
	 1	

Species interactions and spatial heterogeneity: predicting cascading predator effects on 
landscape biogeochemistry 

 

JULIA D. MONK, School of the Environment, Yale University, New Haven, CT, 06511, USA, 

julia.monk@yale.edu 

A. CARLA STAVER, Department of Ecology and Evolutionary Biology, Yale University, New 

Haven, CT, 06511, USA, carla.staver@yale.edu 

OSWALD J. SCHMITZ, School of the Environment, Yale University, New Haven, CT, 06511, 

USA, oswald.schmitz@yale.edu 

 

Corresponding Author:  
Julia D. Monk  
Yale School of the Environment 
370 Prospect St.  
New Haven, CT  
06511, USA 
julia.monk@yale.edu 
 
 
RH: Predators and Spatial Heterogeneity 

Author Contributions: JDM and OJS conceived the idea for the manuscript, and JDM performed 
the literature review. JDM wrote the first draft and all authors contributed substantially to the 
refinement of the ideas and writing of the manuscript. 
 
  



	 2	

Abstract 1	

Spatial heterogeneity in ecological systems can result from top-down processes, but despite some 2	

theoretical attention, the emergence of spatial heterogeneity from feedbacks with consumers is 3	

not well understood empirically. Interactions between predators and prey influence animal 4	

movement and associated nutrient transport and release, generating spatial heterogeneity that 5	

cascades throughout ecological systems. In this review, we synthesize the existing literature to 6	

evaluate the mechanisms by which terrestrial predators can generate spatial heterogeneity in 7	

biogeochemical processes through consumptive and non-consumptive effects. Overall, we 8	

propose that predators increase heterogeneity in ecosystems whenever predation is intense and 9	

spatially variable, whereas predator-prey interactions homogenize ecosystems whenever 10	

predation is weak or diffuse in space. This leads to several testable hypotheses: (1) that predation 11	

and carcass deposition at high-predation risk sites stimulate positive feedbacks between 12	

predation risk and nutrient availability; (2) that prey generate nutrient hotspots when they 13	

concentrate activity in safe habitats, but instead generate nutrient subsidies when they migrate 14	

daily between safe and risky habitats; (3) that herbivore body size mediates risk effects, such that 15	

megaherbivores are more likely to homogenize ecosystems; and 4) that predator loss in general 16	

will tend to homogenize ecosystems. Testing these hypotheses will advance our understanding of 17	

whether predators amplify landscape heterogeneity in ecological systems. 18	

 19	

Keywords: landscape of fear, biogeochemistry, heterogeneity, predator-prey interactions, spatial 20	

patterning  21	
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Introduction 22	

Ecosystems are complex and spatially heterogeneous (Chapin et al. 2011), and this 23	

heterogeneity stems from both bottom-up and top-down processes (Hunter and Price 1992, 24	

Turner and Chapin 2005). Variation in geomorphology, hydrology, microclimate, and microbial 25	

communities create spatial structure in ecosystem biogeochemistry from the bottom up (Turner 26	

and Chapin 2005, Chapin et al. 2011). In turn, the behavior and movement of consumers can 27	

have top-down effects that determine heterogeneity in nutrient distributions (Pastor 2005). 28	

Animals may roam and interact widely across landscapes, all the while consuming and 29	

redistributing nutrients via egestion, excretion, and carcass deposition (Bauer and Hoye 2014,  30	

Schmitz et al. 2018,  Subalusky and Post 2018, McInturf et al. 2019, Pausas and Bond 2020). 31	

Animal movement of nutrients can result in knock-on feedbacks that either amplify or erode 32	

underlying spatial heterogeneity caused by geophysical setting or microbial processes (Pastor 33	

2005, Chapin et al. 2011, Leroux and Loreau 2015).  34	

Spatial ecological theory has long grappled with the causes and consequences of 35	

heterogeneity in ecosystems. Meta-ecosystem theory in particular provides an important 36	

framework for underscoring the important impacts of both intrinsic resource heterogeneity and 37	

animal movement on ecosystem processes in interconnected landscape patches (Loreau et al. 38	

2003, Gravel et al. 2010, Massol et al. 2011, Marleau et al. 2015, Guichard 2017). But to date, 39	

these efforts offer limited insight about the mechanisms that shape the nature and strength of 40	

movement processes that are key to determining spatial nutrient redistribution in real ecosystems 41	

(Gounand et al. 2018). Here, we provide an empirical synthesis on the ways that top-down 42	

effects of predator interactions cascade to affect distributions, and hence spatial heterogeneity, in 43	

terrestrial ecosystems. 44	
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Predator-prey interactions are a natural starting point because, as localized phenomena, 45	

they are inherently spatial (Durrett and Levin 1994) and can have cascading effects on 46	

ecosystems. Heterogeneity in landscape features (e.g. habitat structure, topography) creates 47	

variation in the degree to which prey trade-off foraging and seeking refuge from predation risk 48	

(Sih 2005, Kauffman et al. 2007). This variation in turn can differentially mediate predation 49	

pressure and its cascading effects across landscapes (Oksanen et al. 1992, Oksanen and 50	

Schneider 1995, Gorini et al. 2012, Fortin et al. 2015). Thus, landscape characteristics may 51	

enable predator-prey interactions to reinforce spatial heterogeneity in the strength of plant-52	

herbivore interactions (Harvey and Fortin 2013) and in associated herbivore impacts on 53	

biogeochemical cycling (Schmitz 2008, Schmitz et al. 2017a). This feedback may be particularly 54	

strong in interactions between large vertebrates, as they move long distances and transport large 55	

quantities of nutrients (Wolf et al. 2013, Doughty et al. 2016a, Veldhuis et al. 2018).  56	

