 
We  obtained  MODIS  NDVI  values  for  the  time  period  from  the  1st  May  to  the  30th  of                  
September  in  2016  and  2017  for  all  250  m  MODIS  pixels  that  contained  the  survey  plots.                 
NDVI  values  were  retrieved  from  the  16-day  MOD13Q1  v6  Terra  product (89)  using  the               
Google  Earth  Engine (90) .  We  discarded  all  values  with  a  ‘Summary  QA’  score  of  -1  (no                 
data)  or  3  (cloudy).  Table  S3  lists  the  resulting  MODIS-pixel-date  pairs.  The  MODIS  NDVI  is                
calculated  as  the  normalised  difference  between  bands  1  (841  nm  –  876  nm)  and  band  2                 
(620   nm   –   670   nm).  
  
For  the  Sentinel-2  time-series,  we  gathered  all  Sentinel-2  MSI  L1C  scenes  containing  the  tile               
covering  Qikiqtaruk  (T07WET)  that  were  available  on  the  Copernicus  Open  Access  Hub             
( https://scihub.copernicus.eu/ )  for  the  same  time  period  as  the  MODIS  pixels.  We  processed             
all  scenes  to  L2A  using  Sen2Cor  2.4.0 (91) ,  retained  all  bands  with  10  m  resolution  (2-4  &                  
8),  applied  the  cloud  mask  and  generated  a  true-colour  image.  We  inspected  all  scenes               
visually  and  discarded  all  imagery  with  cloud  contamination  over  the  study  area  (78%  of               
scenes  for  2016  and  74%  of  scenes  for  2017).  The  resulting  set  contained  nine  cloud-free                
Sentinel-2  L2A  scenes  of  the  study  area  from  2016  and  fifteen  scenes  from  2017  (Table  S4).                 
Finally,  the  Sentinel  NDVI  was  calculated  as  the  normalised  difference  between  band  8              
(784.5   nm   -   899.5   nm)   and   band   4   (650   nm   -   680   nm).   
 
Landsat  8  OLI  Level-2  (surface  reflectance)  time-series  were  obtained  using  the  USGS             
EarthExplorer  website  ( https://earthexplorer.usgs.gov/ )  by  querying  the  search  engine  for  all           
scenes  that  covered  the  study  site  during  the  same  time-period  as  the  MODIS  pixels  (n  =                 
94).  The  automatically  generated  cloud  masks  were  of  insufficient  quality,  so  we  manually              
inspected  all  scenes  and  retained  only  the  scenes  cloud-free  over  the  study  site  (n  =  7  for                  
2016,  n  =  8  for  2017,  Table  S5).  The  Landsat  8  NDVI  was  then  calculated  as  the  normalised                   
difference  between  band  5  (845  -  885  nm)  and  band  4  (630  -  680  nm).  The  study  plots  were                    
not  designed  with  a  Landsat  8  analysis  in  mind  and  did  not  naturally  coincide  with  the                 
Landsat  grid.  We  therefore  calculated  subsequent  one-hectare  plot  NDVI  averages  as  a             
weighted  mean,  where  each  pixel  was  weighted  by  the  proportion  of  the  plot  area  covered                
by   the   pixel.   
 
Ground-based   plant   phenology   measurements  

https://www.zotero.org/google-docs/?TLUYTV
https://www.zotero.org/google-docs/?olYlA3
https://www.zotero.org/google-docs/?XzHflG
https://scihub.copernicus.eu/
https://www.zotero.org/google-docs/?3Gw71R
https://earthexplorer.usgs.gov/
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We  carried  out  ground-based  phenology  monitoring  in  eight  2  m  x  2  m  plots  (Table  S6),  one                  
adjacent  to  each  one-hectare  plot  (mean  distance  =  23  m,  max  distance  =  52  m).  We  placed                  
the  ground-based  monitoring  plots  adjacent  to  the  drone-based  survey  plots  to  minimise  the              
effects  of  ecological  disturbance  and  trampling  in  the  drone  survey  plots  caused  by  the               
repeat  visits  necessary  for  the  ground-based  monitoring.  Within  these  plots  we  monitored  six              
individual  plants  from  the  most  common  species: E.  vaginatum , D.  integrifolia , S.  pulchra              
and A. latifolia  in  tussock  sedge  tundra; D.  integrifolia , S.  arctica  and A. latifolia  in                
Dryas-vetch  tundra.  On  each  survey  date,  we  measured  the  length  of  the  longest  leaf  on                
each  individual  to  the  nearest  millimetre.  This  approach  is  widely  used  in  field-based              
phenology  monitoring  protocols (92) ,  and  will  allow  for  NDVI  to  be  directly  related  to               
phenological  changes  in  plant  traits.  We  conducted  the  ground-based  surveys  in  tandem             
with  the  drone-based  surveys  where  logistical  possible,  resulting  in  a  dataset  of  52  drone               
and  ground  survey  pairs  spread  over  20  different  dates.  The  majority  of  ground-based              
phenology  surveys  were  carried  out  on  the  same  day  as  the  drone  surveys  (mean  difference                
=   0.3   days,   maximum   difference   =   3   days,   Table   S7).   
 
