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Abstract 
 
All phylogenetic studies are built around sets of trees. Tree sets carry different kinds 
of information depending on the data and approaches used to generate them, but 
ultimately the variation they contain and their structure is what drives new 
phylogenetic insights. In order to better understand the variation in and structure of 
phylogenetic tree sets, we need tools that are generic, flexible, and exploratory. 
These tools can serve as natural complements to more formal, statistical 
investigations and allow us to flag surprising or unexpected observations, better 
understand the results of model-based studies, as well as build intuition. Here, we 
describe such a set of tools and provide examples of how they can be applied to 
relevant questions in phylogenetics, phylogenomics, and species-tree inference. 
These tools include both visualization techniques and quantitative summaries and 
are currently implemented in the TreeScaper software package (Huang et al. 2016). 
  



Introduction to Visualizing and Exploring Tree Sets 
 
All phylogenetic studies are built around sets of trees. Tree sets carry different kinds 
of information depending on the data and approaches used to generate them, but 
ultimately the variation they contain and their structure is what drives new 
phylogenetic insights. However, tree sets also present particular challenges. Trees 
are complicated objects that are meant to be interpreted visually and each tree, on 
its own, can carry a huge amount of information. Trees also naturally exist in a high-
dimensional space that is challenging to conceptualize. 
 
In some cases, tree sets can be understood and explored in formal statistical 
frameworks. For instance, the multispecies coalescent model (MSC) describes how 
stochastic coalescent processes explain variation in the histories of individual 
genes, and how these histories differ both from each other and from the overarching 
species tree. Models like the MSC are elegant and incredibly valuable for testing 
different hypotheses, but their application is specific to those cases where we can 
reasonably expect the variation in trees to be explained by the process(es) they 
include. Some tree sets may not have a natural process-based model to describe 
their variation. For instance, sets of trees meant to represent the uncertainty in a 
phylogenetic estimate (i.e., bootstrap sets or those drawn from a posterior 
distribution) have variation that is not described by a biological process. Other 
variation in trees may result from problems with data quality or poor fit between our 
observed data and the models we have available (e.g., misalignment, unintended 
paralogy, or heterogeneous evolutionary processes). 
 
In order to better understand the variation in and structure of tree sets generally, we 
need tools that are generic, flexible, and exploratory. These tools can serve as 
natural complements to more formal, statistical investigations and allow us to flag 
surprising or unexpected observations, better understand the results of model-
based studies (e.g., by comparing the trees generated from replicate runs or 
assuming different kinds of models), as well as build intuition. 
 
Here, we describe a set of tools for understanding variation and structure in tree 
sets, and provide some examples of how they can be applied to questions related to 
phylogenetics and species-tree inference. These tools include both visualization 
techniques and quantitative summaries and are currently implemented in the 



TreeScaper software package (Huang et al. 2016). We start with a brief overview of 
the approaches, then move to examples of how they can be applied. 
 

Tree Set Visualization 
 
Non-linear dimensionality reduction (NLDR) is a general class of approaches for 
projecting the position of data that exist in a high-dimensional space onto a lower-
dimensional space that can be visualized and explored more easily (typically, in two 
or three dimensions; Lee and Verleysen 2007). This projection is done in a way that 
attempts to preserve the pairwise distances among data points as much as possible, 
to minimize distortions, and to provide insight into the relationships between data 
points in their original, high-dimensional representation. However, some distortion 
may be inevitable, since visualization is restricted to no more than three dimensions, 
but the intrinsic dimensionality of the data (i.e., the number of dimensions required 
to maintain the original distances between data points) may be larger. TreeScaper 
(Huang et al. 2016) includes tools to estimate the intrinsic dimensionality of the 
pairwise distances among a set of phylogenetic trees (Wilgenbusch et al. 2017). 
When this intrinsic dimensionality is much greater than the number of dimensions 
used for visualization, the visualization should be interpreted with caution (though 
the projection may still be useful for other downstream analyses). 
 
NLDR techniques have a long history of development in mathematics and other 
applied fields, but were first used to visualize phylogenetic trees by Amenta and 
Klingner (2002), who developed the TreeSetViz module within Mesquite (Maddison 
and Maddison 2004). Since then, several studies have explored applications of 
NLDR in phylogenetics (e.g., Hillis et al. 2005, Jombart et al. 2016, Warren et al. 
2017). More recently, Wilgenbusch et al. (2017) addressed some outstanding 
questions about how different NLDR approaches perform in the phylogenetic 
context. In particular, they compared different stress functions, as well as different 
algorithms for optimizing projections. While a variety of stress functions and 
algorithms are available in TreeScaper, we will focus here on examples of how 
NLDR and complementary techniques can be applied to questions in phylogenetics 
and species-tree inference, and refer readers to other publications for more 
technical detail. 
 
