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0.1 Abstract5

Climate is a major factor determining the distribution of plant species. Correlative models6

are frequently used to model the relationships between species distributions and climatic7

drivers but, increasingly, their use for prediction in novel scenarios such as climate change8

is being questioned. Mechanistic models, where processes limiting plant distribution are9

explicitly included, are regarded as preferable but more challenging.10

The availability of tools for simulating microclimates with high spatial and temporal def-11

inition has also opened new possibilities for simulating the limiting environmental stresses12

experienced by plant over their ontogeny. However, the field of mechanistic species distri-13

bution modelling is relatively new and the tools and theory for constructing these models14

are underdeveloped.15

In this paper we explore the potential for using a Dynamic Energy Budget model of16

organism growth integrated with microclimate and photosynthesis models. We model the17

interactions of plant growth and microclimatic stressors over the life stages of plant growth,18

and scale them up to demonstrate predictions of distribution at the continental scale. We19

develop the model using Julia, a new language for scientific computing, as a set of generic20

modelling packages. These have a modular, toolkit structure that has the potential to21

increase the efficiency and transparency of developing mechanistic SDMs.22

0.2 Introduction23

The relationship between the growth and distribution of plants and environmental drivers24

is a fundamental concern of ecology (Billings 1952). Modern tools and datasets enable25

modelling of the dynamic interactions between organisms and the environment at the scale26

of the individual organism. This capability can be used to develop insights and hypotheses27

about the mechanistic drivers of plant growth and stresses that limit the distribution of28

plant species. The use of such a physiological approach may assist the prediction of species29

distributions in future climates, or novel conditions (Bozinovic & Pörtner 2015; Kearney &30

Porter 2009).31

Species distribution models (SDMs) are often developed using correlative techniques,32

with coarse-grained environmental predictors. However, there is a growing consensus that33

ecological models need to incorporate more structural realism (Grimm & Berger 2016).34

For this reason process-based, mechanistic and hybrid models have been proposed as a35

more realistic alternative to correlative SDMs (Dormann et al. 2012; Kearney, Wintle36

& Porter 2010; Singer et al. 2016; Connolly et al. 2017). Practically, correlative and37

mechanistic models exist on a spectrum of increasing causal detail (Dormann et al. 2012),38
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where mechanistic models include explicit biophysical and physiological processes (Connolly39

et al. 2017).40

However, choosing mechanistic models over correlative models is not simply a question41

of theoretical value, but also one of economy: mechanistic models are more difficult to42

construct, and more computationally intensive than correlative models (Dormann et al.43

2012; Kearney, Wintle & Porter 2010). Improvements to mechanistic species distribution44

modelling require simultaneous development of theory and the practical tools for applying45

it efficiently (Briscoe et al 2019).46

Mechanistic species distribution models for plants47

Mechanistic SDMs have become more common for animals (Kearney & Porter 2009). Al-48

though mechanistic modelling has a longer history in plant biology (Grimm & Berger 2016),49

mechanistic SDMs remain less well-developed for plants. We follow Connolly et al. (2017)50

and distinguish mechanistic models from process-based models (PBMs), ignoring those that51

include only dispersal processes without specifying the components of plant growth (Merow52

et al. 2011).53

A range of mechanistic models have been used to predict species distributions. These54

include phenological models that integrate environmental stress factors (Morin, Viner &55

Chuine 2008; Chuine & Beaubien 2001; Chapman et al. 2014) and models of environmental56

interactions with growth processes based on tree growth rings (Sánchez‐Salguero et al.57

2016). Other models have incorporated plant growth and C/N allocation in response to58

environmental drivers, to produce maps of relative growth potential (Higgins et al. 2012;59

Higgins & Richardson 2014; Moncrieff et al. 2016; Storkey et al. 2014; Nabout et al. 2012).60

Mechanistic growth models provide the most scope for capturing the interactions between61

plant ontogeny and the environment, as plant stresses can co-occur in sequential patterns62

with different effects across plant ontogeny (Niinemets 2010). They can also provide a63

base model that can integrate phenological components, or be used for truly mechanistic64

demographic and distribution models.65

A key example of a mechanistic growth model used for SDMs is the Thornley Transport66

Resistance model (TTR) (Thornley 1972a), that tracks carbon and nitrogen budgets for67

roots and shoots. It has been used in hybrid mechanistic/fitted plant SDMs (Higgins et al.68

2012; Higgins & Richardson 2014; Moncrieff et al. 2016). Additionally, Nabout et al. (2012)69

applied the Plantgro model to maize distribution, which uses growth response curves tuned70

to monthly conditions. Stratonovitch, Storkey & Semenov (2012) and Storkey et al. (2014)71

used climatic data with daily time-steps and incorporated ontogeny in a sophisticated plant72

SDM. However, the Sirius model (Jamieson et al. 1998) used in Storkey et al. (2014) is73

focused on agricultural plants, and its formulation was not made available.74

Plant growth and Microclimate75

Realism in growth models can be increased by modelling causal processes more explicitly. It76

can also be improved by using finer gained environmental variables, because the responses77

of organisms to changes at the macroclimate scale actually occur at the microclimate scale78

(Harwood, Mokany & Paini 2014).79

Animals usually exercise some choice over the microclimates they are exposed to, but80

the life of a plant occurs in a fixed location: they must tolerate all environmental conditions81

that occur there over their lifespan. However, at a finer scale plants grow through vertical82
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climatic gradients over their ontogeny. They experience different conditions at different83

life-stages, and these differences can be critical in growth process (Niinemets 2010) and84

in constraining the boundaries of their distribution (Smith et al. 2009). To establish85

at a particular location, plants must experience a favourable sequence of microclimatic86

conditions that match the needs of all life stages – not simply favourable climatic averages.87

Growth based plant SDMs have generally used long time-steps (i.e. monthly) and cli-88

matic, rather than microclimatic data (Nabout et al. 2012; Higgins et al. 2012; Higgins &89

Richardson 2014; Moncrieff et al. 2016). A general plant model suitable for SDMs – that90

can simulate complete plant ontogeny with realistic combinations of environmental stresses91