Here we present a synthetic review of the way predator-prey interactions cascade to 57	

shape spatial patterning in landscape biogeochemistry. We begin by reviewing the literature on 58	

the effects of predator-herbivore interactions on the spatial distribution of nutrients in terrestrial 59	

ecosystems. We identify key traits of predators and prey that shape their impacts on landscape 60	

heterogeneity. We then use these insights to generate testable predictions of how changes in 61	

predator and herbivore populations and their movement should impact biogeochemical 62	

patterning at landscape scales. 63	

 64	

Predator impacts on ecosystem heterogeneity: review and mechanisms 65	

 Several key mechanisms by which predators can influence biogeochemical processes 66	

have previously been identified (Schmitz et al. 2010). These mechanisms involve both 67	
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consumption by predators (which determines prey carcass distribution) and non-consumptive 68	

effects of predators (which influence herbivore foraging patterns and effects on nutrient cycling). 69	

In this section, we build on this foundation to more deeply explore how consumptive and non-70	

consumptive predator effects influence landscape spatial heterogeneity. 71	

  72	

Consumptive predator effects: carcass distribution 73	

 Animal carcass deposition is a natural consequence of a consumptive predator-prey 74	

interaction. Carcass decomposition, in turn, plays an important role in nutrient cycling by 75	

creating biogeochemical hotspots with higher soil nutrients, plant quality, and plant diversity 76	

than the surrounding landscape (Towne 2000, Danell et al. 2002, Moore et al. 2004, Carter et al. 77	

2007, Parmenter and MacMahon 2009, Barton et al. 2013a, Keenan et al. 2018). Of course, all 78	

animals die, and carcasses are therefore continually deposited regardless of predator activity. But 79	

predators significantly influence rates of prey mortality and, crucially, where prey die on the 80	

landscape, thereby determining the spatial distribution and quantity of decomposing carcasses in 81	

ecosystems (Bump et al. 2009a). Predation can thus increase small-scale heterogeneity by 82	

concentrating nutrients and physical disturbance at kill sites, altering local biogeochemistry and 83	

community composition of plants and soil organisms (Holtgrieve et al. 2009, Barton et al. 2013a, 84	

2013b).  85	

 While carcasses themselves are temporary features, their effects may linger in landscapes 86	

for years, maintaining variation in soil conditions and plant diversity at decomposition sites 87	

(Bump et al. 2009b, Macdonald et al. 2014, Barton et al. 2016). When predation concentrates 88	

these carrion inputs in areas with high predator activity and hunting success, this process may 89	

redistribute and concentrate nutrients in patches within predator home ranges (Schmitz et al. 90	
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2010), e.g., at predator den and nest sites, where carnivores transport small carcasses for storage 91	

or to feed their young (Fedriani et al. 2015, Gharajehdaghipour et al. 2016). At arctic fox dens, 92	

carcasses increased plant productivity such that dens were identifiable via remote sensing 93	

(Gharajehdaghipour et al. 2016). Similarly, predatory limpkins increased ecosystem 94	

heterogeneity in wetlands by generating patches of dense, nutrient-rich vegetation where 95	

discarded snail remains elevated soil nutrients (Macek et al. 2009).  96	

 The extent to which predators determine the spatial effects of carcasses depends on how 97	

other drivers of mortality distribute carcasses throughout the landscape. Some non-predation 98	

mortality events may also be clustered and have large, pulsed effects on ecosystems; for 99	

example, mass drownings of migrating wildebeest substantially alter nutrient budgets of the 100	

Mara River in Kenya (Subalusky et al. 2017). Nevertheless, predation often differs in spatial 101	

distribution from other causes of death. On Isle Royale, Michigan, wolf-killed moose carcasses 102	

were spatially clustered in areas distinct from starvation-killed carcasses (Bump et al. 2009a), 103	

increasing soil nutrients, microbial activity, and foliar nitrogen in areas of high wolf hunting 104	

success, with knock-on effects that created spatial difference in seedling recruitment (Bump et al. 105	

2009b). Furthermore, predators facilitate the transport of nutrients across ecosystem boundaries 106	

and generate nutrient subsidies by moving carcasses between habitats (Schmitz et al. 2010, 107	

Subalusky and Post 2018). These nutrient subsidies could contribute further to spatial 108	

heterogeneity in recipient ecosystems. For example, bears create biogeochemical hotspots with 109	

increased nitrogen by catching salmon in streams and littering their remains in surrounding 110	

forests (Helfield and Naiman 2006, Holtgrieve et al. 2009). These predator-driven nutrient 111	

subsidies cascade to influence plant diversity and quality along salmon-filled streams 112	

(Hilderbrand et al. 1999, Helfield and Naiman 2001, Hocking and Reynolds 2011, 2012).  113	
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 114	

Non-consumptive predator effects: the spatial distribution of herbivory 115	

 Trophic interactions in heterogeneous landscapes lie at the center of the concept of the 116	

‘landscape of fear’, in which spatial variation in perceived predation risk drives prey behavior 117	

and habitat use as prey trade-off foraging needs against avoiding predation (Brown et al. 1999, 118	

Laundré et al. 2001, 2010, Gaynor et al. 2019). When non-consumptive predator effects play out 119	

in a heterogeneous landscape of fear, they can further influence spatial patterns of herbivory 120	

(Ripple and Beschta 2004, Acebes et al. 2013, Ford et al. 2014, Donadio and Buskirk 2016, 121	

Atkins et al. 2019). Predators induce behaviorally-mediated trophic cascades when prey alter 122	

their habitat selection and behavior in response to predation risk, shifting the intensity and spatial 123	

distribution of herbivory (Abrams 1984, Schmitz et al. 1997, 2004, Creel and Christianson 124	

2008). Variation in habitat structure coupled with predator and prey behavior creates a gradient 125	

of predation risk across the landscape (e.g. areas with denser tree cover may provide refuge 126	

[Fortin et al. 2005], or alternately may increase risk by reducing visibility for prey [Riginos 127	