Before we apply NLDR, a few important points should be mentioned. First, NLDR 
projections can be incredibly valuable for the intuitive and visually appealing 



summaries they provide, but in most phylogenetic cases the low-dimensional 
projections will distort the original tree-to-tree distances to varying degrees and 
should be interpreted with caution. Second, there are several stress functions 
available in TreeScaper for performing NLDR, which, in our experience, can 
sometimes meaningfully affect the visualization of tree space. No single function 
will necessarily always perform best, although Wilgenbusch et al. (2017) suggest 
that Curvilinear Components Analysis (CCA; Demartines and Herault 1997) best 
preserved the original tree-to-tree distances in their tests with mitochondrial data. 
Given these potential differences in results, one approach is to focus on those 
relationships that remain constant across different functions. Third, NLDR 
visualizations can be a powerful exploratory technique that suggests further 
avenues of investigation in more formalized statistical frameworks, and this 
exploratory role should be included in descriptions of a phylogenomic or species-
tree workflow. 
 

Detecting Structure in Tree Sets 
 
Interpretations of tree space as a network have a deep history in phylogenetics, 
largely in the context of exploring these networks to find the optimal tree (or set of 
trees) given some criterion ‒ like a parsimony score, likelihood score, or posterior 
probability (see Felsenstein 2004 for an excellent overview of approaches for 
exploring tree space, and Whidden and Matsen 2015 for a recent study on the 
properties of these searches in Bayesian analyses). In this context, networks are 
conceptualized with trees as nodes, and edges connecting “neighboring” trees. 
Whether or not trees are considered neighbors will depend on the type of tree 
alteration that is used to move through tree space. Note that this type of network is 
distinct from the networks that are used to describe relationships among species, 
where nodes represent splitting or fusion events between lineages and branches 
represent the evolution of different lineages. 
 
Here, we also use networks, but we are not primarily interested in finding the “best” 
tree. Instead, we are interested in how the tree set itself is structured. For instance, 
are there regions of tree space where trees in a set are more abundant or dense? 
Do trees form distinct groups? To investigate these properties, we construct 
networks with trees as nodes, and we add edges between all pairs of trees in the 
set (Fig. 1). These edges are then weighted as a function of a pairwise tree distance 
(several distance options are available in TreeScaper). More specifically, edges are 



weighted with the affinity between two trees, which, roughly speaking, is the inverse 
of distance. Trees that are more similar (have a low pairwise distance) will have a 
higher pairwise affinity and will be connected by an edge with a higher weight. If 
trees in a set are clumped in tree space, we expect to find regions of the network 
where some trees form groups, such that there are large edge weights inside the 
groups and small edge weights between groups (Fig. 1). Note that while we use 
these topological networks to detect structure in tree sets, they can be very 
challenging to visualize for large sets of trees. Therefore, we often display results 
from these networks by coloring points (trees) in an NLDR plot. 
 

 
Fig. 1 ‒ An example topological affinity network with 100 25-taxon trees 
grouped into two distinct communities. Each node is a different tree topology, 
and the edges between nodes are weighted by the affinity of each pair of 
trees. Larger affinities (smaller distances) are represented by thicker lines. 
The arrangement of points was chosen simply to make edges visible, and the 
placement of nodes is not optimized for two-dimensional representation as it 
is in an NLDR plot. 

 
In addition to tree-based networks, we also construct bipartition-based networks. In 
this second type, bipartitions are nodes and the edges connecting pairs of 
bipartitions indicate how often they are found together in the same trees. More 
formally, the edges that connect the bipartitions are weighted by their covariances 



in presence/absence across trees in a tree set (Fig. 2). Bipartitions that are found 
together in the same tree more often than expected by chance will have large, 
positive covariances, and those that are found together less often than expected by 
chance will have large, negative covariances. If there is very little structure in the 
tree set, the bipartition network should only contain edges with low weights (both 
positive and negative; Fig. 2A). However, if the tree set is highly structured (for 
instance, when combining trees inferred from two genes with strongly conflicting 
phylogenetic signal), then bipartitions should form strong associations (Fig. 2B). 
Those bipartitions found in trees inferred with Gene 1 will all have strong, positive 
covariances with each other, as will those found in trees inferred with Gene 2. 
However, bipartitions from Gene 1 trees should have strong, negative covariances 
with bipartitions from Gene 2 trees. 
 