– remains to be demonstrated. Dynamic energy budget (DEB) growth models, coupled to92

mass and energy exchange between organisms and their microclimates, have achieved this93

for animal SDMs (Kearney 2012; Kearney et al. 2018).94

Dynamic Energy Budget theory95

Dynamic Energy Budget theory (DEB) generalises growth processes for all organisms and96

symbioses (Kooijman 2010). It is frequently used to model the transition from juvenile to97

adult in animals and bacteria (Sarà et al. 2013; Jager, Martin & Zimmer 2013) and can98

capture complete organismal ontogeny. It has been used to model animal species distribu-99

tions (Kearney 2012; Kearney et al. 2018), and has been suggested as an alternative growth100

model for plant SDMs (Higgins et al. 2012).101

DEB theory simplifies the metabolism of organisms to material fluxes of substrates in102

processes of assimilation, growth and dissipation (Lorena et al. 2010). From simple rules103

and feedbacks it can capture complex growth dynamics while being explicit about matter,104

energy and entropy balances (Sousa et al. 2010).105

DEB models focus on the interactions of different abstract categories of biomass, namely:106

structure (V ), that is produced by the growth process and requires ongoing maintenance,107

and reserve (E), that represents the pool into which assimilates flow, and does not require108

maintenance. An additional type is product (P ), representing byproducts of the growth109

process. In animals these are often excreted, but in plants may be included in measured110

biomass as bark and heartwood. The simplifying assumption of this framework is that each111

category has fixed proportion of chemical constituents. This enables the closure of both112

mass and energy balances (Sousa et al. 2010).113

For models with multiple reserve substrates, such as separate carbon and nitrogen re-114

serves, “synthesizing units” (SUs) are used to model enzyme dynamics for reserve combi-115

nation, giving smooth transitions between limiting resources (Ledder et al. 2019; Kooijman116

2010, pp.99–105). Synthesizing units bind multiple substrates to synthesize compounds,117

depending on their availability. Using an SU, carbon and nitrogen pools can be combined118

into a general reserve to be used in growth and maintenance. Reserve mobilised in each119

simulation time-step is calculated from the ratio of reserve to structure, adjusting growth120

rates to match available resources.121

A useful outcome of the reserve-structure dynamics of a DEB model that tracks nutrient122

state is the ability to model growth from embryo to mature organism, by initially allocating123

high reserve/structure ratios and small structural mass. This can produce smooth tran-124

sitions from the embryo phase, dependent primarily on stored nutrients, to later phases125

where nutrients are assimilated from the environment. Previous models of plant ontogeny126

often start with a seedling (Levy et al. 2000). In DEB models, growth rates vary with127

temperature but also with the dynamics of the root and shoot reserves, the growth rate128
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being proportional to the density of the limiting reserve. This captures transient dynamics129

that drive, for example, rapid growth of seedlings or rapid shoot growth after a sudden loss130

of biomass from e.g. grazing events or fire.131

The intrinsic generality and modularity of DEB theory means that, in principle, any132

number of structures can interact to exchange substrates, allowing simulations of single-133

celled heterotrophs, complex autotrophs, and even symbioses. This ability allows us to134

construct a DEB plant model, where at least root and shoot structures must considered135

explicitly to model asynchronous nutrient assimilation. It also means that a DEB model has136

the open-ended potential to model more or less complex dynamics, by adding or removing137

structures. We could represent stems, leaves and roots separately, or including substrate138

exchange between fine roots and soil symbionts – requiring few additional formulations or139

parameters.140

DEB models for plants141

While the DEB model was proposed as a framework for modelling all organisms, the major-142

ity of published DEB models have focused on heterotrophs. The literature for autotrophs143

remains sparse: Lorena et al. (2010), Kooijman (2010), Muller et al. (2009) Kooijman,144

Andersen & Kooi (2004); Livanou et al. (2018) and Ledder et al. (2019) are notable contri-145

butions. A simple, single-structure microalgae model was presented in Lorena et al. (2010),146

contrasting with most animal models by tracking separate reserves for carbon and nitrogen147

to model temporally separated uptake dynamics. The symbiosis of a simple heterotroph148

and photo-autotroph was also modeled by Muller et al. (2009).149

Modelling plants requires multiple structures to capture the additional spatial sepa-150

ration of nutrient and carbon uptake that occurs in roots and shoots (Kooijman 2010,151

pp.201–206). Such a plant model was demonstrated by Kooijman (2010). However, it has152

not been widely tested or peer-reviewed and uses a large number of parameters. Recently153

Ledder et al. (2019) explored the dynamics of a simplified two-structured plant model,154

proposing “The local control theory of resource allocation”. In this formulation, resource155

sharing between plant structures is similar to resource sharing in a holobiont: roots and156

shoots only translocate unused metabolites, without centralised coordination or fixed al-157

locations to translocation. This simple formulation achieves optimal growth rates, while158

maintaining dynamic growth behaviour. It also requires fewer parameters and causal pro-159

cesses than either globally-optimised resource sharing or the fixed-proportion local control160

used in Kooijman (2010) and in the well known Thornley Transport Resistance plant growth161

model (TTR) (Thornley 1972a).162

There are some differences in the strategies used to track carbon, nitrogen and general163

reserve state in DEB autotroph models. Kooijman (2010) tracked carbon reserve (C), nitro-164

gen reserve (N) and general reserve (E), while Ledder et al. (2019) did not track reserves at165

all, instead generating general reserve from assimilated C and N for each time-step. Lorena166

et al. (2010) track C and N reserves. Despite structural differences, these models invariably167

track reserve and structure as abstract, but stoichiometrically fixed compounds measured168

in C moles and N moles.169

Modelling Microclimates170

Improvements in climatic datasets and downscaling methods have enabled detailed mod-171

elling of microclimate at the scale of individual organisms in any location. NicheMapR172
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(Kearney & Porter 2017) and the microclimate datasets (Kearney 2018) generated by it are173

tools that make detailed site-specific microclimates accessible over multiple decades, with174

the hourly resolution for multiple heights and depths at reasonable accuracy. They provide175

soil water potential (Kearney & Maino 2018), soil temperature (Kearney et al. 2014), in-176

cident radiation, air temperature, snow cover, relative humidity and wind-speed, enabling177

the modelling of finely detailed organism-environment interactions. Microclimate data are178

provided as hourly sequences of environmental variables in discrete spatial layers.179

Connecting growth models and microclimates180

DEB models do not represent organism growth spatially, besides simple surface area/mass181

relationships. But microclimates are fundamentally spatial. Water availability and soil182

temperature both vary with depth, while air temperature varies with height above ground.183

