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ABSTRACT 

Directed evolution is a form of artificial selection that has been used for decades to find                

biomolecules and organisms with new or enhanced functional traits. Directed evolution           

can be conceptualized as a guided exploration of the genotype-phenotype map, where            

genetic variants with desirable phenotypes are first selected and then mutagenized to            

search the genotype space for an even better mutant. In recent years, the idea of               

applying artificial selection to microbial communities has gained momentum. Here, we           

review the main limitations of artificial selection when applied to large and diverse             

collectives of asexually dividing microbes, and discuss how the tools of directed            

evolution may be deployed to engineer communities from the top-down. We           

conceptualize directed evolution of microbial communities as a guided exploration of           

an ecological structure-function landscape, and propose practical guidelines for         

navigating these ecological landscapes.  
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DIRECTED EVOLUTION OF ORGANISMS AND BIOMOLECULES 

Evolution has given shape to all forms of life, and humans have harnessed its power for                

millennia. Our ancestors learned to domesticate animals, plants, and a wide range of             

microorganisms by artificial selection long before they were aware of evolution itself            

(27, 92). The revolution in our understanding of evolutionary biology, genetics, and            

molecular biology in the 19th and 20th Centuries, together with the development of             

novel genomic and molecular technologies (1, 31, 100, 102, 115), has allowed us to              

extend artificial selection beyond domestication and learn how to direct the evolution of             

biomolecules (12, 48), genetic circuits (126), microorganisms (80), and viruses (16), to            

improve their phenotypes and even to invent new ones (48, 81). A major advantage of               

using directed evolution to engineer biological systems from the top-down, as opposed            

to engineering them from the bottom-up, is that the latter works with already known              

parts and traits, whereas the former does not require a priori knowledge and therefore              

it may allow us to find entirely new pathways and novel functions, encoded in hitherto               

unexplored regions of the genotype space. 

 

Beyond its practical utility, directed evolution can also lead to profound insights to             

fundamental biological principles. For instance, directed evolution in vitro and in silico            

has revealed principles of organization of genetic and metabolic networks (11, 34, 125,             

126), and it has been instrumental to our growing understanding of the mapping             

between genotype and phenotype in biomolecules (14, 89, 108), metabolic pathways           

(79), and other cellular phenotypes (115). In turn, as our understanding of the genetic              
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basis of adaptation has improved, it has enabled us to design more efficient strategies              

and methods for directed evolution (1, 6, 7, 64, 89, 102, 128).  

 

The genotype-phenotype map (also referred to as the fitness landscape in the context of              

directed evolution) is defined as the relationship between the DNA sequence of a gene              

(or a higher-level functional unit, such as a pathway or genetic network) and the              

magnitude of the quantitative trait(s) it codes for in a given environment. Directed             

evolution can be conceptualized as a guided exploration of this genotype-phenotype           

map, in search for genotypes of high or novel functions (89, 108). Traditionally, directed              

evolution starts by first generating a library of genetic variants (74). All variants are              

then scored for the phenotype under selection, and those that are closer to the desired               

value (hereafter referred to as “the fittest”) are chosen for reproduction. From this             

selected group, a new generation of genotypic variants is created through random            

mutagenesis or recombination (74). This two-step process is generally applied          

iteratively for as many rounds as needed. In recent years, several techniques have been              

developed that increase the throughput of the process and reduce human intervention            

(31, 115), but the fundamental evolutionary process remains the same (64, 90).  

 

ARTIFICIAL SELECTION ABOVE THE ORGANISM. 

Given the growing appreciation of the many important roles that groups of individuals             

(populations, communities, and ecosystems) play in natural and technological processes          

(13, 49, 57, 63, 69, 72, 84, 97, 110, 120), it has been proposed that artificial selection may                  
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be also applied above the level of the organism to engineer community-level functions             

from the top-down (25, 72, 104) (Fig. 1A). An additional method to engineer             

communities from the top down that has a long tradition in microbiology is the              

Enrichment Approach (Fig. 1B) (For some recent applications see (22, 38, 56, 60, 62, 77,               

127)). This method has been reviewed elsewhere, and although we will refer to it in this                

piece, our focus is on artificial selection, which has been less-well studied despite its              

substantial promise. 

 

Conditions for artificial selection: Heritability and variation. Artificial selection can be           

in principle applied to any level of biological organization, provided that the evolving             

units exhibit phenotypic variation along the axis of selection, and that a substantial             

fraction of this variation can be reliably passed from parents to offspring (66) (Fig. 1A).               