 
 

Fig. 2 ‒ Examples of bipartition covariance networks based on sets of seven-
taxon trees. Blue branches indicate positive covariances and red branches 
indicate negative covariances. The line weight indicates the relative 
magnitude of the covariance. (A) A covariance network based on 1,000 trees 
sampled from a uniform distribution. (B) A covariance network based on 1,000 
trees, where 500 trees have one topology and the other 500 have a distinct 
topology. The point not connected to any lines indicates a bipartition that is 
present in every tree in the tree set. The other six bipartitions are found in 
only one topology or the other. 

 
A major advantage of conceptualizing both trees and bipartitions as parts of a 
network is the ability to take advantage of the substantial progress mathematicians 
have made in formalizing the study of networks (Newman 2010). Here, we 
specifically focus on a class of techniques called community detection methods 



(Girvan and Newman 2002, Fortunato 2010). Roughly speaking, the goal of 
community detection is to find sets nodes that form distinct communities, where 
nodes in a community are tightly connected by edges with large positive weights 
and nodes in different communities are weakly connected or are connected by 
edges with large negative weights. (Note that topological networks will only have 
positive weights on edges, while bipartition networks will have both positive and 
negative edge weights.) Community detection methods are able to look for this type 
of structure in networks without the need to specify the number or size of these 
groups a priori. Many different community detection models can be applied to 
networks, and TreeScaper implements several different options (Huang et al. 2016, 
Brown et al. 2020). Here, we focus on use of the Constant Potts model (Traag et al. 
2011), because it is better able to detect communities of widely varying sizes than 
many other models (a property known as being “resolution-limit-free”). 
 
Many community detection methods, including Constant Potts, include tuning 
parameters that can adjust the focus of the model on communities of varying size 
and number. At one extreme of the tuning parameter values, the model will prefer to 
put all nodes in one large community. At the other extreme, the model will prefer to 
place every node in its own community. Since these results are not biologically 
interesting, we focus on the communities identified by the model with intermediate 
parameter values. While this gives us a great deal of flexibility, we generally do not 
know ahead of time which parameter values we should prefer. Instead, we allow the 
network to tell us. By adjusting the tuning parameter in small increments, we can 
look for regions of parameter values that all return the same community structure 
(called plateaus in parameter space). These regions of stability indicate that the 
detected community structure is a natural property of the network. A given network 
may display zero, one, or multiple of these intrinsic community structures. 
 

Applications to Gene Trees, Species Trees, and Phylogenomics 
 
Here, we provide examples of ways in which combinations of tree set visualization 
and community detection can be applied to questions about gene tree variation, 
species-tree inference, and phylogenomics. These tools are intended to allow 
exploration, provide new intuition, and facilitate more detailed investigation. As a 
result, many of the examples we outline below do not overturn previous 
understanding, but rather provide a new perspective on it. 



 
Sensitivity to Models of Sequence Evolution 

 
Species-tree inference can be compromised by systematic errors in gene-tree 
inference, which can occur when models of sequence evolution do not fit the data 
well. Many studies have explored how inferred gene trees, or the distribution of 
uncertainty in these trees, may vary depending on which model of sequence 
evolution is used in an analysis (e.g., Lemmon and Moriarty 2004, Huelsenbeck and 
Rannala 2004). However, the comparison of gene trees resulting from analyses that 
assume different models can be challenging, especially as trees become large. Also, 
in some cases, we would like to gain intuition for how the tree changes with model 
assumptions, especially when the best model is not clear. 
 
Tree set visualization and community detection methods can provide intuitive 
summaries for how results change across analyses, and focus attention on those 
parts of the tree that strongly conflict across analyses. These methods can also 
highlight regions of trees that are consistently uncertain in all analyses. To illustrate 
how these tools can be used in this context, we conducted Bayesian phylogenetic 
inference using RevBayes (Höhna et al. 2016) for an alignment of cytb sequences 
from primates. We conducted three separate analyses that assumed a JC, HKY, or 
GTR model (see Yang 2014 for an overview of these and other related models). 
 