2015]; rocky outcroppings with brush provide greater cover for ambush predators [Donadio & 128	

Buskirk 2016]). In such landscapes of fear, herbivorous prey may attempt to remain in ‘safe’ 129	

areas or may reduce feeding rates in risky areas as they increase vigilance (Sih 1980, Brown et 130	

al. 1999, Hernández and Laundré 2005, Laundré et al. 2010). Regardless, predation risk should 131	

reinforce heterogeneity as prey navigate risk by reducing grazing and browsing pressure in risky 132	

habitats and increasing herbivory in safe habitats.  133	

 These non-consumptive effects of predators have not been documented in all predator-134	

prey systems, nor are they the only determinants of herbivory patterns in ecosystems (Middleton 135	

et al. 2013b, Kohl et al. 2018, Cusack et al. 2019, Say-Sallaz et al. 2019). The role of risk effects 136	
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in determining herbivory patterns – and thus shaping landscape heterogeneity – are context-137	

dependent (Schmitz et al. 2004, 2017b), varying with resource availability and predator and prey 138	

functional traits. Yet when risk effects do drive herbivory, they can be profound. For example, in 139	

African savannas, grazing lawns – or patches of heavily grazed, nutrient-rich, fast-growing 140	

grasses – are maintained by herbivores that concentrate in areas with high visibility as a 141	

collective antipredator strategy (McNaughton 1983, McNaughton et al. 1989, Young et al. 1995, 142	

Sinclair et al. 2003, Cromsigt and Olff 2008). Concentrated grazing seems to help generate 143	

heterogeneity in these grasslands, as high herbivory in safe habitats selects for highly productive 144	

grasses and increases rates of nutrient cycling (McNaughton 1979; McNaughton et al. 1997). 145	

Similarly, in the central Andes vicuñas grazed less and were more vigilant in wet meadow and 146	

canyon habitats where puma predation was more frequent (Donadio and Buskirk 2016). 147	

Consequently, herbivory was significantly higher in “safe” habitats (dry, sparsely vegetated 148	

grasslands with high visibility), thereby reducing standing green biomass to 15% of that in 149	

fenced plots that excluded vicuñas. In this arid ecosystem, vicuña behavioral responses to 150	

predation risk reinforce extant heterogeneity on the landscape by reducing grass biomass in 151	

unproductive sites and relieving herbivory pressure in productive ones. Similar patterns were 152	

observed in guanacos avoiding predation during the breeding season at lower elevations (Acebes 153	

et al. 2013). 154	

 When the distribution of high-quality forage shifts over time, as in highly seasonal 155	

environments or along elevational gradients, herbivores may migrate to follow green-up and 156	

access new growth – a phenomenon known as “green-wave surfing” (Fryxell et al. 1988, van der 157	

Graaf et al. 2006, Bischof et al. 2012, Merkle et al. 2016). This phenomenon is largely driven by 158	

spatiotemporal heterogeneity of high quality resources (Fryxell et al. 1988). Predators may 159	
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intervene and reinforce this heterogeneity at landscape scales by impeding migratory behavior 160	

and confining migration, and herbivory, to safe corridors (Middleton et al. 2013a). For example, 161	

reindeer were constrained from following the flush of peak forage during green-up in areas with 162	

high bear densities (Rivrud et al. 2018). Consequently, reindeer herbivory was intensified in 163	

lower-quality habitats, exacerbating differences in plant composition and nutrient content 164	

between high risk, high productivity and low risk, low productivity habitats.  165	

  166	

Non-consumptive predator effects: herbivore-mediated nutrient cycling 167	

 Herbivores mediate nutrient cycling when they alter plant nutrient content through 168	

selective foraging (Pastor et al. 1993, Augustine and Frank 2001, Wardle et al. 2002, Bai et al. 169	

2012), process and transport nutrients through egestion and excretion (Day and Detling 1990, 170	

Seagle 2003, Abbas et al. 2012, Barthelemy et al. 2017), and physically disturb plants and the 171	

soil (Huntly and Inouye 1988, Fleming et al. 2013, Veldhuis et al. 2014, Pellegrini et al. 2016). 172	

When predators regulate prey foraging behavior and movement, they in turn can have strong, 173	

landscape-scale effects on spatial patterning in herbivore-mediated nutrient cycling. 174	

 Any predator avoidance behavior that concentrates herbivory in safe locations can in turn 175	

create heterogeneity in biogeochemical cycling. Intensive foraging in safe habitats can generate 176	

biogeochemical hotspots wherever herbivore egestion and excretion increases plant-available 177	

nutrients by hastening rates of nutrient cycling – so-called fast cycling (McNaughton et al. 1989, 178	

Bardgett and Wardle 2003). Grazing lawns and glades in savannas provide classic examples. In 179	

these savanna hotspots, intensive localized herbivory is driven by both top-down (predator 180	

avoidance) and bottom-up (high-quality forage) forces (Anderson et al. 2010). However, these 181	

nutrient hotspots seem to be maintained, and in some cases formed, by fertilization from 182	
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herbivore egestion and excretion coupled with selection for fast-growing plants with high 183	

nutrient concentrations under high grazing pressure (McNaughton 1985, McNaughton et al. 184	

1997, Winnie et al. 2008, Anderson et al. 2008). Additionally, hotspots are formed by human 185	

predator avoidance (safeguarding of livestock in paddocks known as kraals and bomas), and 186	

wild herbivores often maintain these legacy hotspots, further increasing plant and soil 187	

heterogeneity in savannas (Augustine 2003, Augustine et al. 2003, van der Waal et al. 2011). 188	