Selection can be very efficient at the organismal level, as organisms fulfill both criteria:              

the phenotypes of an organism are (at least in part) determined by its genotype, which               

is either partially or entirely passed from parent to offspring. This ensures that many              

phenotypes have a heritable component upon which selection can act. Whether the            

conditions that are required for natural selection (which, in addition to the two             

mentioned above, includes that phenotypic differences must be associated with fitness           

differences between the replication units (66)) are met by any supra-organismal entities            

in nature has remained controversial. However, there is solid empirical and theoretical            

evidence that those conditions can be met under artificial selection conditions (15, 26,             

40, 43, 65, 111, 113, 114, 118, 119, 123).  
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Artificial selection of populations and small synthetic communities. The idea that           

groups of organisms could respond to group-level selection was first tested in small             

animal populations (111, 112), and two-species communities (40, 43). In these           

experiments the selection units were populations containing N~10 genetically diverse,          

sexually reproducing animals (belonging to the flour beetle Tribolium genus), which           

interacted exclusively with one another but not with individuals from other           

populations. These populations were scored for an emergent trait that was a property of              

the entire group, such as the total number of adult animals in the population after ~40                

days of incubation. The best performing communities (i.e. the “parental” groups) were            

then selected and used as the genetic stock to “breed” a new generation of groups (i.e.,                

the “offspring” groups; Fig. 1C-D). As controls, some of these studies established            

random selection lines (where the populations selected for reproduction were chosen           

randomly, without regard for their phenotype), as well as no-selection lines (where all             

parent populations were selected for reproduction and each seeded exactly one           

offspring population) (Fig. 1E-F).  

 

In order to generate an offspring group, these studies employed two different strategies.             

One reproduction strategy was called the “propagule” method (43). In this method, a             

small (N~10) random subset of individuals from the selected parental population was            

introduced in the new habitat, acting as the inoculum for the offspring population (Fig.              

1C). The second reproduction method is referred to as the “migrant pool” method (43).              
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It consists of pooling together all of the animals from the selected parental populations,              

and then selecting a small random subset (also N~10) from that pool to seed an               

offspring population in a new habitat (Fig. 1D).  

 

All of these experiments found a robust directional change in the mean phenotype of              

the “population of populations” (hereafter the metapopulation) in response to selection           

at the population level. Indeed, the metapopulations in these experiments fulfilled the            

two conditions that are required for artificial selection to work. First, the authors found              

a significant between-population variation in the phenotype under selection, due to the            

combination of small, genetically diverse populations and sexual recombination.         

Follow-up studies also demonstrated that this variation had a heritable component,           

which stemmed from interactions between specific combinations of genotypes, which          

were directly responsible for the population level trait under selection (e.g. the number             

of adult individuals) (41, 43).  

 

Artificial selection of microbial communities and ecosystems. In the early 2000s,           

artificial selection above the organismal level was extended from populations and small            

pairwise communities to entire microbial ecosystems. In a landmark set of studies (103,             

104), Swenson and co-workers adapted the propagule and migrant pool strategies to            

select for microbial ecosystems with high scores in three emergent community-level           

traits: (i) the pH of the aquatic medium on which the ecosystems were growing, (ii) the                

collective degradation of 3-chloroaniline, a water contaminant, and (iii) an indirect           
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microbiome phenotype, such as the above-earth biomass of the plants on which those             

communities had been inoculated. Although these experiments were promising, the          

effect of selection was modest compared to the robust and large responses observed in              

animal populations (40, 43, 111, 112).  

 

These studies were followed by a handful of additional artificial microbiome selection            

experiments, all of which adopted similar protocols and selection strategies. Using a            

migrant pool method, Panke-Buisse et al artificially selected for soil microbiomes that            

induced either early or late flowering in various genotypes of Arabidopsis thaliana and             

Brassica rapa (75, 76). This experiment found a strong and statistically significant relative             

difference between the mean flowering time of microbiomes that were selected for early             

vs. late flowering. However, both lines drifted over time and flowered later than the              

starting (non-selected) microbiomes. In a later study (15), Blouin et al used an             

experimental design with multiple artificial selection (as well as random selection) lines,            

and selected for low CO2 emission in aquatic ecosystems. The amount of respiration             

was lower in the artificially selected lines than in the random controls. In both,              

however, the amount of CO2 produced declined over time. More recent studies have             

attempted to select microbiomes that degrade extracellular polymers (18, 121), protect           

plants against drought (55, 71), alter the development of animal embryos (8), and             

facilitate the growth of a species that could not grow on its own (18). We believe it is fair                   

to say that success has been mixed (some experiments succeeded while others failed or              

were inconclusive), and generally modest. 
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What limits the success of artificial selection at the community level? As we discuss              

above, artificial selection at the community level requires that communities exhibit           

variation on the selected trait, and that this trait is reliably passed from “parent” to               