We sampled 80 trees from the posterior distributions of each analysis, and then 
visualized these trees in two dimensions using NLDR based on weighted Robinson-
Foulds (wRF) distances (Fig. 3). When trees are colored based on the assumed 
model, a cursory visual inspection reveals that the results of our analysis are 
sensitive to the assumed model (Fig. 3A). HKY and GTR produce credible sets of 
trees that are closer together in tree space, compared to trees from the JC credible 
set. A few trees from the JC analysis are similar to trees sampled with HKY, but 
generally not those sampled with GTR. The space occupied by HKY trees tends to 
sit in between those from JC and GTR, which suggests that an HKY analysis may 
support some relationships in common with JC and some in common with GTR. 
 



 
 

Fig. 3 ‒ Two-dimensional visualizations from non-linear dimensionality 
reduction (NLDR) using weighted RF (wRF) distances of primate cytb trees. 
(A) Trees are colored by the model assumed in different analyses. (B) Trees 
are colored based on communities detected from a topological affinity 
network. 

 
Community detection using topological affinities shows intrinsic structure with three 
communities. These three communities reinforce the distinction between trees 
sampled from JC analyses and those from GTR and HKY (Fig. 3B). One community 
includes all trees from HKY and GTR (and a few from JC), while the other two 
communities are solely trees from the JC analysis. These communities highlight the 
wide dispersion and structuring of the JC credible set, as well as the greater 
similarity between HKY and GTR results. 
 
The results of community detection on bipartition covariance networks identifies the 
major topological areas of conflict between results from JC and GTR, and reinforces 
the intermediate position of HKY trees in tree space (Fig. 4). These networks exhibit 
intrinsic structuring with both two and three communities. When the two 
communities are mapped onto the network (Fig. 4B), several large, positive 
covariances are obvious within each community, as are many large, negative 
covariances that separate the two. Interestingly, the three-community results show 
how the third community is composed of bipartitions originally included in both of 
the two, larger communities (Fig. 4C). However, these bipartitions generally had 



weak covariances (both positive and negative) connecting them to any other 
bipartition, and are themselves connected only by weakly positive edges (thin, blue 
lines). Therefore, this third community tells us less about major topological conflict 
in our tree set, so we focus on the two, larger communities. 

 
Fig. 4 ‒ Bipartition covariance network based on trees from analyses 
assuming different models of sequence evolution. (A) The bipartition network 
with no communities labeled. (B) The bipartition network with two 
communities labeled. (C) The bipartition network with three communities 
labeled. Note that nodes in different communities are colored differently. 

 
The nature of the conflict between tree sets from different analyses is clarified by 
mapping bipartitions from different communities to the maximum a posteriori (MAP) 
trees from each analysis (Fig. 5). The first community (in orange) from the two-
community analysis contains bipartitions that map primarily to the GTR MAP tree. 
These bipartitions either strongly conflict between the GTR and JC/HKY analyses or 
have intermediate posterior probabilities across all three analyses. In both cases 
(strong conflict between analyses or consistent uncertainty across them), there are 
identifiable sets of trees with alternative resolutions for these clades. The second 
community (in purple) largely contains those bipartitions that conflict with the GTR 
tree and are primarily found in the JC tree. One exception is the single purple 
bipartition that appears in the GTR MAP tree (Fig. 5). This bipartition is found on the 
far left of the purple community in Fig. 4B and is connected by positive covariances 
to nodes in both the orange and purple communities, indicating that it does not 
strongly conflict with other bipartitions. The community detection methods that we 
currently use for analysis of these networks do not allow nodes to be assigned to 
more than one community or occupy intermediate positions. The use of community 



detection methods that allow communities to overlap (i.e., allow for a node to belong 
to more than one community) may better accommodate bipartitions with weak, 
positive covariances to other bipartitions in multiple communities. 
 

 
Fig. 5 ‒ Maximum a posteriori trees from analyses of primate cytb sequences, 
assuming different models of sequence evolution. Branches are labeled with 
posterior probabilities and colored branches correspond to those bipartitions 
found in the two communities in Fig. 4B. 

 
In this example, the perspective offered by visualization and community detection 
methods reinforces the conflict that is also possible to see by manual inspection of 
the posterior probabilities on the MAP trees from different analyses. However, 
visualization and community detection tools give a richer view of the nature and 
strength of the conflict. In particular, they help us to recognize how the trees 
preferred by HKY are essentially intermediate between JC and GTR. For analyses 
with more taxa, manual inspection of summary trees (MAP or consensus) can be 
incredibly tedious and conflict can be difficult to summarize. The tools that we 
highlight here can be applied at much larger scales to automatically focus attention 
on relevant parts of trees where conflict exists (rather than where uncertainty is 
consistent across analyses) and give insights into the conflictʼs structure. They may 
also give the conflict a sense of direction, by allowing us to see if each analysis 
occupies a completely distinct region of tree space, or if we move in consistent 
directions as model assumptions change. 
 