Cross-sensor   correspondence  
 
To  test  cross-sensor  correspondence,  we  first  had  to  scale  all  datasets  to  a  shared  spatial                
grain  and  time-window.  To  achieve  this,  we  first  plotted  the  spatial  mean  NDVI  for  all                
one-hectare  plots,  time-points  and  available  sensors  (MODIS  =  single  pixel,  Landsat  8  =              
weighted  mean)  across  both  growing  seasons  (2016  and  2017).  We  then  divided  the  two               
growing  seasons  into  22  consecutive  seven-day  blocks  starting  on  the  1st  of  May  each  year.                
Next,  we  calculated  the  temporal  mean  of  the  spatial  mean  NDVI  for  each  seven-day  block                
for  all  plot  and  sensor  combinations  where  data  was  available.  We  then  identified  all               
matching  seven-day  block  and  study  plot  combinations  for  each  drone-satellite  and            
satellite-satellite  combination.  We  then  tested  cross-sensor  correspondence  by  calculating          
Spearman’s  rank  correlation  and  mean  sensor-to-sensor  difference  in  the  plot  means  across             
the   whole   data   set.  
 
Additionally,  we  matched  all  drone  and  Sentinel-2  scenes,  as  well  as  all  drone  and  Landsat  8                 
scenes  that  were  less  than  two  days  apart.  We  resampled  the  red  and  near-infrared  drone                
bands  to  the  relevant  Sentinel-2  /  Landsat  8  grids  and  calculated  the  NDVI.  We  restricted  the                 
analysis  to  Landsat  8  pixels  fully  contained  within  the  study  plots  and  reprojected  the  drone                
data  from  UTM  7N  to  UTM  8N  using  a  bilinear  reprojection  where  the  Landsat  8  scenes                 
were  provided  in  this  projection.  Finally,  we  tested  the  predictive  relationship  between  the              
resampled  drone  and  satellite  NDVI  pixel-pairs  for  a  random  subsample  of  Sentinel  pixels              
(10%  of  total,  n  =  700)  and  all  available  Landsat  8  pixels  (n  =  198)  with  Bayesian  linear                   
models  (Table  S8  and  S9  for  Sentinel-2,  S10  and  S11  for  Landsat  8)  using  the  MCMCglmm                 
v.2.29   package    (93) .   
 
We  used  the  ‘resample’  function  of  the  R  raster  package  v.  3.0-12 (94)  for  resampling  from                 
finer  to  coarser  resolutions.  The  function  first  aggregates  the  smaller  grid  to  the  largest  clean                
divisor  of  the  larger  grid  using  the  mean  and  then,  if  required,  resamples  to  the  larger  grid                  
using  bilinear  interpolation.  We  also  tested  an  alternative  resampling  approach  by  first             

https://www.zotero.org/google-docs/?To0lvJ
https://www.zotero.org/google-docs/?bQWzPe
https://www.zotero.org/google-docs/?yyMutp
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resampling  to  a  common  resolution  and  grid  of  0.5  m  and  then  aggregating  by  mean,  but                 
found  no  qualitative  differences  in  our  results  (Figure  S2).  Further  details  about  software  and               
package  versions  used  for  raster  manipulations  and  visualisations  can  be  found  in  the              
Supplementary   Materials.   
 
 
Spatial   autocorrelation  
 
To  assess  the  spatial  autocorrelation  of  variation  in  tundra  greenness  within  the  eight  plots,               
we  sampled  variograms  and  fitted  variogram  models  using  the  gstat  v.  2.0-5  package              
(95,96) .  First,  we  pre-thinned  the  acquired  drone-data  by  randomly  sampling  5%  of  the  ca.  4                
million  pixels  of  each  orthomosaic.  We  then  sampled  variograms  for  all  plots  at  the  peak  of                 
the  2017  season  (26  and  28  July)  and  fitted  variogram  models,  letting  the  gstat  algorithm                
select  the  best  fit  amongst  spherical,  exponential  and  Matern  models.  The  only  exception              
was  Area  3  for  which  the  closest  available  complete  set  of  flights  was  on  the  18th  July  2017.                   
To  test  conformity  of  the  variograms  across  the  season,  we  repeated  the  analysis  for  the                
surveys  from  the  26  June  and  9  August  2017  for  Area  1  and  2.  No  change  in  the  variogram                    
patterns  were  observed  across  the  2017  season  and  we  therefore  assume  that  our  analysis               
is  representative  for  the  2016  season  also.  All  variograms  were  sampled  with  a  bin  width  of                 
0.15   m   from   0   to   15   m   and   a   bin   width   of   3   m   from   0   to   45   m.   
 
Grain   size   and   phenology  
 
We  tested  the  influence  of  grain-size  on  observations  of  tundra  greenness  phenology  by              
fitting  simplified  growing  season  curves  to  the  raster  stacks  for  each  plot  and  season.  We                
first  resampled  the  drone  bands  for  all  time-points  to  grids  with  grain  sizes  of  0.5,  1,  5,  10,  20                    
and  33.33  m.  We  then  calculated  the  NDVI  and  fitted  simple  quadratic  models  to  each  pixel                 
in  the  growing  season  stacks  (y  =  ax 2  +  bx  +  c,  where  x  is  the  day  of  year  and  y  the  pixel                        
NDVI,  a  the  quadratic  coefficient,  b  the  linear  coefficient  and  c  the  constant  term).  We  found                 
a  strong  negative  correlation  between  the  quadratic  and  linear  coefficients  of  the  models              
(Figure  S6),  and  therefore  selected  only  the  quadratic  coefficient  for  further  analysis.             
Additional  details  on  model  choice  and  analysis  can  be  found  in  the  method  section  of  the                 
Supplementary   Materials.  
 