“offspring” communities. With regard to the heritability of community-level traits, the           

method used to generate “offspring” communities from their “parents” is therefore           

critical (83). Due to the success of the propagule and migrant pool strategies in animal               

populations, both methods have been universally adopted in all microbial          

community-level selection studies we are aware of. There are, however, important           

quantitative differences between animal populations and microbial communities. First,         

microbial communities are generally several orders of magnitude larger. A conservative           

estimate of the number of bacterial cells that were used to inoculate each generation in               

previous experiments is N~106, and the actual number is likely to have been several              

orders of magnitude higher (19). This large inoculum size could lower the amount of              

between-population variation, which is critical for selection to act on (19). In animal             

populations, sexual reproduction and a genetically diverse starting pool of animals also            

ensured a high between-population variation (Fig. 1C-D). By contrast, most microbes           

reproduce asexually (despite the potential for horizontal gene transfer) and          

recombination is generally rare, diminishing the potential to generate novel genotypes           

using standing genetic variation alone. Stochasticity and selection are both needed for            

an efficient exploration of the adaptive landscape (122).  
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With regard to between-ecosystem variation, Blouin et al have discussed the conflict            

that exists between this variation and selection (15). As discussed above, selection runs             

on phenotypic variance. Yet, as selection proceeds it will exhaust this variance, as it will               

inevitably eliminate alleles and species from the metapopulation (Fig. 2A). In the            

absence of mechanisms that regenerate between-community variation (more on this          

below), we should expect diminishing returns in artificial selection: the amount of            

heritable variation should decrease with every selection round, leading to an ever            

weakening response to selection. Re-generating this variation is thus critical if we want             

artificial selection to be successful beyond the first few rounds. In later sections of this               

paper we address how this variation may be replenished. (Fig. 2A) 

 

A second important limitation of artificial selection at the level of communities or             

ecosystems is their inherently dynamic nature. In most artificial selection experiments,           

selection is applied to communities that are grown in serial batch mode (Fig. 2B). In the                

absence of selection, serial batch culture starts by seeding a habitat with individuals             

coming from a previous batch (the “parental” batch), and continues by letting them             

grow in an environment that is, in principle, identical or at least as similar as possible to                 

the one in the previous generation. At the end of the batch-incubation time t, cells are                

again randomly drawn from the offspring batch to inoculate yet another habitat and             

continue the process (Fig. 2B). Within each batch incubation, all species grow and             

undergo an ecological succession (24, 29, 33) (Fig. 2C). These successions are not             

necessarily identical between parent and offspring batches, and neither are their           
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compositions at the end of their respective batch incubations (Fig. 2C). As we discuss              

below and have demonstrated elsewhere (19), this “generational instability” can have           

detrimental effects on heritability and severely limit the success of ecosystem-level           

selection in multispecies consortia (Box I). 

Artificial selection as top-down engineering. In the very first paper on artificial            

ecosystem selection, Swenson et al already advanced the idea that artificial selection            

could be used to engineer microbiomes from the top-down (104). However, the main             

goal of this and other previous studies was not so much to engineer ecosystems, but to                

demonstrate the feasibility of ecosystem-level selection and to study its fundamental           

limits. Perhaps for that reason, most studies have focused on the directional response of              

the mean function to selection, generally by comparing it to a random selection control,              

and none of the microbiome selection experiments we are aware of has included a              

no-selection control. A no-selection control is in essence an exercise on ecological            

prospecting (18): one sets up a diverse set of enrichment communities, let them stabilize              

without mixing, and in the end choose whichever one has the most desirable trait. In               

the absence of sexual recombination, the advantages of selection over ecological           

prospecting are not obvious and therefore eco-prospecting represents a benchmark          

against the success of a selection strategy. Importantly, the ultimate goal of artificial              

selection as a means of top-down microbiome engineering is not to improve the mean              

function in the metacommunity, but to find a fitter microbiome than the best one we               

started with (19). As we advanced in the introduction, directed evolution at or below              

the organismal level seeks to find optima in the genotype-phenotype space. In what             
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follows, we argue that the directed evolution of microbial communities can similarly be             

conceptualized as a guided exploration of an ecological structure-function landscape:          

the map between community composition and community function (Box I). 