We focused on a relatively restricted set of models here for the purpose of 
illustrating clearly how visualization and community detection tools work and how 
they can be helpful in exploring model sensitivity, but the power of these 



approaches will become most apparent in analyses with larger trees and when 
comparing larger sets of models. 
 

Joint Versus Independent Inference of Gene Trees 
 
By modeling biological processes that cause gene trees to vary, we can jointly 
estimate topologies and branch lengths for all gene trees, while also inferring the 
overarching species tree. The most common of these models is the multispecies 
coalescent model (MSC). The MSC describes the variation across gene trees that 
we would expect to occur due to stochasticity in the coalescent process. While 
allowing gene trees to vary, the MSC still constrains their variation in important 
ways. For instance, gene trees should be more similar along those branches of the 
species tree that had small population sizes and relatively infrequent speciation 
events. Conversely, gene trees should vary more when ancestral population sizes 
were large and speciation events were rapid. In any case, sequences from all the 
genes in a joint analysis provide information that influences the inferred species 
tree, which in turn influences inference of each gene tree. 
 
While we know that joint inference can alter each gene tree, we might like to have 
some sense for how strong this effect is and whether it acts in the same way across 
different genes. For instance, is the space of gene trees sampled during joint 
inference a subset of the space that is sampled when gene trees are inferred 
independently? Does joint inference change the precision of gene tree estimates or 
does it shift the overall distribution of sampled gene trees more substantially? Can 
we identify distinct regions in tree space occupied by gene trees resulting from joint 
versus independent inference? NLDR visualizations and community detection can 
help shed some light on answers to these questions, which we illustrate here with 
Bayesian analyses of 10 genes sampled from 23 primate species. 
 
By comparing gene trees from independent inference to those from joint inference 
under the MSC, we can see several interesting patterns (Fig. 6). First, in this case 
the tree topologies sampled during joint inference generally do represent a subset of 
those sampled during independent inference, and they do not seem to occupy a 
completely distinct region of tree space (Fig. 6, top row). This result should be 
comforting and suggests that the topological signal in each gene is roughly 
concordant with the topologies implied by the species tree. However, we can also 
see some interesting differences across genes. While the topologies sampled during 



joint inference generally occupy a subset of the space sampled during independent 
inference, the distribution of topologies changes (particularly for gene 1), indicating 
shifts in the posterior probability of different trees between the two analyses. Also, 
the tree space sampled by gene 1 includes a greater number of unique topologies, 
compared to genes 2 and 3, for both joint and independent inference. Both of these 
results suggest that gene 1 contains less topological information than genes 2 and 
3. (Note that the overall size of the NLDR visualization is scaled to be equal for each 
plot, so the sizes of the plots themselves do not give us information about the 
expanse of tree space that they depict.) 
 

 
Fig. 6 ‒ NLDR visualization of trees sampled during independent gene-tree 
inference (red) or joint inference under the multispecies coalescent model 
(MSC; blue) for three genes using two distances (weighted and unweighted 
RF). 

 
Comparing projections of tree space generated using distances that do or do not 
take branch lengths into account also provides important information. The top row 
of Fig. 6 shows projected tree space based on unweighted RF distances for the 
three genes, where only the topology contributes to the distance. However, the 
bottom row shows projections based on weighted RF distances, where branch 
lengths are used, and these projections show much clearer distinctions between the 
trees sampled from joint and independent inference. The boundaries between the 



two are very clear for genes 1 and 2, although the two tree sets still overlap to some 
degree for gene 3. The increased distinction of the boundary in these plots suggests 
that the joint inference is having a substantial impact on estimated divergence 
times, possible more than on the topology. 

 
 
Fig. 7 ‒ Alternate NLDR projection for Gene 1 from Fig. 6 using weighted RF 
distances. Kruskal-1 stress was used for this projection, while CCA stress was used 
in Fig. 6. 
 