This means that a spatially-explicit model is required to integrate a DEB growth model184

with microclimate data.185

The interactions of plant growth and microclimate could be most accurately modelled186

with three-dimensional models of root and shoot architecture (Vrugt et al. 2001). However,187

producing mapped species distributions imposes a number of practical constraints. There188

are limits to computing power when models may run over 8000 times for a year of growth189

at a single point. This can translate to the order of a billion runs to produce continent-scale190

maps on decennial timescales. Further, our ability to easily construct complex models and191

determine their parameters is limited by the availability of easily assembled modelling tools192

and data. The dimensionality and accuracy of the spatial transformation used must be193

some compromise between these factors.194

Realistic behaviour of a DEB plant model195

There are a number of requirements for our plant growth model. Generally, a plant model196

should to some extent balance the growth of roots and shoots to align with their relative197

needs for substrate assimilation. To enable the modelling of growth throughout life-stages,198

it should capture growth trajectories from seed to plant, switching smoothly between stored199

and assimilated resources.200

Optimal partitioning201

Optimal partitioning theory (Thornley 1972a; McCarthy & Enquist 2007a) describes how202

resources are optimally allocated between plant organs depending on relative availability;203

plants with adequate N supplies preferentially grow more shoots, instead of roots. This204

dynamic is a central component of many plant models (Cheeseman 1993; Ledder et al.205

2019), although it is not without criticism (Lambers 1983; Müller, Schmid & Weiner 2000).206

There are multiple methods for modelling optimal root/shoot ratios. Two alternatives207

are central (Perrin 1992) and local (Cheeseman 1993; Ledder et al. 2019) control of translo-208

cation. Cheeseman (1993) showed that simple local rules can lead to the emergence of bal-209

ancing at the scale of the whole plant, without the need to invoke signalling or centralised210

control of allocation. However, they use fitted polynomial functions for growth rates, rather211

than bottom-up methods that could respond to hourly microclimate conditions. Ledder et212

al. (2019) recently demonstrated a local control model in a context of dynamic growth213

using the synthesising units of a two-substrate DEB model, where translocation of excess214

metabolites achieves optimal balanced growth.215
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Shoots low in C translocate less or no excess to roots, leading to more shoot growth216

than root growth, until balance is achieved. The inverse happens for N in roots. With217

parallel complementary SUs a proportion of each substrate is always translocated, and218

effectively cycled between structures. These dynamics can be fine-tuned by using k-family219

synthesizing units, where the overall proportions of used and rejected metabolites can be220

adjusted (Ledder et al. 2019).221

One difference between local control theory and functional-balance theory is that root222

growth is not affected by low water availability in the version of local control presented in223

Ledder et al. (2019). Optimisation of water uptake is not always supported by experimental224

results (Metcalfe et al. 2008; McConnaughay & Coleman 1999a) and root/shoot ratios may225

be unaffected by water availability (McConnaughay & Coleman 1999b). However, other226

studies cite both water and nutrients as factors in optimal root/shoot scaling. (McCarthy227

& Enquist 2007b). In local control theory (Ledder et al. 2019) only substrate availability228

(generally C and N) affect root/shoot ratios. Water shortages may have indirect effects by229

limiting assimilation.230

Seed/plant transitions231

Modelling complete plant ontogeny and changes in relation to microclimatic stresses requires232

a smooth transition between seed and plant life-stages. However, this transition is not233

commonly modelled. Seeds are largely composed of reserves such as carbohydrate and lipids,234

and rapid initial growth can be driven by the high ratio of reserve to structural tissue. DEB235

theory is well suited to modelling these processes, because the reserve concept links the236

embryo to the life cycle through the transition from use of initial reserve to assimilation of237

additional reserve (Kooijman 1986). Periods of slowdown and readjustment of growth rates238

may occur in the transition between seed reserve and assimilated reserve when resources239

are limiting (Kitajima 2002). These can be captured by a DEB model.240

Aims241

In this paper, we aim to explore the potential for modelling plant distributions based on242

limits to plant growth caused by the specific sequence of stresses a plant experiences during243

its ontogeny. There are three components of this approach. First, developing practical244

modelling tools that support both our current aims and future research in the field; second,245

developing methods to a connect a mechanistic model of plant ontogeny to microclimate246

models; and third, assessing the behaviour of the model across plant ontogeny and varying247

environmental conditions and scenarios, up to the scale of continental distribution. Ulti-248

mately, these components are intended to collectively enable the parametrisation of species249

distribution models of plant species and functional groups.250

To model plant ontogeny with fine spatial and temporal resolution, we use a DEB251

model and connect assimilation, growth and maintenance processes to the microclimOz252

microclimate data set (Kearney 2018) using temperature response curves and a photosyn-253

thesis/transpiration model. We develop model components as separate libraries that enable254

future adaption for use in a wide variety of SDMs, and in ecological models more generally.255
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0.3 Methods256

We modelled a simple, generalised C3 grass or herb-like plant using a two-structure two-257

reserve DEB model. The DEB model is based on the plant model provided in Kooijman258

(2016) and Kooijman (2010) with simplifications outlined by Ledder et al. (2019) and Lorena259

et al. (2010). While the plant model in Kooijman (2016) specifies a photosynthesis compo-260

nent for C assimilation, it does not integrate environmental variables, stomatal conductance261

or the role of soil moisture in C uptake. Instead we use a Farquhar-von Caemmerer-Berry262

photosynthesis, stomatal conductance and soil moisture and model adapted from MAESPA263

(Duursma & Medlyn 2012).264

We implemented the model in Julia (Bezanson et al. 2012), a programming language265

developed for scientific computing, that enables the performance of C or Fortran languages266

with the modularity and ease of use of Python or R. DEB, photosynthesis, and microcli-267

mate integration packages were implemented as the standalone, modular libraries Dynam-268

icEnergyBudgets.jl (https://github.com/rafaqz/DynamicEnergyBudgets.jl), Photosynthe-269

sis.jl (https://github.com/rafaqz/Photosynthesis.jl) and Microclimate.jl (https://github.com/rafaqz/Microclimate.jl).270

These provide generalised interfaces that facilitate adaptation for many modelling pur-271

poses (including outside of SDMs and ecology). Julia’s type-system and multiple-dispatch272

paradigm allowed us to include most components and parameters as interchangeable or op-273

tional. This improves interactive exploration, allowing easy reduction of model parameter274

number but also addition of components for alternate formulations. Model components are275

compiled together by Julia at run-time to produce computational performance in the order276

of lower-level languages like C or Fortran.277

State variables278

Tracking nutrient reserves allows modelling of seed reserve and scenarios with fluctuating279

assimilation rates, as are common with variable environmental conditions. To allow this,280

we followed the approach of Lorena et al. (2010), tracking structure V with C and N281

reserves, but calculating general reserve at each time-step. These three state variables for282

roots and shoots lead to a six-state model, consistent with traditional plant models such as283