 

DIRECTED EVOLUTION AS A GUIDED EXPLORATION OF THE ECOLOGICAL         

STRUCTURE-FUNCTION LANDSCAPE 

Before we describe how directed evolution may help us explore the ecological            

structure-function landscape in search for communities with optimal traits, it is           

important to clarify what we mean by the ecological structure-function landscape and            

in which ways it differs from the genotype-phenotype map. This will help us better              

appreciate the differences that exist between directed evolution above and below the            

organismal level.  

 

The dynamical ecological structure-function landscape of microbial communities.        

Much like a fitness landscape maps genotypes and phenotypes, the ecological           

structure-function landscape is a map between community composition (i.e. the vector           

of abundances of all taxa in the community) and the traits (or functions) of the               

community (see Box I). The idea that community composition impacts emergent or            

collective community functions is an old one in ecology (67, 85, 106, 107, 117). In recent                

years, the structure-function landscape of microbial communities has been explicitly          

formalized (45–47, 94, 95) and combinatorially explored (10, 28, 32, 45–47, 52, 54, 58, 94,               
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101), by mapping numerous different combinations of bacteria with one of more of their              

quantitative collective-level properties. 

 

Perhaps the biggest practical difference between fitness landscapes and ecological          

structure-function landscapes is that, as described above, community composition         

changes within a batch, from the moment of inoculation to the point of harvesting.              

Moreover, the successional dynamics within a batch are not necessarily the same in the              

parent as in the offspring community, even in the absence of group-level selection (19).              

This means that the state of the community, which is defined by the vector of species                

abundances at the end of the batch incubation, will change over generations even when              

no artificial selection is applied (Fig. 2C). Eventually, the communities may converge to             

a state of “generational stability”, which can be represented as a fixed point in their               

dynamical landscape (Fig. 3A). 

 

It is pertinent to ask at this point whether a generationally stable state of reproducible               

successions is ever to be expected. Early work proposed that community assembly            

might be chaotic, so that communities that are seeded with slightly different initial             

compositions (due to unavoidable random sampling) would diverge in both          

composition and function over time (104). Enrichment experiments with multiple          

replicates (which are the equivalent of a “no-selection” control in artificial selection            

experiments (19, 111)) have found, however, that community assembly is not chaotic            

(30): replicate habitats that were seeded from the same inoculum generally adopted a             
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discrete set of alternative (generationally) stable states (30, 39). These experiments have            

mapped the basin of attraction of stable states in self-assembled communities, and even             

found stochastic transitions among them (30, 109). Other studies with synthetic or            

bottom-up communities have similarly found evidence of dynamical multi-stability in          

microbial communities (4, 20, 23, 36). Because different stable community states contain            

different species, they may also differ in a range of community-level properties and             

functions (37). These studies, along with related theoretical work (26), support that the             

structure-function landscape is more than a convenient metaphor, and that despite its            

limitations (see Box I and the section above) it is a practical and useful tool to help us                  

think through the process of directed evolution of biological systems above the            

organism. 

 

Directed Evolution of microbial communities: Methods to explore the ecological          

structure-function landscape. At the community level, directed evolution would start          

by creating a library of “generationally stable” communities that differ from each other             

in the collective, community-level trait under selection. The fittest community is then            

selected, and used to generate a new library of proximal “compositional variants”.            

Those variants are propagated by serial batch culture until they are generationally            

stable, and the fittest amongst those is again selected so the process can be iterated as                

many times as needed (Fig. 3A). A key step in the development of directed evolution               

for protein and network engineering has been the invention of methods for gene             

diversification, which enable the exploration of the fitness landscape of the system            
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under selection (74). If we wish to apply directed evolution to microbial communities,             

we should similarly ask how exactly we can generate a library of compositional variants              

of a selected community? Many ideas and methods have been already tested            

empirically in enrichment-based approaches for the top-down engineering of microbial          

communities (22, 56, 60, 62, 77). Below, we discuss those and a few other possibilities               

(19).  