Ground   validation  
 
To  test  the  correspondence  between  our  ground-based  phenology  measurements  and  the            
drone  observations,  we  derived  time-series  of  the  plot  mean  standardised  longest  leaf  length              
(hereafter  mean  longest  leaf  length)  for  all  species  (using  a  z-score  –  centred  data  with  a                 
standard  deviation  of  1)  and  the  drone-greenness  for  each  2  m  x  2  m  ground-based                
monitoring  plot.  See  supplementary  methods  for  details  on  how  the  leaf  measurements  were              
standardised.  The  drone-based  plot  mean  NDVI  values  were  then  matched  with  the  plot              
mean  longest  leaf  length  values  from  the  closest  ground-based  survey  date  (Table  S7).  We               
then  calculated  the  Spearman's  rank  correlation  between  mean  NDVI  and  mean  longest  leaf              
length  for  each  plot  and  season.  We  replicated  the  analysis  using  Sentinel-2  data  where               
available  (see  Supplementary  Materials).  Finally,  we  also  conducted  a  by-species  version  of             

https://www.zotero.org/google-docs/?asX7hO
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the  analysis  using  the  by-species  mean  of  the  absolute  longest  leaf  length  for  each  2  m  x  2                   
m   plot   rather   than   the   mean   based   on   the   standardised   longest   leaf   lengths.   
 
Results  
 
Landscape   greenness   corresponded   among   sensors  
 
Landscape  greenness  corresponded  well  among  drone,  Sentinel-2,  Landsat  8  and  MODIS            
across  both  the  2016  and  2017  growing  seasons.  Growing  season  curves  of  the  mean  NDVI                
for  the  one-hectare  plots  were  similar  (Figure  1)  and  the  plots’  temporal  (seven-day)  mean               
NDVI  values  were  highly  correlated  across  sensors  (Spearman’s  ⍴  >  0.59-0.98,  Table  S12).              
However,  we  observed  a  positive  offset  between  the  drone  and  satellite  seven-day  mean              
NDVI  values  for  the  plots.  This  offset  ranged  between  0.027  (Landsat  8)  and  0.073               
(Sentinel-2B)  absolute  NDVI  and  was  consistently  positive  across  satellites  (Table  S13).  The             
Landsat  8  offset  of  0.027  fell  within  the  range  of  the  estimated  error  ( ± 0.03)  associated  with                 
the  drone-derived  mean  NDVI  for  the  study  plots  determined  in  a  previous  study  using  the                
same   survey   method    (81) .  
 
Resampled  drone  pixels  (10  m  and  30  m)  and  the  corresponding  spatially  co-located              
Sentinel-2  and  Landsat  8  pixels  were  highly  correlated  (marginal  R 2  =  0.69  and  marginal  R 2                
=  0.58  respectively,  see  Figure  2  and  Table  S8  and  S10).  We  found  that  vegetation  type,  the                  
time-difference  between  satellite  scene  and  drone  data  acquisition,  and  the  specific  Sentinel             
platform  (Sentinel-2A  /  Sentinel-2B)  influenced  the  relationship  between  Sentinel-2  pixel           
NDVI  and  drone-derived  NDVI  (marginal  R 2  =  0.87  see  Table  S9).  While  the  Sentinel               
platform  (Sentinel-2A  /  Sentinel-2B)  had  the  strongest  impact  on  the  intercept  and  the  slope               
of  the  linear  model,  vegetation  type  and  time-difference  mainly  influenced  the  slope,  with              
time-difference  having  the  smallest  effect  on  slope  and  intercept  overall  (Table  S9).  In              
contrast,  we  only  detected  a  statistically  meaningful  effect  for  the  time-difference  between             
satellite  and  drone  scene  acquisition  in  the  Landsat  8  -  drone  pixel  model  (marginal  R 2  =                 
0.70);  vegetation  type  did  not  have  a  statistically  meaningful  influence  on  this  relationship              
(Table   S11).   
 
Spatial   variation   in   landscape   greenness   peaked   at   approx.   0.5   m  
 
Spatial  variability  in  the  NDVI  values  associated  with  distance  peaked  at  ranges  below  0.5               
meter  (mean  range  0.44  m)  during  the  peak-season  of  2017  (26-28  July).  Little  additional               
autocorrelation  structure  in  the  NDVI  was  found  between  pixel  pairs  for  distances  of  up  to  45                 
m  (Figure  3).  This  pattern  was  consistent  across  vegetation  types  in  seven  out  of  our  eight                 
plots  (Figure  3,  S3  and  S4).  The  only  exception  is  the  Dryas-vetch  plot  in  Area  3,  which                  
showed  the  same  patterns  for  distances  below  10  m,  but  thereafter  spatial  variation  steadily               
increased  (Figure  S4).  Peak  variability  (sill)  in  NDVI  decreased  as  the  growing  season              
progressed  (Figure  S5),  and  varied  with  vegetation  type  (Figure  3,  S3,  and  S4).  Unexplained               
variability   (nugget)   was   consistently   low   across   all   Areas   (Figure   3,   S3,   and   S4).  
 