A word of caution is also warranted here about the potential overinterpretation of 
NLDR visualizations. As discussed above, these visualizations frequently include 
some distortion of the true tree-to-tree distances, and these distortions can be 
resolved in different ways, depending on the chosen NLDR method. While CCA 
stress (Demartines and Herault 1997) was optimized to generate all of the 
projections in Fig. 6, Kruskal-1 (Kruskal 1964) stress was optimized to generate an 
alternative projection for Gene 1 with weighted RF distances (Fig. 7). The CCA 
projection in Fig. 6 seems to suggest that the joint gene trees for Gene 1 are nested 
inside the space of trees sampled from the independent analysis, but the Kruskal-1 
projection suggests that these spaces are more distinct. In both cases, the space 
occupied by trees from the independent analysis remains larger than the space 
occupied by those from the joint analysis, and the distinction between the 
independent and joint tree sets is pronounced. A conservative practice with NLDR is 
to try several projections and see if patterns of interest persist. In cases where one 
is interested in whether sets of trees are distinct in tree space, community detection 
with a topological affinity network has an advantage over NLDR, since it uses the 



original tree-to-tree distances with no distortions from projection. Community 
detection on a topological affinity network can cleanly delineate the independent 
and joint trees as distinct communities for gene 1 (results not shown).  
 

 
 
Fig. 8 ‒ NLDR projections of gene-tree space for five different genes, based on three 
different analyses ‒ independent gene tree analysis (red), replicate one of a joint 
MSC analysis (blue), and replicate two of a joint MSC analysis (yellow). 
 
One significant practical challenge of using hierarchical models like the MSC in a 
Bayesian statistical framework is making sure that the MCMC analysis adequately 
samples tree space for each individual gene, as well as the species tree. Here, 
NLDR and community detection can also be helpful in checking for topological 
convergence. If replicate runs are sampling tree space in the same way, there 
should not be visually obvious differences in the distributions of trees from those 
runs and community detection methods on topological affinity networks should not 
be able to delineate the trees from different runs as separate communities. As an 
example of how these tools can help with assessing convergence, we separately 
colored trees from replicate MSC analyses (Fig. 8), which were intentionally stopped 
before convergence was reached. For several genes, the replicate MSC analyses (in 
blue and yellow) sampled the same general part of tree space, but clearly did not yet 
mix well across this space. In other cases, the two replicates are sampling 
completely distinct regions of tree space, perhaps because they have encountered 



local optima. Such diagnostics can be helpful in rapidly identifying loci with poor 
topological mixing. 
 

Understanding Variation Across Genomes 
 
Modern phylogenomic studies now often involve the inference of phylogenies from 
every gene (or genomic region) across a set of completely sequenced genomes ‒ a 
remarkable amount of information! This genome-wide perspective can shed light on 
the interplay between diverse biological processes that cause gene histories to 
differ from species histories. Heliconius butterflies are one well-studied group 
where multiple biological processes and evolutionary forces (ILS, horizontal gene 
flow, and selection) have combined to influence the true phylogenetic histories 
underlying different sections of genomes (i.e., the gene trees). 
 
Edelman et al. (2019) recently explored genome-wide patterns in gene-tree variation 
for Heliconius and related groups. After filtering for quality and combining their data 
with other available genomes, they analyzed genome-wide alignments from 25 taxa 
in order to reconstruct the relationships among diverse Heliconius lineages. In doing 
so, they found strong evidence for the influence of gene flow in explaining the 
historical relationships among species. Gene flow and recombination will cause 
different sections of the genome to support different bifurcating phylogenetic trees, 
and Edelman et al. (2019) were able to map the distribution of support for different 
trees provided by 50-kb windows spanning the entire genome. They focused 
especially on the erato-sara clade, for which they had sampled six species, since 
many sections of the genome support a relatively small number of topologies (two 
topologies, predominantly). To demonstrate how tree set visualization and 
community detection approaches could complement other analyses of these data, 
we focused on trees of the erato-sara clade inferred from 50-kb sliding windows 
across chromosomes 20 and 21. 
 
Two- and three- dimensional visualizations of tree space based on NLDR projection 
with wRF distances show clear structuring for the trees sampled from these two 
chromosomes (Figure 9). Labeling trees by chromosome allows us to clearly see 
that the two chromosomes do not share the same distribution of phylogenetic 
histories (Figure 9A). Regions of chromosome 20 exhibit more variation in the trees 
they support, with trees from chromosome 21 being concentrated in a projected 
space roughly half the size of chromosome 20. This difference between 



chromosomes 20 and 21 (or, more broadly, between chromosome 21 and all others) 
was also noted by Edelman et al. (2019) using tallies of different topologies across 
windows. 
 