TTR (Thornley 1972b) and SIMPLE (Cheeseman 1993).284

The modular DEB formulation allows for inclusion of additional state variables such285

as P (production) and M (maturity). P can track the production of growth byproducts286

such as leaf litter, or bark and heartwood in woody plants, while M can track reproductive287

maturity and seed-set.288

We allocate initial seed mass by assigning large C and N with small V (Table 1). If289

initial reserve masses assigned to shoot and root do not match the ratio of later assimi-290

lation rates, balancing oscillations occurred between root and shoot growth until a stable291

assimilation ratio is reached. These oscillations drove early model “death” in variable con-292

ditions. We therefore used an initial reserve structure ratio that matches later shoot/root293

ratio of 4:1, minimising early growth-rate oscillations. Plants were simulated to grow for294

six months starting at monthly intervals over the six year period from January 2005 to De-295

cember 2010. We use microclimates simulated from historical climatic data from 2005-2011296

(Kearney 2018), covering the ‘millennium’ drought (Dijk et al. 2013) and the return of297

wetter conditions from late 2009.298
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Table 1: Initial masses of reserve and structure

State Symbol Mass (mg)
Shoot Structure VS 0.2
Shoot C Reserve CS 5.0
Shoot N Reserve NS 0.2
Root Structure VR 0.04
Root C Reserve CR 1.0
Root N Reserve NR 0.04

Avoiding Over-parametrization299

The usefulness of complex, over-parameterised ecological models is debatable (Reichert &300

Omlin 1997). The DEB plant model in Kooijman (2016)] has 60-80 parameters depending301

on the use case and interpretation, reflecting the potential biologically-relevant complexity302

in a multi-state model. Microclimate integration requires additional parameters, while the303

MAESPA photosynthesis model itself has many parameters (20-40). This combination304

could result in a model that is over-parametrized and difficult to reason about, to explore305

and ultimately to parametrize. However, a DEB plant model can be simplified in two306

ways: amalgamation of parameters across structures and substrates, and simplification of307

the formulation.308

Amalgamation of parameters is possible if we assume that there are common parameters309

shared between root and shoot structures, and for rates of substrate turnover. Kooijman310

(2010) used three k̇ parameters per structure for the turnover of each reserve. Lorena et311

al. (2010) used only a single k̇ parameter, as mobilisation rates were deemed to be the312

same in algae. Practically, this simplifies interactive control over whole plant turnover313

rates, and reduces failure of simulations due to fluctuations induced by differences between314

k̇ parameters. For similar reasons we also amalgamated parameters for maintenance, yield315

for conversion of reserve to structure, and N/C ratios of all reserve and structure state.316

Performing sensitivity analysis on model components and parameters is an obvious ana-317

lytical approach to parameter reduction. However, it did not prove to be as easy as typical318

sensitivity analysis of ecological models. The influence some parameters is highly dependent319

on microclimatic conditions; sensitivity can be calculated for one particular microclimatic320

context, but this may not be useful for understanding how the model behaves across a wider321

range of environments. Running sensitivity analysis across a dataset such as microclimOz322

is a potential solution, but is computationally intensive and was not attempted here.323

Instead we focused on manual sensitivity analysis. To facilitate this we developed a324

user-interface that dynamically updates simulations as parameter values are changed. The325

modular formulation also allowed us to swap or remove whole components from the interface326

to compare their behaviour in different environments.327

Table 2: Model Components

Component Formulation(s) Shared/Spec Parameters
Core (inc. growth + maint) Shared 7
SU Parallel Complimentary Shared 0
Product None Specific Unused
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Table 2: Model Components

Component Formulation(s) Shared/Spec Parameters
Maturity None Specific Unused
Resorption Lossless Shared 1
Rejected translocation Lossless Specific 0, 0
Fixed translocation None Specific Unused
Assimilation FvCB, Constant N Specific
Scaling Plant Morph Specific 2, 2
Allometry Allometry Specific 2, 2

Formulation changes achieved using this method included simplification of growth rate328

calculations to use only two reserve substrates, and removing proportional translocation,329

following Ledder et al. (2019). Additionally, for plants without bark or heartwood, product330

is not a component of measured biomass. Product is also inherently modular in DEB, as331

it is a proportion of otherwise lost reserves. It could thus be ignored. In our case the332

reproductive phase of the life cycle is of less interest, and maturity and reproduction was333

also be ignored. However, to allow the optional use of maturity and the fixed translocation334

of the original model, we redefined the fraction of available flux directed to growth κsoma,335

as a function of the components of a structure s:336

κsoma(s) = 1− κmaturity(s)− κtranslocation(s) (1)

In our simplified formulation, κsoma is equal to 1.337

For simplicity, we also ignore the complexities of nitrogen assimilation and scale N uptake338

on the basis of root mass, the minimum requirement to simulate root/shoot balancing339

dynamics.340

Kooijman (2010) used parameters for germination size and switches that initiate C and341

N assimilation at some point after growth has begun. This produces switching artefacts in342

early growth dynamics, and requires a parameter for each structure. In our formulation,343

photosynthesis and nitrogen uptake began from the start of the simulation, when the plant344

is still a seed. The structural mass of a seed is small in proportion to the reserve mass, and345

assimilation in early growth is not significant in comparison to reserve mobilisation (Fig. 2).346

In combination, these changes reduced DEB model parameters from approximately 70347

to 13 (not including environment or photosynthesis components), and reduced complexity348

without significant loss of dynamic capability. This simplified exploration of the model’s349

behaviour, while allowing flexibility to increase complexity where necessary. The final model350

configuration is demonstrated in fig. 1.351

Microclimate integration352

Integrating a DEB plant growth model with microclimate data requires connecting spatially353

implicit masses of the DEB structures to the spatial distribution of environmental conditions354

in the microclimate.355

In this section we describe how we used allometric equations to connect plant structures356

to microclimates, and how temperature response and assimilation formulations were used to357

connect variables to growth processes. We also describe a resorption formulation to balance358

available reserve and maintenance requirements in fluctuating microclimatic conditions.359
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Figure 1: Diagram of the simplified DEB plant model. C and N are assimilated into CS and NR

reserves using abstracted assimilation components. Mobilised reserves are incorporated into root and
shoot structure, V R and V S, via synthesising units (circles). Substrate rejected from this process is
translocated bidirectionally between roots and shoots. In practice far more N is translocated from
root to shoot, and C from shoot to root, but cycling does occur.