 
Seasonal-variation   was   lost   when   aggregating   to   medium   grain   sizes  

https://www.zotero.org/google-docs/?Qz0eaZ


/

 

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

 
We  observed  a  notable  loss  in  the  amount  of  seasonal  variation  in  tundra  greenness  when                
aggregating  grain  sizes  from  ultra-fine-grain  drone  to  medium-grain  satellite  data.  The  loss             
was  particularly  pronounced  at  grain-sizes  above  10  m  –  the  grain  size  of  Sentinel-2  MSI                
pixels  (46.2  -  63.9%)  (Figure  4).  The  variation  in  the  quadratic  coefficient  of  the  simple                
growing  season  curves  (Figure  4b  and  S6)  decayed  logarithmically  with  grain  size  (Figure              
4a),  while  no  change  occurred  in  the  mean  tendency  of  the  coefficient  (Figure  S7).  The                
quadratic  and  linear  coefficients  of  the  growing  season  curves  were  strongly  correlated             
(Spearman’s  ⍴  =  -0.999),  thus  the  same  pattern  holds  true  for  the  linear  component  of  the                 
curve   fit   (Figure   S6).  
 
Drone-derived   spectral   greenness   correlated   well   with   leaf   measurements  
 
Drone-derived  spectral  greenness  correlated  well  (mean  ⍴  =  0.70)  with  ground-based            
measurements  of  phenology  for  graminoids  and  deciduous  plants  across  the  growing            
season  (Figure  5).  The  Spearman’s  correlation  coefficient  of  the  plot  mean  longest  leaf              
length  and  the  mean  drone-derived  NDVI  (mean  ⍴  =  0.70,  Table  S14  and  Figure  5)  matched                 
the  by-species  analysis  based  on  absolute  leaf  lengths  in  the  ground-based  phenology  plots              
(mean  ⍴  =  0.68,  Table  S15  and  Figure  S9).  The  graminoids  and  deciduous  shrub  species                
followed  this  mean  tendency  well  across  all  time-series,  while  the  partially-evergreen D.             
integrifolia  showed  mixed  responses  between  plots  and  years  (mean  ⍴  =  0.22,  Figure  S9).               
The  drone-based  time-series  of  greenness  of  the  2  m  x  2  m  ground-phenology  plots  highlight                
fine-scale  differences  in  phenology  such  as  the  continuous  greening  of  tussocks  that  was              
visible  at  the  tussock  sedge  tundra  plot  in  Area  2  (Figure  5c).  Sentinel-2  greenness  of  the                 
ground-monitoring  plots  showed  slightly  weaker  correlations  (mean  ⍴  =  0.58,  Figure  S10)             
with  the  mean  longest  leaf  length,  but  for  this  analysis  no  time-series  of  sufficient  length                
were   available   for   2016   and   peak-season   observations   in   2017   were   limited.   
 
Discussion  
 
Our  analysis  of  time-series  of  landscape  greenness  on  Qikiqtaruk  across  scales  highlights             
four  main  findings:  1)  Measures  of  mean  tendency  in  landscape  greenness  were  consistent              
across  sensors,  but  drone-derived  NDVI  values  were  lower  than  those  from  Sentinel-2,             
Landsat  8  and  MODIS  products  (Figures  1  and  2).  2)  The  majority  of  variation  in  landscape                 
greenness  was  contained  at  scales  of  around  half-a-metre,  and  is  thus  not  captured  by               
medium-grain  satellites  such  as  Sentinel-2  (Figure  3).  3)  When  aggregating  growing  season             
curves  from  ultra-fine-grain  drone  to  medium-grain  satellite  pixel  sizes,  a  notable  amount             
(46.2  -  63.9%)  of  variation  in  greenness  phenology  was  lost  (Figure  4).  4)  Drone-based               
measures  of  landscape  greenness  correlated  well  with  ground-based  measurements  of  leaf            
length  (Figure  5).  Taken  together,  our  results  highlight  that  drone  platforms  and  compact              
multispectral  sensors  can  capture  key  ecological  processes  such  as  vegetation  phenology            
and  enable  us  to  bridge  the  existing  scale  gap  between  satellite  and  ground-based              
monitoring   in   tundra   ecosystems.  
 
The  correspondence  between  drone  and  satellite-derived  NDVI  has  yet  to  be            
comprehensively  tested  across  Arctic  sites (13,14) .  Siewert  and  Olofson (14)  also            
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demonstrate  cross-sensor  agreement  between  drone-  and  satellite-derived  NDVI  from  Arctic           
Sweden.  While  similar  or  higher  levels  of  cross-sensor  agreement  have  been  observed  in              
other  natural  and  agricultural  systems (14,97,98) ,  some  non-Arctic  studies  showed  mixed  or             
poor  agreement (99–101) .  Continued  efforts  in  replicating  these  studies  at  different  sites  and              
systems  are  much  needed  to  comprehensively  evaluate  cross-sensor  correspondence  in           
Arctic   tundra   systems   and   beyond.   
 