 
 

Figure 9 ‒ NLDR visualizations of trees from chromosomes 20 and 21 of the 
erato-sara clade. (A) Trees are colored by chromosome. (B) Trees are colored 
based on the results of community detection on a topology network with 24 
communities. The three largest communities are shown in colors, while trees 
from all other communities are shown in gray. (C) Community detection on a 
topology network with two communities, where one community only contains 
a single tree (tree 75 from chromosome 20). (D) Phylogram of tree 75, with 
the outgroup removed. 

 
Community detection analyses based on topological networks give a more organized 
perspective on the variation across trees (Fig. 9B,C). Community detection (using 
the Constant Potts model) first showed some natural structuring with two 
communities. One community contained only a single tree (inferred from the 75th 50-



kb window on chromosome 20), while the other community contained all other trees 
(Fig. 9C). Further examination of tree 75 (Fig. 9D) shows that it has a topology 
distinct from the eight most common topologies across these genomes (Fig. 9D and 
10D). As we increased the value of the Constant Potts tuning parameter, other 
similar trees were added to the community with tree 75 (results not shown). These 
trees are uncommon in the genome and come from regions that may have been 
subject to rare hybridization events or influenced by unique evolutionary processes. 
 
Three large communities emerge from the topological network as the tuning 
parameter is increased further (Fig. 9B). While no specific number of communities is 
strongly preferred, the structure of these large communities remains relatively 
stable. Visualizing these communities (Fig. 9B) shows both how they occupy central 
positions in tree space with high tree density, and also how the use of networks 
based on original tree-to-tree distances is different than clustering in low-
dimensional space. For instance, trees assigned to community 13 (Fig. 9B) are not 
nearest neighbors in the NLDR projection. Majority-rule consensus trees 
constructed from these three communities correspond to three of the most common 
topologies across the genome (community 8 = topology 1, community 13 = topology 
5, and community 16 = topology 2; Fig. 10D), although the communities include 
some trees that are not identical to these topologies. Community 16 is the largest, 
which makes sense given the prevalence of topology 2 on chromosome 21. The fact 
that none of these three communities corresponds directly to tree 3 (the third most 
common topology in the genome and second most common topology on these two 
chromosomes) suggests that trees with topology 3 may have relatively short internal 
branches, and be close to other topologies in weighted RF tree space. 
 
Bipartition networks show substantial structure and are dominated by two edges 
with large, negative weights (Fig. 10A). Natural community structure exists with two 
communities, although the exact composition of these communities varies 
depending on how stringently low- and high-frequency bipartitions are filtered (Fig. 
10B,C). Less stringent filtering (removing only bipartitions present at frequencies 
above 0.99 or below 0.01) results in one community that includes several weakly 
connected bipartitions (Fig. 10B). Slightly more stringent filtering (removing 
bipartitions present at frequencies above 0.95 or below 0.05) results in two 
communities with two bipartitions each (Fig. 10C). Such filtering can be helpful, 
because bipartitions present at either very low or very high frequencies often have 
weak covariances and are difficult to assign to any community with confidence. With 



either stringency, however, the two communities are separated by two large, 
negative edges. 
 
The two large, negative edges correspond to the conflict between sets of 
bipartitions found in topology 1 and topology 3 (Fig. 10D). Topology 2, however, is 
composed of one bipartition from each community. This result highlights an 
important aspect of interpreting communities in bipartition networks. Bipartition 
communities may not precisely correspond to the most frequent topologies. For 
instance, the bipartition community in the bottom right of Fig. 10C contains 
bipartitions found in topology 1, while the bipartition community in the upper left 
contains bipartitions that are found in topology 3 (Fig. 10D). However, no bipartition 
community corresponds to topology 2, even though it is the most frequent topology 
across windows from chromosomes 20 and 21. At first, this result may seem 
troubling, but in fact it is informative. By mapping the bipartitions in different 
communities onto the most common topologies, the community detection results 
highlight parts of these topologies that conflict most strongly. The lack of large, 
positive covariances also tells us that the bipartitions in a community do not really 
“prefer” each other specifically. If only topologies 1 and 3 were present in the tree 
set, not topology 2, we would see strong, positive covariances within each of these 
communities. Further, the fact that the bipartitions in these communities map to 
these topologies reinforces that they explain most of the conflict. (One bipartition 
also maps to topology 4, but this seems to be only because tree 4 shares that 
bipartition with topology 1). While these results from bipartition networks confirm 
what we could learn by manually examining the frequency of different topologies, 
manual inspection will be much more difficult for larger trees with more unique 
topologies. 
 
