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Abstract

There is a tension between, on the one hand, the view that natural
selection produces adaptations, and on the other hand, the theoreti-
cal results showing that the links between natural selection are weak-
ened in different evolutionary scenarios such as situations of (negative)
frequency-dependent selection or more generally in situations where
fitnesses are not constant. If these results are taken at face value, in
the absence of alternative explanations to natural selection for adap-
tation, the existence of most complex biological structures will appear
as mysterious. In this paper, I provide an analysis of this problem.
I show that the theoretical framework establishing only weak links
between natural selection and adaptation refers to what I call ‘local
populations.’ In contrast, I argue that assessing such links should be
regarded from the perspective of ‘global populations’, that is popula-
tions of local populations which, in some cases, can be constituted of
more than one taxonomic group. When natural selection on a trait is
looked at from the perspective of a global population, I show that it
can be considered as frequency-independent selection, which restores
a strong link between natural selection and adaptation. I show the
adequacy of characterizing natural selection at that global level of de-
scription when one aims at explaining adaptations.
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1 Background

One important project in evolutionary theory is to link natural selection with

adaptation, the latter of which refers both to biological structures enabling

organisms to be adjusted to their environment, and the process by which this

occurs. Although it is often assumed that natural selection leads to adapta-

tion, it has long been recognized that it only does so in a set of very restricted

conditions, most notably in the absence of negative frequency-dependent se-

lection.1 There is thus a tension between two sets of observations, namely,

the observation, on the one hand, that adaptations are pervasive around us,

and on the other hand, the observation that frequency-dependent selection is

common in nature (Ayala and Campbell 1974; Dieckmann and Ferrière 2004;

Birch 2016; Svensson and Connallon n.d.). This tension has been well artic-

ulated by Birch (2016) and Okasha (2018), who both argue that, in general,

natural selection does not lead to adaptation. However, as rightly noted by

Grafen, “if the links [between the mechanical processes of inheritance and re-

production, i.e., natural selection and other evolutionary processes, and the

appearance of design, i.e. adaptation] are too weak, then I would say that

Darwin was wrong, and this has serious implications”(2014b, p. 290). In

fact, one main insight from Darwin is that natural selection can explain the
1Note that I use here the term ‘frequency-dependent selection’ in a broader way than

it is typically used in population genetics (Cockerham et al. 1972; Hedrick 1973). In fact,
in this field ‘frequency-dependent selection’ is typically only used when referring to an
individual or a genotype having a fitness value which is not constant because it depends
on the frequency of the genotypes composing the population. I extend its meaning here to
cases in which the fitness of an entity at any level (whether a gene, genotype, deme, etc.)
depends on the frequency of the types composing the population at that level, such as
with the cases of dominance, overdominance and underdominance presented above from
the perspective of alleles. This is because conceptually these cases are isomorphic to cases
of frequency-dependent selection sensu stricto, but from the level of the gene rather than
the individual. When the fitness of a type decreases as its frequency increases in the
population, frequency-dependent selection is called ‘negative frequency-dependent selec-
tion’, in contrast to positive frequency-dependent selection. Only situations of negative
frequency-dependent selection challenge the view that natural selection can be linked to
adaptation.
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appearance of design without having to invoke a designer (Dawkins 1986).

Thus, the most serious implication is that without appealing to natural se-

lection we are left with no plausible alternative to explain design.

Aiming at tackling this problem, Grafen has, over the last twenty years,

developed a framework he calls the ‘formal darwinism project’ (for an accessi-

ble introduction see Grafen 2014a). Within this framework, Grafen links the

formalism of the Price equation (Price 1970; Frank 1998; Rice 2004; Okasha

2006) to the notion of adaptation. Grafen establishes that natural selection

can be tied to adaptation via four links. When these links hold true, this,

according to Grafen, permits us to regard an individual as an agent trying

to maximize its fitness. However, on the whole, as argued by Okasha (2018,

chap. 3), the extent to which Grafen’s formal darwinism project can ex-

plain adaptation is limited, since it neither applies to frequency-dependent

selection cases, nor does it satisfactorily deal with cases in which genetic

constraints lead the fitness of a population to decrease.