We  observed  a  small  but  consistent  offset  between  drone-  and  satellite-derived  NDVI  that              
warrants  further  investigation.  A  similar  offset  has  been  detected  in  rice  fields  in  Italy (100)                
and  with  spectroradiometer  readings  in  ecologically  similar  tundra  in  Alaska (77) ,  but  see              
Siewert  and  Olofson (14)  for  a  lack  of  offset  in  the  more  heterogeneous  tundra  of  Arctic                 
Sweden.  Both  technical  and  ecological  factors  could  explain  the  offset.  We  were  not  able  to                
conduct  spectroradiometer  readings  coinciding  with  our  drone  surveys  for  on-the-ground           
comparisons.  Technical  reasons  for  the  observed  offset  may  include:  atmospheric  effects,            
differences  in  viewing  geometries,  sensor  properties  (e.g.  band  widths)  and  signal            
processing  between  drones  and  satellites  (e.g.  radiometric  calibration),  but  also  among            
different  drone  studies.  Ecologically,  the  variation  in  land  cover  (especially  the            
presence/absence  of  non-vegetative  surfaces)  or  topography  within  a  landscape  may           
influence  the  correspondence  between  measures  of  vegetation  greenness  across  scales           
due  to  non-linearities  in  how  different  patch  sizes  and  cover  types  are  aggregated  when               
measured  with  the  NDVI (12,102) .  The  high  homogeneity  of  the  survey  plots  on  Qikiqtaruk               
likely  contributes  to  the  strong  correlation  between  drone-  and  satellite-derived  NDVI  that  we              
have  observed.  Yet,  in  our  drone  data  fine-grain  patterns  of  higher  and  lower  NDVI  within  the                 
landscape  were  evident,  including  bare-ground  patches  and  areas  of  more  productive            
vegetation  in  wetter  parts  of  the  landscape  (Figures  1-3).  Non-linearities  in  the  scaling  of               
these  patches  could  contribute  to  the  offset  between  satellite  and  drone  NDVI  that  we               
observed  on  Qikiqtaruk.  Further  research  is  needed  to  evaluate  cross-sensor  and            
cross-scale  correspondence  in  NDVI  and  other  vegetation  indices  across  Arctic  tundra            
systems.   
 
We  found  that  a  plateau  of  spatial  variation  in  tundra  greenness  occurred  around  0.5  m,                
approximately  the  same  width  as  biological  and  environmental  patterning  at  this  site.  The E.               
vaginatum sedges  that  dominate  the  tussock  sedge  vegetation  type  typically  have  diameters             
of  ~  0.1  -  0.5  m  (Figure  3b) (103) .  The  tussock  sedge  vegetation  type  is  underlain  by                  
ice-wedge  polygons  that  when  thawed  create  bands  of  wetter  or  drier  plant  communities  with               
widths  of  ~  0.5  m  –  3.0  m (104) .  Dryas-vetch  vegetation  is  often  found  on  gentle  sloping                  
uplands  where  active  layer  disturbances  such  as  cryoturbation  and  solifluction  create            
characteristic  bare-ground  patches  perpendicular  to  the  slope (85)  with  dimensions  of  ~  0.3              
m  –  0.5  m  width  and  ~  0.3  –  1.0  m  length  (Figure  3b).  We  expect  that  spatial  variation  would                     
increase  with  distances  beyond  the  one-hectare  extents  of  our  plots  as  more  topographic              
diverse  terrain  is  encountered  and  vegetation  type  transitions  are  reached.  Topography  is  a              
key  proxy  for  many  processes  that  structure  heterogeneity  in  tundra  vegetation (105–107)             
and  the  plots  were  selected  for  little  topographic  variation  to  allow  us  to  isolate  specific                
effects  of  land  cover  on  scaling  of  greenness  patterns  from  topography.  The  plot  with  the                
highest  elevational  range  (Area  3  -  Dryas-vetch  tundra:  8.7  m)  showed  a  small  but  steady                
increase  in  spatial  variation  in  distance  classes  above  10  m  (Figure  S4).  Our  findings               
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illustrate  that  on  Qikiqtaruk,  grain  sizes  of  0.5  m  or  less  are  required  to  capture  key  spatial                  
variation   in   vegetation   greenness.  
 
In  our  study,  ecological  information  was  lost  when  upscaling  from  ultra-fine-grain  (~  0.05  m)               
drone  to  moderate  grain  (~  10  –  30m)  satellite  resolutions.  Even  the  most  recent  generation                
of  freely-available  multispectral  satellite  products  can  be  limited  in  their  ability  to  capture              
fine-grain  ecological  processes  of  tundra  vegetation  change (13) .  Information  transfer  during            
upscaling  leads  to  the  loss  of  more  information  in  tundra  ecosystems  compared  to  other               
biomes (14,108)  as  land  cover  and  vegetation  structure  are  fragmented  at  finer  scales (109) .               
However,  exactly  how  spatial  aggregation  influences  the  loss  in  observed  ecological            
variability  across  the  diversity  of  Arctic  landscapes  remains  poorly  quantified (11) .  Yet,  this              
variability  is  critical  to  understanding  climate-driven  changes  in  vegetation  phenology           
(35,36,88) ,  plant-pollinator  interactions (110) ,  and  trophic  interactions (111) .  With  fine-grain           
observations,  we  were  able  to  detect  a  subtle  decrease  in  the  magnitude  of  the  spatial                
variability  in  landscape-level  phenology  as  the  growing  season  progressed  (Figure  S5),  while             
aggregation  to  moderate  satellite  grains  obscured  both  the  magnitude  and  timing  of             
phenological  heterogeneity  (Figure  4).  Thus,  time-series  of  fine-grain  remotely-sensed          
observations  will  be  critical  for  answering  key  research  questions  about  tundra  ecosystem             
functioning   in   a   warming   Arctic    (112) .  
 