In aggregate, these tools allow us to visualize the variation in phylogenetic signal 
across the genome in a way that is agnostic about the underlying evolutionary 
process, rapidly identify “outlier” regions that may warrant particular attention, and 
summarize the phylogenetic relationships that conflict most strongly across the 
genome. 
 



 
 

Figure 10 ‒ Bipartition covariance networks of the erato-sara clade, based on 
trees inferred from 50-kb windows along chromosomes 20 and 21. (A) The 
covariance network with nodes (black circles) representing different 
bipartitions. Thicker red lines represent strong negative covariances between 
bipartitions, while thicker blue lines represent strong positive covariances. (B) 
The covariance network with two communities (in yellow shading) detected 
by community detection using bipartitions with frequencies ≥ 0.01 and ≤ 0.99. 
(C) The covariance network with two communities detected by community 
detection using bipartitions with frequencies  ≥ 0.05 and ≤ 0.95. Bipartitions 
in these two communities are labeled with the taxa on one side of the 
induced split. (D) The five most common topologies observed in whole-
genome analyses of the erato-sara clade, as identified by Edelman et al. 
(2019). Note that the root of these trees is defined by the position of an 
outgroup that has been pruned. The frequencies of the first three topologies 
across chromosomes 20 and 21 are shown. 



 

Prospects for Future Development and Application 
 
The combination of NLDR visualization and community detection methods show 
promise for a wide variety of applications in phylogenomics and species-tree 
inference, and there is considerable room for future development. Since these tools 
are inherently exploratory, their most fruitful application may be in combination with 
software and databases that allow users to collect new data or test new hypotheses 
inspired by their initial explorations. The results from these analyses also need not 
be static. In the future, researchers could interactively explore integrated results. 
For example, one could slide the tuning parameter for community detection up and 
down and watch a network or NLDR plot to see how the community structure 
changes. If researchers are investigating genome-wide variation in gene trees, they 
could click on nodes in a topological network or points in an NLDR plot and 
immediately see summaries of the tree and its corresponding genomic region. They 
could also click on sets of bipartitions in a covariance network and have them 
highlighted in the corresponding topologies. 
 
Mathematically, opportunities remain to explore approaches for community 
detection that incorporate properties found to be important for topological and 
bipartition networks in the context of phylogenetic studies (such as the ability to 
assign a particular node to more than one community simultaneously). 
Characterizing both network types for a range of biological data sets may also 
suggest new, tailored community detection models. Another opportunity could be to 
integrate additional information about the data that generated particular subsets of 
trees (e.g., characteristics of genes like size, function, or variability) and use it to 
label nodes in topological networks. These labels could then be incorporated into 
the process of community detection. 
 
Biologically, the application of these approaches (particularly community detection) 
in phylogenetics is new and it will take time to understand what properties to expect 
of networks in different situations, and how different community detection models 
may behave depending on the nature of the tree set (Mount et al. 2020). Bipartition 
covariance networks, in particular, seem to carry a lot of information, but the best 
way to characterize and interpret the structure of these networks is an active focus 
of research. 
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Appendix 
 

Installing TreeScaper 
 
Executable versions of TreeScaper with a graphical user interface (GUI) are 
available from https://github.com/TreeScaper/TreeScaper/releases for Mac and 
Linux operating systems, along with a manual and tutorial files. The TreeScaper 
code (written in C++) is available from https://github.com/TreeScaper/TreeScaper. 
The TreeScaper manual contains instructions for compiling versions of TreeScaper 
that can be run from the command line. 
 

CloudForest 
 
The National Science Foundation (NSF) recently funded a new collaborative project 
to expand the interoperability of TreeScaper with other phylogenetic tools (DBI-
1934156 to JMB, DBI-1934157 to KAG, and DBI-1934182 to JCW). The resulting 
cyberinfrastructure framework is called CloudForest and will be able to run on a 
range of computing platforms varying in size from a desktop computer, to a 
university-maintained high-performance computing cluster, to commercial cloud 
computing resources. An initial version of CloudForest intended for use with a 
desktop computer is planned for release in 2021. Updates will be available at 
https://github.com/TreeScaper/. 
 