Allometry360

For any given geographic location, microclimOz data varies in only one (vertical) dimension361

at the microclimate scale, if variation in shade cover is ignored. We modelled only this362

vertical dimension, calculating the depth of roots and the height shoots for a given structural363

mass. To estimate these, a simple allometric equation was used:364

β1 (mass− β0)
α (2)

Where β0 is the intercept (mass at the soil surface), β1 is a scalar and α the exponent. β0365

was set to the initial seed mass, for a seed close to the soil surface. Microclimate values366

used in the simulation are interpolated between available height/depth layers.367

Photosynthesis368

In DEB models each reserve requires an assimilation process (Kooijman 2010, p. 206).369

We defined assimilation processes as modular components external to the DEB framework,370

and used an external photosynthesis model to calculate C assimilation and modify shoot371

temperature.372

The Farquhar-von Caemmerer-Berry (Farquhar, Caemmerer & Berry 1980; Caemmerer373

& Farquhar 1981) photosynthesis models are widely used in plant science, and an obvious374
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addition to a mechanistic plant model (Higgins et al. 2012). Developers of open-source mod-375

els such as MAESPA (Duursma & Medlyn 2012) have put significant work into connecting376

Farquhar photosynthesis and Ball-Berry derived stomatal conductance to environmental377

drivers such as temperature and soil moisture. However, MAESPA was not written as a378

multi-purpose photosynthesis library. We adapted components of MAESPA into a modu-379

lar, general purpose library of photosynthesis, stomatal conductance and plant heat balance380

formulations: Photosynthesis.jl. These formulations are extensive and will not be covered381

in this paper, but are available in the source of Photynthesis.jl, and covered in (Duursma382

& Medlyn 2012), noting that canopy and spatial components are not included in Photo-383

synthesis.jl. We used the simple Ball-Berry stomatal conductance model, modified by an384

exponential response to soil water potential. Our choice of model components and param-385

eters is essentially arbitrary and purely for demonstration. We also used a non-stomatal386

physiological response to soil water potential defined in (Zhou et al. 2013). Soil water387

potential was taken to be the maximum that the root system can access across its ver-388

tical extent. This formulation resulted in a ‘Carbon Starvation’ model of drought stress389

(O’Grady et al. 2013).390

Temperature391

Physiological processes in plants are reduced by temperatures above or below some opti-392

mum (Parent & Tardieu 2012). The plant model in Kooijman (2016) described 1, 3 and393

5 parameter temperature response models. However, the lower parameter models do not394

capture decreasing growth rates above an optimum temperature. A simpler two-parameter395

model can adequately represent this temperature response for plants, and plant growth and396

maintenance processes are corrected by the formulation from Parent & Tardieu (2012). We397

used the provided parameter values for wheat.398

Root temperature was taken as equal to the soil temperature at the midpoint of root399

depth. Above-ground microclimate variables were interpolated at the midpoint of shoot400

height. To calculate shoot temperature we include the effects of air temperature, relative401

humidity, wind-speed and soil water potential by iteratively solving the photosynthesis/s-402

tomatal conductance model, as in MAESPA.403

For the present purpose, we ignored plant behaviours like changes in leaf angle (Karban404

2008) or leaf thermoregulation (Michaletz et al. 2015).405

Nutrient resorption406

Plants regularly drop leaves and slough roots, with some resorption of nutrients (Wright407

& Westoby 2003). This may occur more rapidly in stressful conditions (Munné-Bosch &408

Alegre 2004). With highly variable microclimate data, simulations of a DEB plant model409

frequently ended in plant death when growth rates fell below zero, due to lack of reserves410

for structural maintenance. The capability to shed excess structure appears to be both411

mechanistically realistic and a practical requirement of modelling dynamic plant growth in412

variable microclimates.413

The shedding of structure due to stress can be simulated by removing a proportion of414

structural and reserve mass as a function of growth rate. As growth rate is determined415

by resource availability after maintenance and temperature suitability, it is a reasonable416

indicator of stress. Our formulation uses the simplified assumption that if a leaf or branch417

is dropped, the reserve fraction is able to be reabsorbed, simply remaining in the reserve418
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state C and N , but structural components are not recoverable, and are subtracted from419

structural state V . We used a half-saturation point for metabolic rate that modulates the420

rate of resorption. Loss of mass is defined as:421

jV = −V ∗

(
1− 1

1 + h
r

)
(3)

where V is structure, j, change in structure, r is the growth rate, and h is the rate where422

half of the current structural mass will be lost per day. At h = 0 no loss of structure will423

occur, while at h = ∞ all structure will be lost for any rate r. The negative feedback424

induced by the dependency of the growth rate on the ratio of structure to reserve will mean425

r tends to remain significantly larger than h.426

Plants often have imperfect and different rates of resorption of N and C (Vergutz et al.427

2012). This formulation is available in DynamicEnergyBudgets.jl, but has two additional428

parameters, and was not used here.429

Microclimatic Scenarios430

For plotting simulations of plant ontogeny, we used three microclimate scenarios along a431

latitudinal transect from the east coast of Australia, moving west (Table 3).432

Table 3: Transect

Location Long Lat
T1 148.92 -31.80
T2 145.92 -31.80
T3 142.92 -31.80

We utilised the 8-layer datasets from MicroclimOz for soil temperature and soil water433

potential and two-layer datasets for air temperature, relative humidity and wind speed.434

Single-layer data was used for incident solar radiation. The datasets for zero percent shade435

were used for all simulations.436

Simulation437

A numerical integration was used, with a fixed hourly time-step to include all available438

microclimate data. It was performed for a six month period to model the ontogeny of an439

annual plant. Plant death occurred when either root or shoot growth rate dropped below440

zero.441

We ran this six month simulation in each transect location over the six year period from442

2005 to 2010, starting at the beginning of each month. The model was then run for the443

entire grid of Australian microclimate data, starting at monthly intervals over the same six444

year period. The maximum shoot mass registered during each simulation was stored, and445

the mean taken from all simulations starting in each particular year.446

Initially we plotted selected simulations at the first transect location, starting in August447

2005, to demonstrate the dynamics of the model.448

12



0.4 Results449

The model smoothly simulated the early stages or plant ontogeny against a background of450

microclimatic variation (fig. 2), transitioning from dependence on stored seed reserves to451

assimilated reserves. A period of stalled growth and rebalancing was visible in late Septem-452

ber when seed reserves became depleted, and low soil water potential limited assimilation453

and growth until late October. As N uptake is not mediated by soil water potential in the454

model, but C assimilation is, N assimilation was higher than C assimilation in dry times.455