 Predation risk does not just restrict prey to safe sites with high rates of herbivore-189	

mediated nutrient cycling. Predators also influence prey movement throughout the landscape, 190	

shaping the pattern of nutrient transport as herbivores consume resources in one area and excrete 191	

and egest them elsewhere. For example, anti-predatory daily migrations (Lima and Dill 1990) 192	

may drive the redistribution of nutrients between risky and safe sites. In wooded savannahs, 193	

zebras forage in nutritious open grasslands near watering holes during the day, when lions are 194	

largely inactive, but retreat away from watering holes when lions are more active and predation 195	

risk is high (Valeix et al. 2009, Courbin et al. 2018). Similarly, elk in the Greater Yellowstone 196	

Ecosystem appear to use high-risk, forage-rich areas when wolves are resting, but avoid these 197	

areas during the morning and evening hours when the crepuscular predators tend to hunt (Kohl et 198	

al. 2018). The same pattern was observed in vicuñas avoiding puma predation at essential 199	

foraging sites in the central Andes (Smith et al. 2019). As yet, little research has traced the 200	

importance of nutrient transport between habitats as large mammalian herbivores track risk and 201	

forage quality across the landscape (but see le Roux et al. 2018). However, diel migrations made 202	

by other herbivores have been shown to have substantial effects, e.g. geese driving large nutrient 203	

outfluxes from fertile feeding grounds (Kitchell et al. 1999). Thus, predation risk may be an 204	

important factor driving nutrient subsidies between high and low productivity habitats.  205	
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 206	

Toward conceptual integration of predator-prey dynamics and spatial biogeochemistry 207	

 Given known predator effects on biogeochemical cycling (Hawlena et al. 2012, 208	

Strickland et al. 2013, Leroux and Schmitz 2015, Schmitz et al. 2017a), it seems clear that both 209	

predation and perceived predation risk can drive spatial patterns of nutrient transport and 210	

accumulation. Yet despite this logical link between predator effects and nutrient distributions 211	

(Abrams 2000, Schmitz et al. 2010), the varied roles of predators as top-down drivers of 212	

landscape heterogeneity remain largely unexplored (Anderson et al. 2008). Synthesis of the 213	

evidence for predator control of nutrient distribution suggests a broad generalization about how 214	

predators structure ecosystems: direct predation and predator non-consumptive effects tend to 215	

increase patchiness and landscape-level heterogeneity in ecosystems by directing and 216	

concentrating the flow of nutrients processed by herbivorous prey. Of course, there are 217	

exceptions, and these offer opportunities to test mechanistic predictions and develop a more 218	

nuanced, context-dependent theory of the role of predators in spatial biogeochemistry. Several 219	

key principles emerge from our examination of the literature. Rigorous empirical testing of the 220	

hypotheses drawn from these principles should allow for improved prediction of predator 221	

impacts in diverse landscapes and changing environments.  222	

 223	

Risk-resource feedback loops 224	

 We repeatedly observed that sites with high predation were often characterized by high 225	

resource availability and forage quality (Schmidt and Kuijper 2015, Donadio and Buskirk 2016, 226	

Courbin et al. 2018, Kohl et al. 2018, Atkins et al. 2019). We hypothesize that where there is 227	

strong spatial variation in risk—as in the case of sit-and-wait predators whose hunting success is 228	
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facilitated by habitat structure and cover—a positive feedback between productivity, predation, 229	

and decomposition amplifies spatial heterogeneity in both predation risk and nutrient availability 230	

(Figure 1). Herbivores are often drawn to sites with abundant or nutrient-rich forage (Hopcraft et 231	

al. 2010). Where herbivores reliably forage, predators may also congregate, creating sites with 232	

high risk and high reward for herbivores. Where predation is concentrated at high-risk sites, 233	

carcass decomposition will likely generate a cluster of nutrient hotspots (Bump et al. 2009a). 234	

These nutrient hotspots may increase both the abundance and quality of plants in risky areas 235	

(Danell et al. 2002, Moore et al. 2004, Carter et al. 2007, Bump et al. 2009b, Barton et al. 2016). 236	

As a result, prey in great need of nutritious, abundant forage may be further drawn to these 237	

habitats despite high predation risk (Abrams 1992, Sih 2005, Gharajehdaghipour and Roth 2018, 238	

Smith et al. 2019). Meanwhile, healthy prey may avoid such sites, allowing plant biomass to 239	

accumulate despite its high palatability. This elevated biomass could provide increased visual 240	

cover for predators, further increasing predation risk and completing the positive feedback loop 241	

(Hopcraft et al. 2010, Figure 1). 242	

 The extent to which prey avoid or are drawn to these nutrient-rich, high-risk sites likely 243	

depends upon a) prey body condition and b) the availability of resources on the landscape 244	

(McNamara and Houston 1990, Sinclair and Arcese 1995, Montgomery et al. 2014, Riginos 245	

2015, Schmidt and Kuijper 2015, Oates et al. 2019). Optimal foraging theory and the predation-246	

sensitive foraging hypothesis would suggest that body condition determines the threshold at 247	

which prey deprioritize predator avoidance in favor of resource acquisition (Sinclair and Arcese 248	

1995). When prey are healthy and able to access sufficient forage in refuge habitats, they will 249	

avoid risky areas. Via this mechanism, predation risk could increase landscape heterogeneity by 250	

concentrating plant consumption in safe areas with lower plant biomass and quality – thus 251	
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reinforcing differences between safe and risky sites. However, some level of herbivore activity at 252	

risky sites will be maintained by bold individuals or those in greater need of high-quality 253	

resources during periods of deprivation – enabling continued predator success and carcass 254	

decomposition in nutrient-rich, high-risk habitats (Sinclair and Arcese 1995, Hopcraft et al. 255	