 

Horizontal gene transfer and mobile elements (Fig. 3A): Mobile elements can create new             

strains, whose contribution to community-level functions may differ from their          

ancestor. This suggests that adding mobile elements (e.g. bacteriophages and plasmids)           

to different communities in a metacommunity may stochastically lead to the appearance            

of new strains in the community and, therefore, to between-community variation in            

function. In a recent study, Quistad et al transplanted mobile elements from one             

community to another, and this process led to genetic changes (e.g. amplification of             

genes involved in Nitrogen metabolism) in the recipient species (78). These genetic            

changes were associated with functional changes at the community-level (e.g.          

biochemical rates of ammonification), demonstrating that stimulated species-level        

evolution can be a means to create compositional and functional variants of a successful              

community. More targeted tools to deliver plasmids to a stable microbiome by            

horizontal gene transfer have been developed in recent years (91).  
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Coalescence (Fig. 3B): A library of variants of the selected community may also be              

created by coalescing the selected, stable community with each of the non-selected ones             

(68, 86, 87, 99). Multiple theoretical and empirical lines of evidence show that mixing              

two communities together produces a new “offspring” community that resembles both           

of its parents both in composition and function (99, 105).  

 

Horizontal migration (Fig. 3C): Randomly sampled species from one or more natural            

species pools could be added to the community to generate proximal variants. These             

invasive species may displace some of the resident taxa, or augment the community by              

fixing without driving others extinct (61). Even those species that do not fix may in               

principle push a community to an alternative state (4). 

 

Selective knock-ins (Fig. 3D): Species that are deemed to have a beneficial effect on the               

selected function can be selectively added one at a time to the community, thus              

generating a library of compositional variants. To ensure that this added species will             

not be outcompeted by the resident species, an exclusive metabolic niche (i.e. a nutrient              

that the added species may utilize but most members in the invaded community do              

not) could be supplied together with the added species (96). 

 

Bottlenecking (Fig. 3E): Variants of a selected community can be generated by subjecting             

it to multiple harsh bottlenecks, an approach known as dilution-to-extinction (22, 35, 53,             

56, 62). If a sufficiently low number of cells is sampled from the community during each                
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bottleneck, the inherent sampling stochasticity will ensure that each of the variants will             

have a different community composition (56). The specific bottleneck size that will            

maximize functional variation between compositional variants can be determined         

empirically, as it is a function of the population size (19, 53).  

 

Selective knockouts (Fig. 3F): Individual species from the resident community may also be             

selectively targeted for elimination, for instance by narrow spectrum antibiotics or           

bacteriophages (17, 70, 73, 124). This elimination will create community variants with            

different composition. In addition, bacteriophages and antibiotics also represent         

selective pressures that can alter the genotypic composition of communities (3, 116),            

presenting an additional mechanism to generate compositional variants.  

 

Environmental pulse perturbations (Fig. 3G): In addition to adding and removing species,            

one may push communities into random directions of the ecological landscape by            

transiently changing the environment, for instance by altering nutrient composition,          

increasing the temperature, salinity or pH, or through other means. This will alter the              

fitness of all members of the community, allowing some of the rarer members to              

increase in abundance, and some of the more abundant members to decline. When the              

environment is returned to its normal state, the perturbed communities may converge            

to a different fixed point due to either species loss or to multistability. Environmental              

pulse perturbations can also result in phenotypic switching in microbial populations           
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(9). We speculate that cellular memory may allow us to push microbial communities to              

new functional states even in the absence of changes in their genotypic composition. 

 

Environmental press perturbations (Fig. 3H): Finally, whereas all of the above strategies to             

create compositional variants involve the communities jumping to a new stable state,            

another possibility is to change the environment in a small but permanent way, thereby              

finding new stable states that did not exist before (60). We speculate that this may allow                

a finer control over the community composition, as the press-perturbations may be            

made, in principle, as small as desired, thus potentially allowing for very small changes              

in species abundances (60).  

 

The above methods are not exhaustive. The reader will have noticed that the two              

methods used in artificial selection, the propagule and mixed-pool, are also means to             

explore the ecological structure-function landscape. The bottleneck method is         

essentially an extreme form of a propagule method, where a very small number of cells               

is chosen to seed the offspring generation. As for the migrant-pool method, it is also an                

example of coalescence, where more than two communities are mixed in equal ratios.             

Both of these methods can successfully create a new library of variants if the number of                

cells that is sampled is small enough (18).  

 

Directed evolution of microbial communities: Selection and heritability at the          

community level. After a sufficiently heterogeneous library of variants has been           
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generated, we must reckon with the fact that not all of the variation will be heritable.                

For instance, some variation may come from measurement error in determining the            

function of each community. How does this non-heritable component affect selection?           

The community-level heritability quantifies the degree to which community functions          

are passed from a “parent”community to its “offspring”. If heritability is very low, this              

means that there exists a low correlation between the parent and offspring community             

function. Therefore, a high community-level heritability is critical in order for directed            

evolution to work. To understand how this heritability is affected by different            

experimental and ecological processes let us first consider a metacommunity that is            

being passaged in absence of artificial community-level selection (Fig. 2B), until all            

communities are successionally stable.  