This caused root growth to halt during water stress due to high availability of N.456

Plant growth rates were corrected for the effects of temperature above or below the457

optimum (fig. 2). For roots this quickly stabilised as they grew to deeper soil levels with458

more stable temperature regimes. In contrast, leaf temperature, and consequently growth459

rate, fluctuated strongly throughout plant ontogeny.460

Temporal variation along a transect461

With increasing aridity moving inland along the transect between T1 and T3, the overall462

proportion of plants surviving decreased (fig. 3). The end of the millennium drought can463

be seen with improved recruitment rates in 2009 and 2010. At T2, A long sequence of high464

vapour pressure deficit and soil water potential combined with moderate soil temperature465

in 2010. This allowed simulations to accrue higher biomass than any simulations in T1.466

Simulations at T3 had a similar spike in 2010, but overall growth was more constrained by467

environmental stresses than at either T1 or T2.468

Projected Australian distribution469

The patterns seen in the transect are reflected across eastern Australia when simulated for470

the entire MicroclimOz dataset (fig. 4). Significantly broader distributions are visible in471

2009 and 2010 with a marked inland shift in maximum growth rates, as would be expected472

with the end of the millennium drought. Fig. 4 also demonstrates that it is computationally473

tractable to produce distribution maps from this model, using a consumer desktop computer.474

0.5 Discussion475

In this paper we have demonstrated a proof of concept for a mechanistic, ontogenetically-476

explicit plant species distribution model. A simple DEB model of plant ontogeny, coupled477

to microclimatic drivers, can produce realistic plant growth dynamics from seed to maturity478

that respond to multiple environmental stresses and generate plausible spatial distributions.479

Fundamental to the development of this model was component-based design methodol-480

ogy for mechanistic modelling. We have defined modular components that allowed us to481

iteratively simplify the model, and this should facilitate further development of mechanistic482

SDMs and other applications in the life-sciences.483

However, it remains to be demonstrated that this class of models can fitted to spe-484

cific species or functional groups with more predictive success than correlative models, or485

simpler process-based models. Model-fitting methods, mechanistic growth scaling and mi-486

croclimate/plant interactions are avenues of further research.487
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Figure 2: Early development in spring 2005 of at T1 in coastal NSW starting, showing detailed
microclimate conditions and responses. Root state is shown as negative values. The calculated
temperature correction factor and available soil water potential are shown in response to fixed
environmental variables of soil temperature and water potential. This period demonstrates the
transition between growth driven by seed reserve and by assimilated C and N.
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Figure 3: Six month simulations starting each month from 2001/2002 to 2010/2011, for all three
locations. Growth plots show (dry) structural mass, here converted to grams. Root structural mass
is shown as negative values. Soil water potential is shown on a log scale. A period of strong growth
can be seen during 2010 in inland locations, coinciding with high soil water potential and moderate
temperatures.

Extensible modelling tools488

Mechanistic species distribution models are more difficult to build and more processor in-489

tensive than correlative models (Cabral, Valente & Hartig 2017; Connolly et al. 2017). The490

modelling packages that form the basis of this model outline a set of strategies for improv-491

ing this situation. We have demonstrated two distinct methods for extending the presented492

model: extensible structure of the core DEB model, and interchangeable physiological and493

climatic components.494

Modularity of structures and substrates in DEB495

The number of structures and substrates of a DEB model can be flexibly extended to suit496

the requirements of a problem, allowing open-ended exploration using the same theoretical497

framework and modelling tools. This has been demonstrated for use in both single- or498

two-structured models, with one or two substrates. However, models used in plant SDMs499

(Stratonovitch, Storkey & Semenov 2012; Storkey et al. 2014) and other purposes (Falster500

et al. 2016) use additional structures to model plant growth. This is likely to be a common501

requirement. Despite the capacity for multiple structures in DEB theory (Kooijman 2010,502

pp.180–188), a generalised computational framework for chaining more than two structures503

has been lacking. Chained structures require methods for partitioning translocation between504

both adjacent structures, such as the case of stems translocating resources between leaves505

and roots.506

Additional reserve substrates such as phosphorus may also be added and tracked to507
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Figure 4: Distribution map of maximum plant growth. Maximum shoot mass from 12 six-month
simulations, starting at the first day of each month, in each year. Simulations are run for the entire
MicroclimOz dataset. The locations of T1, T2 and T3 are shown for reference.
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model limitation of plant distribution by multiple nutrients. Again, methods for merging508

more than two reserves are less well-defined than the two-substrate synthesizing units used509

in this model.510

Process modularity511

The model presented in this paper is constructed from generic, open source Julia packages512

written for this task, but not limited to it. This demonstrates that a high-performance513

mechanistic model can be composed from generic library components, an approach that514

has a number of benefits. Common formulations and data sources can become well-tested515

and canonical, and easily re-purposed for SDMs and other uses. The modular structure516

also means that varying levels of process complexity can be used to match the processes517

critical to a particular research question. It can also resolve a criticism of fitted mechanistic518

models: the assumption that formulations are inherently correct (Dormann et al. 2012).519

These packages facilitate interactive and automated comparison of multiple formulation520

combinations, instead of just a single model.521

The design and interfaces of these modelling tools need to be tested in practical ap-522

plications and a broader range of contexts. The model as it stands may be useful for523

general models of the dynamics of vegetation where ontogenetically-explicit environmental524

responses are frequently limiting. But, an obvious next step is to fit a plant model to specific525

species or functional types.526

Fitting models to species and functional types527

Fitting SDMs for plant species of functional types is not without challenges. There is a528

shortage of suitable data, especially for rare species, and lack of methods for connecting529

available data and model parameters.530

To deal with data shortages, it has been suggested that species distribution models531

should integrate both physiological and observation data into parameter fitting routines532

(Dormann et al. 2012). Fitting to observations has been demonstrated for mechanistic533

plant SDMs (Higgins et al. 2012), but methods for combining the uncertainties of observa-534

tional data and physiological measurements need further work. Bayesian methods may be535

appropriate for this task (Dormann et al. 2012; Higgins et al. 2012).536

Another avenue of research involves fitting models to databases of traits and trait-537

correlations, to specify plant functional types. Model parameters such as rates of reserve538

turnover, maintenance and resorption, are likely to be correlated with traits (Reich 2014),539

such as specific leaf area (SLA)). Leaf, stem and seed traits have been demonstrated to540

be effective species-level predictors of distributions in correlative models (Pollock et al.541

2012). Mapping DEB model parameters to well-known trait correlations may simplify542

parameterisation of species-specific models (Wright et al. 2004; Falster et al. 2011).543