2005, Hay et al. 2008, Riginos 2015, Bonnot et al. 2018).  256	

 Additionally, prey forage in high-risk, high-reward sites more often if risky habitat 257	

contains essential resources that cannot be found elsewhere on the landscape. Thus, the positive 258	

feedback linking risk to resource quality should be strongest in nutrient- or water-limited 259	

conditions, when these essential resources are both rare and spatially concentrated (e.g., during 260	

drought). Under such conditions, prey are more likely to ignore predation risk continually or 261	

periodically to forage for resources, and enough prey activity at high-quality, risky sites will 262	

continue to fuel the positive biogeochemical feedback. This tradeoff can be observed at savanna 263	

watering holes, where lion predation succeeds due to high vegetative cover and consistent prey 264	

presence when ungulates are confined to areas with water during the dry season (Hopcraft et al. 265	

2005). Risk was also disregarded in favor of abundant forage during times of extreme drought in 266	

savannas, whereas herbivores avoided these low-visibility settings with high grass biomass when 267	

rainfall was plentiful (Riginos 2015). Similarly, elevated plant growth and nutritional quality at 268	

arctic fox dens attract lemming prey in the nutrient-limited arctic tundra (Gharajehdaghipour and 269	

Roth 2018), and vicuñas migrate daily between lush, high-risk wet meadows and arid plains 270	

refuge habitat in the alpine deserts of central Argentina (Smith et al. 2019).  271	

 Prey may mitigate risk by engaging in vigilance, grouping, or avoidance of risky habitats 272	

at the times of day when predators are most active (Valeix et al. 2009, Smith et al. 2019). 273	

However, in resource-limited ecosystems where prey must eventually spend time in high-risk, 274	
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high-reward areas, predation rates at risky sites should be high enough to maintain the positive 275	

biogeochemical feedback loop. Indeed, we contend that this correlation between predation risk, 276	

nutrient availability, and forage availability is necessary for ambush predation to remain a viable 277	

strategy. For ambush predators to utilize easily avoidable areas with high cover and maintain 278	

relatively predictable sites of high predation risk, the draw of these sites must at least 279	

occasionally outweigh the risk for prey – thus, risky habitats should logically contain resources 280	

in greater abundance or of greater quality than the surrounding landscape (Sih 1980, 2005). 281	

Accordingly, we predict that the landscape of fear – or strong spatial patterning in non-282	

consumptive predator effects – and its associated biogeochemical legacy should be most 283	

apparent in aridlands and other ecosystems with overall low primary productivity. In ecosystems 284	

where resources are more abundant or productivity is higher, risk may be more uniform across 285	

the landscape – either because actively hunting predators dominate, or because ample structure 286	

(such as trees in a forest) exists to support ambush predation – thus rendering the correlation 287	

between risk and nutrient availability weaker.  288	

 289	

Predator hunting mode and prey behavioral traits 290	

 The nature of predator effects on herbivore-mediated nutrient cycling and transport 291	

depends upon both predator and prey behavioral traits. Predator hunting mode (i.e., active 292	

hunting vs. ambush predation) mediates the spatial response of prey to predation risk (Schmitz 293	

and Suttle 2001, Schmitz 2008, Miller et al. 2014). We expect stronger spatial heterogeneity due 294	

to predation in systems dominated by ambush predators (predators who hide and rapidly attack 295	

prey in opportune areas, e.g. pumas,  rather than actively chasing them down, e.g., wolves), as an 296	

ambush hunting mode more firmly establishes the predictable spatial patterns of risk that define 297	
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the ‘landscape of fear’ (Brown et al. 1999, Schmitz 2008, Laundré et al. 2010, Kauffman et al. 298	

2010, Creel 2018, Gaynor et al. 2019). Stronger site-specific fear effects should elicit greater 299	

spatial variation in prey habitat use and behavior, amplifying the effects of predators on 300	

landscape heterogeneity. Developing better methods to quantify the strength of predator non-301	

consumptive effects will be a key step in testing this hypothesis and testing the effects of 302	

predation risk on spatial biogeochemistry in the landscape of fear (Moll et al. 2017, Peers et al. 303	

2018).  304	

 Additionally, herbivore antipredator strategies likely play an important role in nutrient 305	

redistribution. Prey species employ a wide variety of antipredator behaviors. Nevertheless, 306	

predator avoidance traits can be roughly aggregated into two main categories: habitat shifts and 307	

time budget shifts (Schmitz et al. 2017b). When prey habitat domain (or the spatial area an 308	

individual occupies relevant to predator-prey interactions; Schmitz et al. 2004) ranges beyond 309	

the spatial extent of its predator’s habitat domain, individuals can exhibit habitat shifts by 310	

concentrating their activity in refuge habitats (Figure 2). In such cases, habitat shifts may lead to 311	

the creation and maintenance of nutrient hotspots as herbivores forage, excrete, and egest in 312	

spatially constrained “safe” habitats (Figure 2).  313	

 However, herbivore diet can also moderate the effectiveness of habitat shifts in 314	

maintaining nutrient hotspots in refuge habitats. Grazing lawns in savannas are maintained when 315	

high levels of herbivory and herbivore-mediated nutrient cycling select for fast-growing, 316	

nutrient-rich grasses (McNaughton 1979, 1985). These lawns are in turn kept short by these high 317	

levels of herbivory, maintaining visibility and openness and thus protecting herbivores from the 318	

predators who hunt best under some degree of cover (Riginos and Grace 2008). However, in 319	

savannas, this same openness can also reduce grass competition with tree seedlings, allowing 320	



	 16	

trees to encroach into formerly grassy areas (Riginos 2009). Accordingly, herbivory by grazers 321	

can generate nutrient hotspots in refuge habitats, but continued grazing can also act as a negative 322	

feedback that converts refuge sites to high-risk sites by allowing tree encroachment. Conversely, 323	

if browsers are also present to consume seedlings at the edges of grazing lawns, nutrient hotspots 324	

in refuge habitats can be maintained by herbivores over longer time periods (Staver and Bond 325	