 

Let us denote by fx and fy the experimentally measured functions of a “parent”              

community and its “offspring”. By assumption, both communities are in the same            

generational equilibrium state X*. The functions of both communities can be written as: 

 

(X )f x = F * + ξx  

,(X )f y = F * + ξy  

 

where F(X*) denotes the function associated to the equilibrium state X* in the             

structure-function landscape, and 𝜉x and 𝜉 y are uncorrelated random variables of zero            

mean and equal variance (𝜎 𝜉
2). These two variables capture the effect of small stochastic              
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deviations in community composition from the true equilibrium due to drift (e.g. due to              

the stochastic sampling introduced by pipetting), as well as measurement error,           

environmental fluctuations, and other stochastic factors. If we regress the function of            

the offspring on the parent function across the entire metacommunity, the regression            

slope will be given by b=Cov(fx,fy)/𝜎 x
2, where 𝜎 x

2 is the experimentally measured            

variance in the parent metacommunity. This will in turn be given by 𝜎 x
2 = 𝜎 F

2 + 𝜎 𝜉
2 ,                  

where 𝜎 F
2 represents the fraction of variance that is due to different communities in the               

parent metacommunity being in different equilibria, i.e. the variance in F(X*) over the             

metacommunity.  

 

By assumption, each offspring community is fluctuating around the same dynamical           

equilibrium state as its parent. Therefore, the component of the variance that derives             

from different communities being in different steady states (𝜎 F
2) will be passed intact             

from the parent to the offspring metacommunity. By contrast, 𝜎 𝜉
2 is non-heritable, as it              

includes all of the sources of variation that are stochastic and are uncorrelated between              

parent and offspring communities, from drift in population dynamics to environmental           

fluctuations or measurement error. Because by assumption 𝜉x and 𝜉 y are uncorrelated,            

Cov(fx,fy) = 𝜎 F
2. The slope of the regression between parent and offspring function will              

thus be equal to b=𝜎 F
2/𝜎 x

2. It is straightforward to see that the slope b is equal to the                  

fraction of the total variation in function across the parent metacommunity that is             

heritable, i.e. the community heritability h2 (15, 42): 
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./σ /(σ ) 1 /σ )h2 = σF 2 x
2 = σF 2 F

2 + σξ2 = ( + σξ2 F
2 −1  

 

The larger is 𝜎 𝜉
2 relative to 𝜎 F

2, the weaker will be the response to selection. This                

highlights the detrimental role of all non-heritable components for community-level          

selection. The effect of pipetting errors has been recently examined (123), and other             

factors such as the importance of precise and accurate measurements of           

community-level functions, and of working with genetically diverse communities in          

equilibrium are also highlighted. Uneven spatial and temporal environmental         

conditions among the populations should be avoided. 

 

SUMMARY AND OUTLOOK 

Our motivation for writing this piece was to synthesize the differences and similarities             

that exist between directed evolution of biological systems above and below the            

organismal level. Just as directed evolution has been used to engineer proteins and             

strains, it may be used to engineer communities and organisms as well. The underlying              

idea is similar, but important differences exist. Unlike the genotype of an organism             

(which is stable throughout its lifespan) or of a molecule, the composition of a              

community changes not only during the successions within each batch, but also across             

successive batches. Only after the communities stabilize, their composition and          

collective properties can be reliably passed from parent to offspring communities. At            

that point, communities become a valid unit of selection and can be subject to directed               

evolution. In this paper, we have discussed how one may carry out such an experiment,               
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and provided ideas that we hope will be useful for other researchers as they design               

their own approaches. 

 

Box I. The structure-function landscape.  

In the text we argue that the functions of a community are determined by their               

structure. But can we be more precise? In order for the structure-function landscape to              

be meaningful, we must specify what exactly we refer to as the function and the               

structure. To address this question, it is helpful to think of a concrete example, which is                

inspired by recent experiments in our laboratory (94). Let us consider a community of              

species that is seeded into a habitat at time 𝜏 = 0 and allowed to grow in it. Species                   

abundances (given by abundance vector X(𝜏)) will change over time according to X’(𝜏) =              

dX/d𝜏 = g(X(𝜏);𝛩(𝜏)), where 𝛩 represents the set of all environmental parameters. As the              

species grow in this habitat, some of these environmental parameters change as well.             