Optional partitioning and scaling dynamics544

In this paper, we have modelled the limitations to growth imposed by microclimatic stresses.545

But plant growth is also self-limited by changes in the ratio of mass to surface area, and other546

structural dynamics that cause shifting rates of assimilation, metabolism and translocation547

over plant ontogeny (Niklas & Hammond 2019). The model presented here used a simple548

curved response to capture the combined effects of competitively imposed and internal549

scaling dynamics (Kooijman 2010). This is far from a mechanistic approach, and has many550
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problems, and produces artefacts in root/shoot balance when used over longer lifespans and551

varying conditions.552

Mechanistic scaling components such as those outlined in Niklas & Hammond (2019)553

may improve model behaviour by connecting size related growth dynamics to specific554

bottom-up processes, rather than top-down formulations imposed by the model. These555

additions could also include the effects of competition for resources, such as light, water556

and nutrients, which are not addressed in the model presented here.557

Soil water and microclimatic feedbacks558

The optimal partitioning dynamics in the model incorporated water availability in shoot559

assimilation via the stomatal conductance model. But there was no water-dependence560

for root growth. This may be a critical addition to accurately model optimal root/shoot561

partitioning for some plants McCarthy & Enquist (2007a).562

The carbon starvation model of drought stress (O’Grady et al. 2013) was a convenient563

approach as DEB already tracks C reserves. However, mechanical responses such as hy-564

draulic failure also contribute to plant mortality. In extreme conditions they may kill a plant565

without the presence of carbon starvation (Martinez-Vilalta et al. 2019). The interaction566

of both modes of drought-driven failure may be required for modelling plant distributions567

constrained by drought stress.568

In our model, water uptake in photosynthesis and translocation did not strictly observe569

the conservation of matter: soil water potential in the microclimate is not affected by plant570

water use. There are multiple feedbacks between vegetation and environment (Billings571

1952; D’Odorico et al. 2013), but modelling them is difficult. Microclimate calculations can572

be processor intensive, and introducing plant-environment feedbacks may greatly increase573

model run-time. The MAESPA model (Duursma & Medlyn 2012) has feedbacks between574

evapotranspiration and soil water potential, and ultimately radiation, temperature, relative575

humidity and wind speed should also be influenced by vegetation. Extending microclimate576

packages like NicheMapR to enable this flexibility while maintaining adequate performance577

is a challenge for future research.578

0.6 Conclusions579

In this paper we have shown that integrating mechanistic plant growth models with fine-580

grained microclimate data is a practical option for predicting environmentally forced plant581

growth dynamics, and ultimately distributions.582

We have demonstrated methods for connecting dynamic energy budget growth models583

to microclimate datasets across plant ontogeny. This formulation can produce complex,584

realistic growth dynamics in response to multiple environmental stresses, and can be scaled585

up to produce mapped distributions using globally available microclimatic inputs (Kearney586

et al. 2020).587

A set of practical modelling libraries has been developed that facilitate the open-ended588

development of mechanistic species distribution models. Modelling libraries such as these589

have the potential to make the process of model development more comparable to the effort590

of producing statistical SDMs.591
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0.8 Appendix596

The source code for generating the figures in this paper is available at https://github.com/rafaqz/DEBplant. The repository also contains597

a script to generate the user interface used to explore the model.598

The final combination of model parameters are listed in Table. 4, Table. 5, Table. 6. Note that photosynthetic parameters and model599

combinations are not particularly meaningful, and serve only as a demonstration of potential to use Farquhar-derived models for this600

purpose.601

Table 4: DEB parameters, components from DynamicEnergyBudgets.jl

Parameter Value Description Software Component
Nuptake 0.15µmol mol−1 s−1 Constant rate of N uptake ConstantNAssim
y′VE 1.0 Yield of structural mass from reserve mass DEBCore
y′EC 0.9 Yield of general reserve from C-reserve
y′EN 30.0 Yield of general reserve from N-reserve
n′NV 0.03 Nitrogen per Carbon in structure
n′NE 0.025 Nitrogen per Carbon in reserve
wV 25.0g mol−1 Mol-weight of shoot structure
k̇ 0.6d−1 Reserve turnover rate CatabolismCNshared
j′Emai 0.01d−1 Specific somatic maintenance costs Maintenance
MVrefS 0.02mol Scaling reference for shoots Plantmorph
MVscalingS 0.3mol Scaling mass for shoots
MVrefR 0.02mol Scaling reference for roots Plantmorph
MVscalingR 0.3mol Scaling mass for roots

Table 5: Non-DEB parameters from DynamicEnergyBudgets.jl

Parameter Value Description
Software
Component

Kresorption 1.0e-6 Half saturation metabolic rate for resorption of tissues. StructuralLossResorption
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Parameter Value Description
Software
Component

∆HA 63.5kJ mol−1 The enthalpy of activation of the reaction. Determines the curvature
at low temperature

ParentTardieu

α 3.5 The ratio HD /HA

T0 300.0K Reference temperature
β1S 0.2m Scalar for conversion to metres Allometry
αS 0.2 Exponent relating shoot mass to height
β1R 1.0m Scalar for conversion to metres Allometry
αR 0.2 Exponent relating root mass to depth
SLA 24.0m2 kg−1 Specific leaf area BallBerryPotentialCAssim

Table 6: C assimilation parameters in Photosynthesis.jl. Adapted from Duursma & Medlyn (2012) and Zhou et al. (2013).

Parameter Value Description Software Component
rdfipt 1.0 Not documented in MAESPA WangRadiationConductance
tuipt 1.0 Not documented in MAESPA
tdipt 1.0 Not documented in MAESPA
leafwidth 0.05 m Mean width of leaves BoundaryConductance
gsc 1.0mol m−2 s−1 Stomatal conductance of the boundary layer to CO�
jmax25 184.0�mol m−2 s−1 Maximum rate of electron transport at 25° C Jmax
delsj 640.02J K−1 mol−1 DELTAS in Medlyn et al. (2002)
eavj 37259.0J mol−1 Ha in Medlyn et al. (2002)
edvj 200000.0J mol−1 Hd in Medlyn et al. (2002)
vcmax25 110.0µmol m−2 s−1 Maximumrate rate of rubisco activity at 25° C NoOptimumVcmax
eavc 47590.0J mol−1 Ha Medlyn et al. (2002)
s 2.836MPa−1 Sensitivity parameter indicating the steepness of the decline ZhouPotentialDependence
Ψ -0.958MPa The water potential at which f(Ψpd) decreases to half of its

maximum value
theta 0.4 Shape of light response curve RubiscoRegen
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Parameter Value Description Software Component
ajq 0.324 Quantum yield of electron transport
q10f 0.67K−1 Logarithm of the Q10 Respiration
dayresp 0.8 Respiration in the light as fraction of that in the dark
rd0 0.01µmol m−2 s−1 Dark respiration at the reference temperature
tbelow 173.15K Temperature below which no respiration occurs
tref 298.15K Reference temperature at which rd0 was measured
g0 0.5 µmol m−2 s−1 Stomatal leakiness (gs when photosynthesis is zero) BallBerryStomatalConductance
gamma 0.0 µmol mol−1 Shape parameter of the light response of electron transport BallBerryGSsubModel
g1 7.0 Slope parameter
swpexp 0.5kPa−1 Exponent for soil water potential response of stomata PotentialSoilMethod
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0.9 Model Component Formulations602