2014). Thus, the distribution of refuge habitats and safe habitats does not always remain static, 326	

but can continually shift when different forms of herbivory modulate plant community dynamics, 327	

with herbivores engineering their own refuges but also inadvertently generating the habitat 328	

structure that leads to their demise. 329	

 When predators successfully hunt throughout a prey animal’s home range, prey cannot 330	

easily seek out refuge habitats. In this case, predation may instead induce time budget shifts as  331	

prey reduce foraging time due to increased vigilance or alter daily activity patterns to minimize 332	

encounter risk (Figure 2). This antipredator strategy should have little influence on the spatial 333	

distribution of nutrients, particularly if time budget shifts are uniform across the prey habitat 334	

domain. In reality, however, herbivore antipredator strategies often comprise a mixture of habitat 335	

shifts and time budget shifts. Prey may spend more time being vigilant in risky locations than in 336	

safe habitats (Blanchard et al. 2018), and may structure their daily habitat use to forage in risky 337	

locations at safer times when predators are less active (Dröge et al. 2017, Courbin et al. 2018, 338	

Kohl et al. 2018, Smith et al. 2019). If this combined antipredator strategy increases herbivore 339	

movement between risky habitats and safe habitats, predation risk could drive an herbivore-340	

mediated nutrient subsidy along a gradient of high to low risk (Figure 2). This mixed habitat-341	

time budget shift strategy and potential associated subsidy are particularly likely if risky sites are 342	

of higher forage quality or contain essential limited resources, as discussed above.  343	
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 344	

Herbivore body size 345	

 Predation risk decreases with herbivore body size (Sinclair et al. 2003, Hopcraft et al. 346	

2012), and so prey body size may mediate the potential for spatial cascades from predation. We 347	

predict that medium-sized herbivores should be most likely to increase spatial heterogeneity as 348	

they evade predators, because they are large enough to transport and concentrate high nutrient 349	

loads over large distances, but susceptible enough to predators that predation may change their 350	

space use. In contrast, megafauna are more free to move and may instead homogenize landscapes 351	

(Sinclair et al. 2003, Riginos and Grace 2008, Hopcraft et al. 2012, Riginos 2015, Bakker et al. 352	

2016, le Roux et al. 2018) as their impacts are widely distributed. For example, buffalo, which 353	

are less susceptible to predation than smaller herbivores (Hopcraft et al. 2010), were able to 354	

range widely to find and graze down nutrient-rich grass in refugia during times of drought in 355	

African savannas – taking advantage of and effectively homogenizing an otherwise patchy 356	

landscape (Abraham et al. 2019, Staver et al. 2019). 357	

 Because of this variation in vulnerability to predation, the presence of multiple herbivore 358	

species of varying body size can dampen the effects of predators on nutrient distributions (Owen-359	

Smith 2015, Atkins et al. 2019). This is exemplified by the diverse prey and predators found in 360	

African savannas. As discussed above, smaller mammalian herbivores in savannas tend to 361	

concentrate herbivory pressure, excretion, and egestion in open areas with high visibility, often 362	

generating nutrient-rich hotspots in their attempts to maintain safety from predators. 363	

Megaherbivores may similarly create and maintain these patches; in fact, white rhinos were more 364	

effective than mesoherbivores at maintaining grazing lawns in mesic regions of South Africa 365	

(Waldram et al. 2008). However, le Roux et al. (2018) found that megaherbivores (elephants, 366	
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white rhinos, and giraffe) counteracted mesoherbivore effects on nutrient distributions by feeding 367	

in open glades but defecating uniformly across the landscape, transporting nutrients against the 368	

nutrient gradient.  369	

 Thus, predators may exert stronger effects on landscape heterogeneity in ecosystems 370	

dominated by mesoherbivores and lacking megafauna. Examples of such ecosystems are 371	

plentiful – in fact, megaherbivores are increasingly restricted to sub-Saharan African and 372	

southeast Asian fragments within their historical ranges (Owen-Smith 1988). However, prior to 373	

the Pleistocene megafauna extinctions, megaherbivores roamed every continent, and we are only 374	

beginning to understand what a world dominated by these megafauna would have looked like 375	

(Owen-Smith 1988, Gill et al. 2009, Doughty et al. 2013, Bakker et al. 2016, Doughty et al. 376	

2016b). Because megaherbivores tend to distribute nutrients more uniformly across the 377	

landscape, ecosystems may have been more spatially homogenous when megafauna were 378	

dominant (Wolf et al. 2013, Bakker et al. 2016, Doughty et al. 2016a, le Roux et al. 2018). Thus, 379	

we hypothesize that megaherbivore extinctions triggered what we term “heterogeneity cascades”, 380	

allowing top-down predator control of nutrient cycling and transport to play a greater role in the 381	

configuration of modern landscape heterogeneity (Figure 3). Understanding and predicting such 382	

heterogeneity cascades, if they exist, is more than a thought exercise: large carnivore populations 383	

are in global decline, and the extirpation or functional extinction of top predators is an imminent 384	

reality in many ecosystems (Estes et al. 2011, Ripple et al. 2014). If these declines persist, we 385	

predict a fundamental change in landscape biogeochemical patterning, trending towards the 386	

homogenization of the ecosystems where these predators were once present (Figure 3). Without 387	

the spatial restrictions imposed by predation and risk, mesoherbivores may consume and 388	

transport resources more uniformly, with heterogeneity reminiscent of megaherbivore-dominated 389	
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ecosystems. Indeed, such restructuring of landscapes via herbivory after predator extirpation has 390	

been observed in Gorongosa National Park, Mozambique, where mesoherbivores grazed down 391	

plants in formerly risky habitats, restricting their herbivory and movement on the landscape only 392	

when predator cues were experimentally reintroduced to simulate risk (Atkins et al. 2019). As 393	

evidence of altered prey behavior in predator-free landscapes mounts (Bonnot et al. 2016, 394	