Our  results  indicate  that  drone-based  greenness  time-series  captured  variation  in           
leaf-growth  of  deciduous  tundra  plant  species  at  the  plot  level.  We  demonstrate  how  drones               
can  be  used  to  measure  variation  in  tundra  plant  phenology  of  metre-scale  patches  at               
landscape  extents.  Drones  have  been  successfully  used  to  monitor  phenology  of  individual             
plants  (trees)  in  temperate  forest  ecosystems (113–115) ,  and  our  ability  to  detect             
sub-decimeter  variability  in  our  study  indicates  that  individual  plant-level  phenology           
monitoring  with  drones  could  also  be  carried  out  in  the  tundra.  Future  studies  that  quantify                
plant  growth  or  phenology  events  such  as  leaf  emergence  and  flowering  across  the              
landscape  could  provide  key  information  on  resource  availability  for  plant-consumer           
interactions (110,111) .  Our  findings  also  highlight  known  limitations  of  NDVI  to  track             
phenology  in  evergreens  or  other  non-deciduous  taxa  ( D.  integrifolia ,  Figure  S9),  suggesting             
that  tests  of  alternative  vegetation  index  -  plant  growth  relationships (115)  are  needed  to               
capture  variation  in  plant  metabolic  activity  of  tundra  evergreen  and  moss  species  within  the               
growing  season.  Combining  drone-based  time-series  with  observations  from  phenocams,          
satellite  and  ground-based  study  plots  has  the  potential  to  revolutionise  our  understanding  of              
landscape-scale  phenology (13)  by  moving  beyond  the  previously  small  samples  of            
individuals   monitored   in   the   Arctic   tundra    (36,37,39,116) .  
 
The  collection  of  multispectral  drone  time-series  in  Arctic  ecosystems  has  limitations  and             
challenges.  Recent  studies  have  discussed  challenges  with  radiometric  consistency  and           
repeatability  when  using  compact  multispectral  drone  sensors (81,117,118) .  Due  to  logistical            
constraints,  we  were  not  able  to  always  conduct  surveys  under  optimal  conditions  due  to  sun                
angle  or  cloud  cover,  nor  as  frequently  as  planned  due  to  wind  or  precipitation  (Table  S2),                 
which  likely  introduced  bias  and/or  noise  into  our  drone  data  (e.g.,  Figure  4b).  Access               
limitations  meant  that  we  could  not  capture  spring  and  autumn  on  Qikiqtaruk.  As  an               
early-generation  multispectral  drone  sensor,  the  Parrot  Sequoia  was  tailored  for  deriving  the             
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NDVI,  which  despite  being  the  legacy  workhorse  of  tundra  remote-sensing  has  limitations             
(11,13) .  In  particular,  NDVI  can  be  confounded  by  moisture  and  surface  water (11,73,119) ,              
complicating  interpretation  in  wet  tundra,  particularly  at  fine-grain  sizes.  However,  the  rapid             
technological  development  of  drones  and  sensors,  as  well  as  further  consolidation  and             
standardisation  of  methods (120) ,  will  allow  for  pan-Arctic  syntheses  of  fine-grain  data  to              
resolve  the  uncertainty  and  complexity  of  Arctic  greening  patterns  trends (13,14,81)  (see             
also   the   High   Latitude   Drone   Ecology   Network   -    https://arcticdrones.org/ ).   
 
Our  study  demonstrates  that  drones  can  fill  the  scale-gap  between  satellite  and  field  studies               
of  terrestrial  Arctic  vegetation  change.  Rather  than  investigating  and  explaining  patterns  at             
scales  pre-defined  by  satellite  datasets  or  field-based  networks,  researchers  can  use  drones             
to  identify  scale-domains  that  are  most  closely  associated  with  the  ecological  processes  of              
interest.  Field  ecologists  can  now  combine  scaling  theory  provided  by  the  remote  sensing              
community (74,121–124)  with  observations  at  scales  and  temporal  intervals  that  allow  for             
the  testing  of  hypotheses  about  the  mechanisms  that  drive  landscape-level  ecological            
change.  Drone  imagery  will  also  allow  the  remote  sensing  community  to  track  the  effects  of                
sub-pixel  heterogeneity  on  satellite  products  down  to  the  grain  of  individual  plants  and              
communities (14) ,  which  have  been  long  studied  by  field-based  monitoring  networks,  like  the              
International  Tundra  Experiment (75) .  Only  by  improving  our  understanding  of  how            
ecologically  important  information  is  captured  across  grain  sizes  can  we  reduce  uncertainties             
in  the  medium-  and  coarse-grain  satellite  observation  that  feed  into  Earth  system  models              
and  shape  their  predictions (4,8) .  Fine-scale  remote  sensing  from  drones  and  aircraft             
therefore  provide  key  tools  for  disentangling  the  drivers  behind  the  greening  of  the  Arctic               
(14,79,112) .  
 