All formulation code can be found in DynamicEnergyBudgets.jl. The formulations here603

mirror the structure and syntax of the code as much as possible. Flux is tracked for604

each root and shoot organ as a matrix with axes state V , C, and N and transformations605

assimilation, growth, maintenance, rejection, and resorption, abbreviated in equations606

as assim, grow, maint, rej and res. Refer to the tables above for parameter descriptions.607

Temperature correction608

Formulation for from Parent & Tardieu 2012:609

c =
s0Te

−∆HA
RT

1 +
[
e

−∆HA
RT

]α(1− T
T0

) (4)

Where T is the current temperature, T0 is the reference temperature equation, ∆HA is the610

enthalpy of activation, α is the ratio HD/HA and R is the gas constant. s0 is a normalising611

constant so that c at T0 equals 1.612

Synthesizing units613

The parallel complementary SU is used in this model. See Ledder et al. (2019) for other614

possible SUs. k-family and minimum rule SUs are included in DynamicEnergyBudgets.jl.615

SUpc (v, w) =
vw(v + w)

v2 + w2 + vw)
(5)

Growth Rate616

We calculate the specific growth rate of structure ṙ following Kooijman (2010):617

ṙ = y′V,E(κsoma · j′E − j′Emai) (6)

Where:618

j′E = SU
(y′EC · C(k̇cS − ṙ)

V
,
y′EN ·N(k̇cS − ṙ)

V

)
(7)

Where k̇ is the turnover rate, c is the temperature correction, S is the shape scaling factor619

and SU is a synthesizing unit function, in our case the Parallel Complimentary SU . This620

formulation is not analytically solvable, so a numerical root-finder is used.621

Catabolism622

Total catabolised general reserve, catabolised general reserve J ′
E,cat and rejected C and N623

reserves are calculated with:624
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catabolism(C,N) = (8)
J ′
C,cat = (k̇Sc− ṙ)C

J ′
N,cat = (k̇Sc− ṙ)N

J ′
E,cat = SU(J ′

C,cat, J
′
N,cat)

JC,rej = J ′
C,cat − J ′

E,cat/y
′EC

JN,rej = J ′
N,cat − J ′

E,cat/y
′EN

where J ′
C,cat and J ′

N,cat are the flux of catabolised C and N reserves, and J ′
E,cat is the625

combined catabolised general reserve flux.626

Growth627

Determine growth fluxes JX,grow:628

growth(V, ṙ) = (9)
JV,grow = ṙ ∗ V

JC,grow =
−JV,grow/y

′VE

y′EC

JN,grow =
−JV,grow/y

′VE

y′EN

where ṙ is the specific growth rate, V is structure, MVref is a reference mass and MVscaling629

the scaling mass.630

Maintenance631

Determine maintenance flux J given state V632

maintenance(V ) = (10)

JC,maint =
j′EmaintV c

y′EC

JN,maint =
j′EmaintV c

y′EN

where c is the temperature correction factor.633

Lossless Passive Translocation634

Simply translocates the reserve rejected during catabolism between structures:635
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translocationL(Jd, Js) = (11)
JdC,trans = −JsC,rej

JdN,trans = −JsN,rej

where Js and Jd represent shoot and root flux, then root and shoot flux for translocation636

in the reverse direction.637

Dissipative Passive Translocation638

This formulation adds parameters for yield of translocation of rejected C and N to reserves,639

to model overheads of translocation such as the carbon cost of phloem loading. It was not640

used in the final model, but is illustrative of the modularity of the formulation and ease of641

comparing parameter/behaviour trade-offs.642

translocationD(Jd, Js) = (12)
JdC,trans = −JsC,rej ∗ y′CC,trans

JdN,trans = −JsN,rej ∗ y′NN,trans

Carbon Assimilation643

JC,asi = VSwV SA(e) · SLA (13)
Where VS is shoot structure in moles, wV is the mass of structure in grams per mole, S is644

the scaling coefficient, e is the current microclimatic environment, and A is a function that645

returns the rate of C assimilation. SLA is the specific leaf area of the plant.646

In this paper a Farquhar von-Caemerer Berry model is used for A. It must be noted647

that most photosynthesis models calculate the rate of uptake per area, usually extrapolated648

from total leaf mass. In the DEB formulation, reserve can vary independently to structure,649

so we use structural mass, not total mass in our calculations. This is because increasing650

reserve should not directly lead to increased assimilation.651

Nitrogen Assimilation652

Simple (temperature- and shape-scaled) constant nitrogen assimilation:653

JN,asi = NUVRS (14)
where NU is the rate of uptake of N-mols of nitrogen, VR is root structure S is the shape654

scaling coeffient.655

Organ Metabolism656

metabolism(V,C,N) = (catabolism ◦ maintenance ◦ growth ◦ resorption)(V,C,N) (15)
Metabolism is calculated for state variables (VS , CS , NS), then (VR, CR, NR), for shoot and657

root organs, and assinged to the flux matrices JS and JR respectively.658
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Plant Model659

We apply metabolism, translocation and assimilation functions to both root and shoot660

organs. This formulation allows for the addition of further organs if required.661

JS1 = metabolism(VS , CS , NS) (16)
JR1 = metabolism(VR, CR, NR)

JS2 = translocation(JR1, JS1)

JR2 = translocation(JS1, JR1)

JS3 = assimilationC(VS , VR)

JR3 = assimilationN (VR, VS)

Where JSN and JRN are our flux matrices. Finally, state variables (VS , CS , NS) are assigned662

the sums of all transformations in JS3, and (VR, CR, NR) the sums of all transformations in663

JR3.664
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