Leempoel et al. 2019, Cunningham et al. 2019), such homogenization may become more 395	

apparent, and understanding the ecosystem-wide impacts of predators on landscapes an ever 396	

more urgent necessity. 397	

 398	

Moving Forward 399	

 The landscape of fear is a useful framework for understanding predator non-consumptive 400	

effects across space, and the concept can be extended to predator effects on biogeochemical 401	

processes. Of course, not all herbivore species will exhibit spatial responses to predators; for 402	

example, as detailed above, body size modulates herbivore sensitivity to predation risk (Figure 403	

3). The context-dependency of herbivore effects on ecosystems – and, similarly, of cascading 404	

predator effects – has been emphasized in many studies (e.g. Anderson et al. 2008; Bai et al. 405	

2012; Young et al. 2015; Haswell et al. 2017; Goheen et al. 2018; Forbes et al. 2019). Further 406	

progress will depend on making sense of this context-dependency based on predator and 407	

herbivore functional traits and on ecosystem characteristics. As a starting point, we offer a 408	

simple synthetic hypothesis (Figure 4): in systems with strong predator-prey trophic links and 409	

high spatial variation in predator effects, predators should be heterogenizing forces in 410	

ecosystems, whereas where trophic links are weaker and predator effects are not restricted in 411	

space, predator-prey interactions should be neutral or homogenizing forces on landscapes. 412	
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 Our synthetic hypothesis can be broken down into components for testing. First, we 413	

hypothesize that where there is strong spatial variation in predation, biogeochemical hotspots at 414	

carcasses will fuel a positive feedback between nutrient availability and predation risk (Figure 1). 415	

Evaluations will need to test spatially explicit hypotheses by directly linking ecosystem 416	

measurements with animal movement data. Specifically, the hypothesis could be tested by 417	

comparing soil and plant nutrient data at carcasses (sensu Bump et al. 2009a; Keenan et al. 2018) 418	

vs. at non-carcass sites. These biogeochemical data can be compared with spatially explicit 419	

measures of risk (sensu Kauffman et al. 2007, Smith et al. 2019) to test for spatial correlation 420	

between risk, carcass hotspots, and nutrient-rich patches across the landscape.  421	

 Second, we hypothesized that, when prey employ a combination of habitat and time 422	

budget shifts as part of their antipredator strategy, this cyclic movement between high- and low-423	

quality sites will drive nutrient subsidies from risky to safe habitats (Figure 2). Stable isotopes or 424	

environmental DNA offer an opportunity to test this by evaluating whether nutrients in prey 425	

feces deposited in safe habitats originated in risky areas, thereby representing a nutrient subsidy. 426	

Where there is variation in risk, or where some herbivore populations exhibit cyclic migrations 427	

and others do not, animal movements and patterns of egestion and excretion can be compared 428	

across a gradient of risk to determine the full impacts of predator avoidance strategies on nutrient 429	

transport.  430	

Finally, we hypothesized that megaherbivores potentially homogenize landscapes by 431	

evenly distributing nutrients over large distances (le Roux et al. 2018), whereas predators should 432	

increase heterogeneity in systems dominated by susceptible mesoherbivores. Thus, in systems 433	

dominated by mesoherbivores, the loss of apex predators should initiate heterogeneity cascades, 434	

homogenizing landscapes as mesoherbivores are released from the spatial restrictions imposed 435	
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by predator avoidance (Figure 3). Large-scale exclosure experiments, such as the KLEE, 436	

GLADE, and UHURU exclosure projects in Laikipia, Kenya (Goheen et al. 2018) or the dingo 437	

fence in New South Wales, Australia (Morris and Letnic 2017), provide the ideal settings in 438	

which to test such a hypothesis.  439	

 The fields of animal movement ecology and biogeochemistry are both experiencing a 440	

methodological renaissance. Portable, affordable technology facilitating rapid data collection has 441	

proliferated, allowing for large-scale GPS tagging of animals of all sizes (Kays et al. 2015, 442	

Wilmers et al. 2016) and quick, in-field assessment of biogeochemical conditions (e.g. Kane et 443	

al. 2019). Furthermore, remote sensing techniques are becoming ever more sophisticated, 444	

enabling real-time tracking of animal movement (Wilmers et al. 2016, Harvey et al. 2016, 445	

Steenweg et al. 2017) and hyperspectral analysis of plant and soil properties (Asner and Vitousek 446	

2005, Wang et al. 2009). These new tools can and should be combined to conduct research on 447	

the relationship between animal movement and biogeochemical cycling. By combining 448	

experimental studies with large-scale, landscape-level observations, researchers should be able to 449	

uncover how interactions between predators and prey can play a role in shaping the spatial 450	

heterogeneity of the ecosystems they inhabit. 451	

 452	

Conclusion 453	

 Ecologists have long recognized the importance of bottom-up factors, such as 454	

geophysical variation and climate, in determining the diversity of earth’s ecosystems. However, 455	

the top-down effects of biotic interactions also have profound impacts on ecosystems, and 456	

consideration of these factors can improve our understanding of the generation and maintenance 457	

of landscape heterogeneity and diversity (Pausas and Bond 2019). Indeed, recognizing the ways 458	
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in which organisms alter and construct their environments can help explain variation that cannot 459	

be attributed to climatic and other abiotic differences (e.g., the coexistence of savanna and forest 460	

ecosystems within the same climatic zone [Staver et al. 2009, 2011; Staver & Bond 2014; Pausas 461	

& Bond 2019]). The evidence presented here enhances the call for new theory and empirical 462	

analysis of biotically-driven, spatially explicit biogeochemistry (Pastor 2005, Turner and Chapin 463	

2005, Schmitz et al. 2018). This call is not just academic, but will also deepen our understanding 464	

of the conservation value of predator and large herbivore species beyond their charisma. 465	

Predators may have pivotal roles in regulating ecosystem functioning and merit attention even 466	

when conservation strategies are geared towards a whole-ecosystem perspective (Sinclair and 467	