Conclusions  
 
Novel  remote-sensing  technologies  such  as  drones  now  allow  us  to  study  ecological             
variation  in  landscapes  continuously  across  scales.  Fine-grain  ecological  observations  are  of            
particular  importance  where  variation  in  plant  growth  happens  at  very  small  spatial  scales              
such  as  in  tundra  ecosystems (13,71) .  The  peak  in  spatial  variation  we  found  at  distances  of                 
~0.5  m  in  the  plots  on  Qikiqtaruk  demonstrates  the  grain  size  at  which  phenological               
information  within  the  plant  communities  is  best  captured  at  this  site.  We  show  that  key                
ecological  information  is  lost  when  observing  the  tundra  at  even  decimeter  or  coarser  scales,               
such  as  those  of  medium  grain  satellites  (~  10  –  30m).  Despite  the  methodological               
challenges  of  collecting  multispectral  drone  imagery  in  remote  environments (81) ,  our            
time-series  of  vegetation  greenness  correlated  well  with  ground-based  measurements  of  leaf            
growth  in  the  validation  plots.  Drones  now  enable  studies  that  fill  the  scale  gaps  between                
satellite  and  ground-based  observations,  and  therefore  improve  our  ability  to  identify  the             
key  drivers  of  vegetation  change  and  project  climate  change  impacts  and  feedbacks  in  the               
tundra   biome.  
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Figure  1:  Drone-data  captured  the  temporal  variation  in  satellite  data  across  vegetation  communities,  areas  and                
years.  This  figure  showcases  variation  in  mean  landscape  greenness  (NDVI)  across  the  eight  one-hectare               
sampling  plots  on  Qikiqtaruk  as  derived  from  drone  orthomosaics  and  the  MODIS  Vegetation  Index               
(MOD13Q1.v006  Terra),  Landsat  8  Level  2  and  Sentinel-2  Level-2A  products.  Vertical  dotted  grey  lines  represent                
the  average  snow-melt  at  long-term  monitoring  plots  close  to  Area  3  -  Hawk  Valley  for  the  given  year (88) .                    
Dashed  grey  lines  represent  simple  quadratic  phenology  curves  (NDVI  ~  a  x 2  +  b  x  +  c,  where  x  is  the  day  of                        
year,  a  the  quadratic  coefficient,  b  the  linear  coefficient  and  c  the  y-axis  intercept)  fitted  to  all  data  points  pooled                     
across  sensors.  The  lower  central  panel  demonstrates  the  close  correspondence  between  seven-day  mean              
values  from  drone  and  satellite  NDVI,  albeit  with  a  positive  offset  for  all  satellite  sensors.  For  this  panel,  drone                    
NDVI  values  were  spatially  aggregated  by  mean  to  the  one-hectare  plots  and  temporally  aggregated  by  mean  in                  
consecutive  seven-day  blocks  starting  on  the  first  of  May  in  both  growing  seasons  (2016  and  2017)  where  data                   
was  available.  Matching  seven-day  block  pairs  between  drone  and  satellite  platforms  were  then  identified  and                
plotted  as  shown.  Spearman’s  rank  correlation  as  well  as  mean  differences  (offsets)  in  NDVI  amongst  all  platform                  
combinations  can  be  found  in  Tables  S12  and  S13  respectively.  The  grey  dashed  line  in  this  panel  represents  the                    
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one-to-one  line.  Map  sources:  North  America (125,126)  in  latitude  and  longitude  on  the  WGS84  reference                
ellipsoid  and  Qikiqtaruk,  Copernicus  Sentinel-2  true  colour  image  July  2017  in  UTM  7N  based  on  the  WGS84                  
reference   ellipsoid.   
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Figure  2: Drone-data  better  captured  spatial  heterogeneity  in  NDVI  relative  to  Sentinel-2  MSI  and  Landsat  8  OLI                  
in  pixel-by-pixel  comparisons.  a)  Pixel-by-pixel  correlations  between  10  m  aggregated  drone  NDVI  and  native  10                
m  Sentinel-2  NDVI  for  a  random  sample  of  pixels  (10%  of  total  pixels,  n  =  700)  across  all  drone-sentinel  image                     
pairs  for  the  2017  growing  season  that  were  a  maximum  of  two  days  apart.  No  drone-sentinel  image  pairs  were                    
available  for  the  2016  season  that  fitted  the  latter  criterium.  The  black  line  represents  a  simple  linear  model                   
describing  the  relationship,  see  Table  S8  for  details.  b)  Pixel-by-pixel  correlations  between  30  m  aggregated                
drone  NDVI  and  native  30  m  Landsat  NDVI  for  the  total  number  of  available  pixels  (n  =  198)  across  all                     
drone-sentinel  image  pairs  for  the  2016  and  2017  growing  season.  The  black  line  represents  a  simple  linear                  
model  describing  the  relationship,  see  Table  S10  for  details.  c)  Example  visualisations  from  the  Dryas-vetch                
tundra  at  Area  2  -  Bowhead  Ridge  for  the  17  July  2017  showing  ultra-fine-grain  0.013  m  true  colour  RGB                    