For instance, species may be secreting an enzyme to the environment. The concentration             

of this enzyme in the habitat (C(𝜏)) will increase as a result of secretion, but it may also                  

decline as the enzymes become degraded by proteases, or inactivated through other            

means. The concentration of enzyme C(𝜏) will thus be governed by a differential             

equation just as the species abundance does, where:  

 

(τ ) (X(τ ), (τ ), (τ ); (τ )) (τ )m(X(τ ), (τ ); (τ ))C ′ = h X ′ C Θ − C C Θ  
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Here, we have introduced a function h(.), which captures the instantaneous rate of             

enzyme production in the community, and a second function m(.) which reflects the             

instantaneous rate of degradation/dilution per enzyme. The total secretion rate will be a             

function of the abundances of all secreting species X(𝜏) (94) and, potentially, also of the               

growth rates of all species X’(𝜏), as the expression of most genes is regulated by growth                

rate (59). Finally, it may also be a function of the total concentration of the enzyme in                 

the environment, as the byproducts of an enzyme are often inhibitors of its expression              

(44, 94). This rate may also depend on additional factors, such as the previous growth               

history of all cells, as gene expression can exhibit hysteresis (9, 88). 

 

In this example, the enzyme concentration at the end of the batch-incubation (i.e. the              

“harvesting time”) t is a community trait that one may want to select for, and therefore                

it is a potential function (F) of the community: F=C(t). The abundance of all species at                

the time of harvest, X(t), could be thought of as the structure of the community. Yet, the                 

function F is in this case a cumulative property of the community over the incubation               

time t. In principle, F will causally depend not only on the species abundances at time t,                 

but also on their entire ecological (i.e. succession) dynamics over the incubation time t,              

i.e. on {X(𝜏),X’(𝜏),𝛩(𝜏)}, where 𝜏 𝜖 (0,t) (Fig. 2B-C). Therefore, it is unclear that a               

structure-function landscape F(X(t)) that uniquely maps every structure (i.e. the          

abundance vector X(t)) with a function F even exists in this case. 
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This situation is resolved if we think of a population in equilibrium. It may sound               

strange to speak of communities being in equilibrium given that they are being serially              

passaged, and therefore engaging in a dynamical ecological succession during each           

incubation. A community is generationally stable when the ecological successions          

within subsequent incubations are identical (26), and as a result the abundance vectors             

at the end of the i-th and all subsequent incubation periods are also identical, i.e. if                

Xi(t)=Xi+j(t) (j > 1). If two consecutive successions are identical, then Xi(𝜏)=Xi+1(𝜏) for all 𝜏 𝜖                

(0,t), and we should expect that the same equality will hold for X’(𝜏) and 𝛩(𝜏), and                

therefore for C(𝜏). We thus argue that the structure-function landscape F(X(t)) is            

well-defined for communities that are generationally stable. It is important to note,            

however, that F is not causally determined by X(t) but, rather, that X(t) and F(t) are both                 

linked together through the same underlying dynamical process. Though there exists an            

association between both, this association does not immediately imply causation. 

 

Finally, we should also note that the function F can (and often does) feed back to                

population dynamics. For instance, the concentration of extracellular enzymes will          

affect the fitness of different microbial strains (20, 93), and the per-capita contribution of              

each strain to this function may also be costly at the individual level (98). This can lead                 

to high-function states to be fragile to invasion by “cheater” strains that have high              

fitness when the function is high, but which do not contribute to its production, thus               

avoiding the cost. Understanding how multi-level selection can contribute to avoid           

cheater invasion is an area of intense theoretical and experimental interest (2, 21, 50, 51,               
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82), which can help us design efficient methods of artificial community-level selection            

(5, 123) 
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TERMS AND DEFINITIONS LIST 

Artificial selection: The process of intervening in the natural reproduction cycle of            

organisms to favor those individuals which exhibit desirable traits. 

Directed evolution: An iterative process of randomization and selection that is used to             

engineer biological systems from the top-down.  