In this paper, I start with the same motivation as Grafen and aim at by-

passing some of the limitations of the formal darwinism project. I argue that,

in general a link between natural selection and adaptation can be forged. The

route I take to forge this link is however different from that of Grafen since

it relies upon an interpretation of Fisher’s fundamental theorem. I argue

that although frequency-dependent selection2 is a widespread phenomenon

in nature, it mostly concerns the evolutionary dynamics of what I call ‘local

populations’,3 which effectively correspond to demes. I define a local pop-
2Note here than in this paper I will focus on negative frequency-dependent, but much

of the same analysis could be carried is situations of temporally variable environments,
of which frequency-dependent selection is a subset, in which genotypes that perform very
well at one point are later disfavored.

3‘Local’ should not be understood here as synonymous with ‘of small size’. A local
population might be of infinite size. Note also that focus in this paper on frequency
dependent selection, but the conclusion can be extented to any situation in which the
fitness of an type depends on local interactions with other types.
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ulation as a biological population in which the members interact with one

another (e.g., interbreed) in the short term. In contrast, a global population

is a population of local populations or a metapopulation where the members

of two or more local populations interact over a much longer timescale, that

is, the frequency for class of interactions is significantly lower. Although

natural selection can be regarded as frequency-dependent within each local

population of a global population, once considered from the perspective of

a global population, selection can be regarded as frequency-independent (or

nearly so), thereby preserving the strong link between natural selection and

adaptation. In such a condition, I argue that complex adaptations, insofar

as they amount to an increase in mean fitness over time, can evolve. This

view of adaptations as referring to structures shared by members of a global

population rather than local biological populations is in line with a classical

approach to study adaptation, namely, the comparative method.

Key to my analysis is that an increase in mean fitness is a good proxy for

adaptation. The concept of adaptation is often associated with the notions of

optimization or maximization at the individual level, as in Grafen’s formal

darwinism project, not at the population level (whether local or global).

This might be regarded by some as problematic. In fact, an increase in

mean fitness does not account for the fact that there can be vast differences

between the individuals of a population. Thus, although the mean fitness of

a population might increase, the fitness of a majority of the individuals of

the population might be lower than that of their ancestors. Yet, although

mean fitness is imperfect at capturing individual-level adaptation (more on

this in the conclusion), I will consider that it is sufficiently close to it for my

purpose.4

4Note that Okasha (2018, pp. 80-82) convincingly argues that mean fitness is a good
proxy for individual entities becoming more adapted.
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To make my argument, I start by motivating the problem and present

the dynamics of a simple diploid population genetics model with one locus

and two alleles. I show that even in this simple model, in the presence of

natural selection, the change in mean fitness between two generations is not

necessarily positive. I briefly discuss some of the literature arriving at the

same conclusion. To approach this problem more abstractly, I then derive a

version of the Price equation which contains Fisher’s fundamental theorem

of natural selection. This version of the Price equation highlights that what

is classically understood as the transmission bias term of the Price equation,

can be regarded, in part, as the evolutionary change due to indirect effects

of natural selection. When this term is negative, it can prevent mean fitness

from increasing between two generations. Crucially, I argue that whether this

term is nonzero depends ultimately on whether the individual fitnesses of a

population are invariant quantities when changes in the population occur. I

then argue, following other authors, that if an individual is to be ascribed

a fitness value associated with natural selection, it should be invariant to

changes in the population context and, more generally, the environment.

From there, I argue that in a global population made of an infinite number

of local populations, fitness, when computed in this context, approaches the

invariance required for it to be associated with natural selection. Finally, I

respond to two possible objections to my argument.