imagery,  0.05  m  native-scale  drone  NDVI,  10  m  resampled  drone  NDVI,  10  m  native  Sentinel-2  NDVI,  the                  
absolute  difference  between  resampled  drone  and  Sentinel-2  NDVI,  30  m  resampled  drone  NDVI,  30  m  native                 
Landsat   8   NDVI   and   difference   between   resampled   drone   and   Landsat   8   NDVI.   
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Figure  3:  Spatial  variation  of  vegetation  greenness  peaked  at  distances  of  ~0.5  m  in  both  studied  vegetation                  
types,  with  little  or  no  increase  in  the  spatial  dependence  of  greenness  at  distances  above  ~0.5  m.  Figure  shows                    
example  variograms.  Overall  spatial  variation  in  greenness  is  higher  in  the  Dryas-Vetch  Tundra  when  compared                
to  the  Tussock-Sedge  Tundra  (a  and  c).  Left  panels:  variograms  for  the  Dryas-vetch  and  tussock  sedge  tundra                  
plots  in  Area  2  for  distances  up  to  5  m  (a)  and  45  m  (c)  at  peak  season  in  2017.  The  light  grey  dotted  lines  in                           
panel  (a)  indicate  the  subset  of  the  distance  range  depicted  in  panel  (c).  The  dark  grey  line  in  (c)  indicates  the                      
mean  range  estimated  from  the  variogram  models  of  both  vegetation  types  from  Areas  1,  2,  and  4  during                   
peak-season  (26  and  28  July)  in  2017  (see  also  Figure  S1).  Right  panels:  Dryas-vetch  tundra  with  bare  ground                   
patches  caused  by  cryoturbation  and  solifluction  (c)  and  tussocks  sedge  tundra  with  distinctive  patterns  of                
tussocks   interspersed   by   patches   of   willows   and   herbs   (d).   
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Figure  4: Fine-scale  variation  representing  key  ecological  heterogeneity  in  tundra  phenology  was  lost  when               
aggregating  from  ultra-fine-grain  drone  to  medium-grain  satellite  pixel  sizes.  We  observed  a  logarithmic  decay  in                
variation  (standard  deviation)  in  the  quadratic  coefficient  of  simple  growing  season  curves  fitted  to  the  eight                 
vegetation  plots  in  the  2017  season  when  aggregating  the  drone  data  across  grain  sizes  (a).  To  provide  an                   
example  of  the  underlying  raw  data,  we  visualised  the  pixel-by-pixel  curves  fitted  to  the  time-series  of  pixels  from                   
the  dryas-vetch  tundra  plot  in  Area  2  for  a  subset  of  three  grain  sizes  (b).  Here,  each  point  represents  a  pixel                      
NDVI  value  at  a  given  day  of  year  and  grain  size  (indicated  by  colour).  The  transparent  lines  represent  the  simple                     
quadratic  curves  fitted  to  each  pixel  across  the  time-series,  again  the  colour  of  the  line  indicates  the  pixel’s                   
associated  grain-size.  See  also  Figure  S8,  which  shows  a  random  sample  of  nine  curves  for  all  grain  sizes  from                    
the  same  study  plot.  Furthermore,  to  provide  an  example  of  the  spatial  distribution  of  the  quadratic  coefficient  and                   
how  it  changes  across  grain  sizes,  we  plotted  the  respective  rasters  for  Area  2  dryas-vetch  tundra  in  panel  (c).                    
Similar   patterns   are   found   across   all   areas   (a).  
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Figure  5: Time-series  of  ground-based  mean  longest  leaf  lengths  correlated  well  with  drone-derived  mean  NDVI                
on  Qikiqtaruk.  Longest  leaf  lengths  were  standardised  across  species  (z-scores)  to  allow  for  calculations  of  plot                 
mean  values.  a)  Correlations  between  the  mean  longest  leaf  length  for  all  individuals  across  all  monitored                 
species  and  the  drone-derived  NDVI  in  the  2  m  x  2  m  ground-phenology  plot  for  each  area,  vegetation  types  and                     
year  combination.  The  time-series  of  mean  longest  leaf  length  (b)  and  drone  NDVI  (c)  corresponding  to  the                  
values  in  (a).  Lines  represent  least-square  regressions  to  illustrate  the  relationships  for  each  area,  vegetation                
type  and  year  combination.  A  species-by-species  version  using  absolute  mean  longest  leaf  length  for  each  plot                 
can  be  found  in  Figure  S7.  (d)  As  an  example,  we  illustrate  the  drone-based  NDVI  observations  by  showing  the                    
start,  midpoint  and  end  of  the  timeseries  for  the  2  m  x  2  m  ground-validation  plot  in  the  tussock  sedge  tundra  of                       
Area  2  in  2017.  The  first  time-point  in  (c)  represents  the  greenness  in  the  plot  at  the  beginning  of  the  time-series,                      
the  two  subsequent  plots  show  the  relative  difference  in  greenness  to  this  first  observation  at  the  given  day  of                    
year  (DOY),  and  the  final  plot  shows  a  true-colour  image  of  the  plot  taken  by  drone  on  the  17  July  2017  (DOY                       
198).   