39 

http://paperpile.com/b/s2EOzW/aWaM
http://paperpile.com/b/s2EOzW/aWaM
http://paperpile.com/b/s2EOzW/aWaM
http://paperpile.com/b/s2EOzW/aWaM
http://paperpile.com/b/s2EOzW/G8gx
http://paperpile.com/b/s2EOzW/G8gx
http://paperpile.com/b/s2EOzW/G8gx
http://paperpile.com/b/s2EOzW/G8gx
http://paperpile.com/b/s2EOzW/aUUU
http://paperpile.com/b/s2EOzW/aUUU
http://paperpile.com/b/s2EOzW/aUUU
http://paperpile.com/b/s2EOzW/aUUU
http://paperpile.com/b/s2EOzW/gm2T
http://paperpile.com/b/s2EOzW/gm2T
http://paperpile.com/b/s2EOzW/gm2T
http://paperpile.com/b/s2EOzW/gm2T
http://paperpile.com/b/s2EOzW/DGLm
http://paperpile.com/b/s2EOzW/DGLm
http://paperpile.com/b/s2EOzW/DGLm
http://paperpile.com/b/s2EOzW/84yQ
http://paperpile.com/b/s2EOzW/84yQ
http://paperpile.com/b/s2EOzW/84yQ
http://paperpile.com/b/s2EOzW/84yQ
http://paperpile.com/b/s2EOzW/84yQ
http://paperpile.com/b/s2EOzW/vb2B
http://paperpile.com/b/s2EOzW/vb2B
http://paperpile.com/b/s2EOzW/vb2B
http://paperpile.com/b/s2EOzW/vb2B
http://paperpile.com/b/s2EOzW/vb2B


Fitness landscape: The map between the genotype of a gene or organism and its              

phenotype or fitness.  

Ecological Structure-function landscape: The map between community composition        

and the function or functions associated to it. 

Generational-stability: A state reached by serially passaged batch cultures where the           

ecological successions in successive batches converge to be identical.  

Enrichment approach: A method to engineer communities from the top-down by           

growing environmental microbiomes in selective media. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 



FIGURES 

 

Fig. 1. Methods of top-down engineering above the individual organism(A) Any biological system can be               
subject to artificial selection as long as it exhibits variation along a trait of interest (z), and that trait is                    
heritable, i.e., can be reliably passed into variants derived from it in a subsequent generation. (B) Typical                 
workflow for an enrichment approach to engineering communities from the top-down. Multiple            
enrichment communities are set up by inoculating habitats from a species pool. Typically, the              
environment is selective for the desired function. The enrichment communities can be stabilized by serial               
passaging. Then, a severe bottleneck (dilution-to-extinction) is applied to subsample from the stable             
communities to find simpler communities that maintain the function, and the best amongst those is               
selected. (C-F) A depiction of the two main methods of artificial population-level selection, representing              
their original application in animal populations (40, 43, 111, 112): the propagule method and the migrant                
pool method, together with the random control and the no-selection control. 
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Fig. 2. Limitations of artificial selection at the level of communities. (A) Schematic illustrating the conflict                
between heritable variation and selection. As the top-performing communities get selected, the            
worst-performing communities get purged from the experiment, and as a result, Fmean increases and the               
amount of heritable variation decreases over generations (G). After multiple rounds of selection, and              
without any novel variants introduced, the heritable variation is fully exhausted and selection has              
nothing to act upon. Variation can be replenished by, for instance, introducing migrants from a species                
pool, which may allow communities to reach new function peaks (Fmax). (B) Microbial community growth               
in serial batch culture (without selection). Communities are initially seeded from a highly diverse species               
pool into a new habitat (“infant” community), and then allowed to grow for an incubation time t (at                  
which point they are an “adult” community). Without selection, a small and random fraction of the cells                 
from the “adult” community are inoculated into a new habitat, forming a new ‘infant’. This               
growth/dilution process is repeated multiple times. (C). Within each batch incubation, the species             
undergo an ecological succession as they grow and interact with each other. After multiple rounds of                
serial passage, communities reach a generationally stable equilibrium, which is seen when the species              
abundance vectors X during (and at the end of) the i-th and all subsequent incubation periods are                 
identical, i.e. when Xi(τ)=Xi+j(τ) for all τ ε (0,t). Without such “generational stability”, community              
heritability is very low and the success of ecosystem-level selection at the level of communities is strongly                 
reduced. 
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Fig. 3. Directed Evolution as navigation of an ecological structure-function landscape. (A) In this cartoon,               
and for simplicity, we project the community function over an ecological space defined by the abundance                
of just two species (i and j). The depicted ecological dynamics are multistable, and communities converge                
to one of three different attractors (stable points), colored by red, yellow and blue circles. This ecological                 
landscape can be navigated through an iterative process of perturbation, stabilization, ranking and             
selection. (B-F) Six different methods to create a library of “compositional variants” of the selected               
community. (G) Altering resource concentration can be a way to change the fitness of different species                
within the community and therefore of changing the composition of generationally stable communities             
(60). 
 

44 

https://paperpile.com/c/s2EOzW/7m1m