Byrom 2006, Schmitz et al. 2010). 468	
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Figure 1. Theorized positive feedback loop between predation risk and nutrient availability 940	

in the biogeochemical landscape of fear. Where there is strong spatial variation in predation 941	

risk on the landscape, high carcass density in risky habitats where predation success is high may 942	

generate nutrient hotspots as carcasses decompose. In turn, nutrient accumulation after 943	

decomposition could stimulate plant growth and quality, resulting in abundant, nutrient-rich 944	

vegetation in risky habitats. Finally, this increased plant quantity and quality simultaneously 945	

provides cover for ambush predators and forage for herbivores, increasing the probability of 946	

predator-prey interactions and reinforcing the risky nature of these sites. The dashed line 947	

indicates an indirect positive feedback between predation risk and vegetation abundance, 948	

mediated by herbivory. While the attraction of herbivores to nutrient-rich forage at nutrient 949	

hotspots could potentially initiate a negative feedback if herbivores graze or browse down 950	

vegetation (thus denuding risky sites and rendering them less advantageous hiding spots for 951	

predators), if the perceived risk of predation is sufficiently high, herbivores with access to other 952	

resources may avoid even these high-quality sites or may remain highly vigilant, reducing their 953	

foraging rates. If the former, nutrient hotspots may act as an attractant only in times of scarcity or 954	

for undernourished individuals. In either case, herbivory remains lower than the quantity and 955	

quality of forage would predict, but high enough to sustain a prey base for the predator 956	

population at risky sites.  957	
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Figure 2. A framework for the spatial biogeochemical consequences of antipredator 960	

behavior. When prey habitat domain, or the spatial extent of the area used for foraging, extends 961	

beyond that of its predator, antipredator behavior often takes the form of a habitat shift away 962	

from risky areas to safer areas with low predator activity (Schmitz et al. 2004, 2017). This 963	

habitat shift can concentrate foraging and nutrient recycling in safe habitats, generating and 964	

maintaining nutrient hotspots, as in grazing lawns in African savannas. When prey habitat 965	

domain largely overlaps with that of its predator, providing few spatial refugia from risk, 966	

antipredator behaviors generally take the form of time budget shifts (e.g. altered diel activity 967	

patterns) or other non-spatial behaviors such as increased vigilance. These behaviors largely do 968	

not alter the spatial distribution of nutrients or their rates of cycling on the landscape. However, 969	

antipredator strategies often combine these different behavioral approaches. When prey are 970	

obligated to enter their predator’s habitat domain because it contains some essential resource 971	

(such as high-quality forage or water), they may mitigate risk through a combined habitat and 972	

time budget shift, traveling between safe and risky habitats while attempting to track periods of 973	

low predator activity. This combined habitat and time budget shift can drive nutrient subsidies as 974	

prey consume high-quality forage in risky habitats and egest and excrete nutrients in safe habitats 975	

as they move across the landscape to avoid predators. 976	
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Figure 3. Shifting body size structure in animal communities generates heterogeneity 979	

cascades in ecosystems. In a world dominated by highly mobile megafauna with low 980	

vulnerability to predation (A), these megaherbivores may have homogenized ecosystems by 981	

consuming, processing, transporting, and depositing nutrients evenly across their large home 982	

ranges (Doughty et al. 2016). In the wake of the Pleistocene extinctions and more modern 983	

suppression of remaining megaherbivore species by humans, even the most faunally diverse 984	

ecosystems are largely dominated by mesoherbivores – mammalian herbivores large enough to 985	

range widely and consume large quantities of forage, but small enough to be highly susceptible 986	

to predation by large carnivores. In these contemporary mesoherbivore ecosystems (B), predators 987	

reinforce and steepen underling abiotic gradients in resource availability by discouraging 988	

herbivory in more nutrient-rich sites with high risk, while occasionally also driving the 989	

generation of isolated, productive patches in safe habitats via the creation of grazing lawns and 990	

sites with high levels of herbivore-mediated nutrient cycling. In some of these ecosystems, 991	

megaherbivores can still transport nutrients across the risk gradient and act as homogenizing 992	

forces (see le Roux et al. 2018); nevertheless, the non-consumptive effects of predators on 993	

herbivore behavior also reinforces heterogeneity in predator-dominated ecosystems. However, as 994	

predators are extirpated from diverse landscapes due to human persecution and habitat 995	

fragmentation (C), mesoherbivores will be released from predation risk and may abandon their 996	

traditional antipredator behaviors, foraging more uniformly on the landscape and homogenizing 997	

ecosystems as their megaherbivore predecessors once did. 998	
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Figure 4. A simple framework for predicting contexts in which predator-prey interactions 1001	

should act as heterogenizing vs. neutral or homogenizing forces. The synthesized research 1002	

and novel hypotheses presented in this paper can be summarized into the following broad 1003	

predictions: predator-prey interactions should increase landscape heterogeneity in ecosystems 1004	

where trophic links are strong and there is high spatial variation in predator consumptive and 1005	

non-consumptive effects. Strong predator-prey trophic links often occur in simple systems where 1006	

there is one apex predator specialized on just one or a few large herbivore species. High spatial 1007	

variation in predator consumptive and non-consumptive effects is most likely in systems 1008	

dominated by ambush predators, who hide and rapidly attack prey in opportune habitats with 1009	

sufficient cover – maintaining predictable sites with higher perceived risk on the landscape, 1010	

where kills are often clustered. In contrast, predator-prey interactions should decrease landscape 1011	

heterogeneity in ecosystems where trophic links are weak (e.g. diverse systems with multiple 1012	

predators and prey, or systems with large herbivores who are less susceptible to predation) or 1013	

where there is low spatial variation in top-down predator effects (e.g. systems dominated by 1014	

actively hunting predators who track prey across the landscape, or when prey mitigate risk by 1015	

altering their daily activity patterns rather than their space use). 1016	