2 Motivating the Problem

It is almost common knowledge among evolutionary biologists that in a large

population, two alleles at one locus reproducing sexually and panmictically

in discrete generations, and where selection acts on viability of genotypes

with constant fitness, that the effect of selection on mean population fitness
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is either to increase it or leave unchanged over time (Wright 1937; Ewens

2004; Gavrilets 2004; Rice 2004; Okasha 2018; Walsh and Lynch 2018).

To see this, suppose that the two alleles are A and a with frequency

p and 1 − p respectively, the genotypes formed are AA, Aa, and aa with

frequencies p2, 2pq and (1−p)2 and fitnesses wAA, wAa and waa respectively.

The frequency of allele A at the next generation is p′. The difference in allele

frequency between the two generations ∆p tells us the evolutionary effect of

natural selection on the population. This difference is equal to

∆p = p′ − p = p2wAA

w̄
+ p(1− p)wAa

w̄
− p, (1)

where w is the mean fitness of the population and is defined as

w = p2wAA + 2p(1− p)wAa + (1− p)2waa.

We have:

dw

dp
= 2pwAA + 2(1− 2p)wAa − 2(1− p)waa

= 2(pwAA + (1− 2p)wAa − (1− p)waa)

Using equation (2), we can rewrite equation (1) as

∆p =
p

w
(pwAA + (1− p)wAa − w)

=
p

w
(pwAA + (1− p)wAa − p2wAA − 2p(1− p)wAa − (1− p)2waa)

=
p

w
(p(1− p)wAA + (1− p)(1− 2p)wAa − (1− p)2waa)

=
p(1− p)

w
(pwAA + (1− 2p)wAa − (1− p)waa)

=
p(1− p)

2w

dw

dp
.

(2)
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This result is known as ‘Wright’s formula’ (Walsh and Lynch 2018, p.

119). It can be used to vindicate the view that natural selection is an im-

proving process. Assuming a situation where neither of the two alleles has

become fixed in the population, so that 0 < p < 1, we know that the first

term on the right-hand side of Equation (2) is always positive. The second

term on the right-hand side determines the direction of change for p. Be-

cause ∆p and dp have the same sign, it follows that dw is necessarily positive.

The following reductio ad absurdum shows why. Suppose that ∆p is positive

(negative). Since dp is also positive (negative), having dw would mean that

dw
dp negative (positive), which in turn would mean that ∆p is also negative

(positive). However, this is not possible since we started from the hypothesis

that it is positive (negative).

Although Wright’s formula is an elegant way to marry the idea of natural

selection with improvement, unfortunately, the conditions under which w

necessarily increases over time are very restrictive: selection acts on viability

only, mating is random, there are only two alleles at one locus, selection

is frequency-independent since the fitness of genotypes is constant. The

result has nevertheless has been generalized for more than two alleles at

one locus (for a demonstration see Kingman 1961), but when any of the

other assumption is relaxed, the relationship between selection and mean

fitness increase does not necessarily hold anymore. Population geneticists

have shown many ways in which the relationship between natural selection

and mean fitness increase can be broken (e.g. Ewens 2004).

One way to show effectively how the relationship between natural se-

lection and mean fitness increase can easily be broken is to use a different

framework from population genetics, namely, evolutionary game theory (see

Maynard Smith 1982; Hofbauer and Sigmund 1998). Evolutionary game
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theory studies the evolutionary dynamics of frequency-dependent selection

situations. Within this framework, one considers the payoff in terms of fitness

of a given strategy S in the particular context of a population in which there

are two possible strategies—but the number of strategies can be higher—

each with a given frequency. Depending on these frequencies, an individual

with S might on average do better than another individual with the other

strategy, and vice versa. Contrary to population genetics, the strategies are

defined purely phenotypically – even though it is assumed that there is an

underlying genetic basis for the phenotype – and that individuals breed true.

One of the most famous evolutionary games is the ‘Hawk-Dove game’

(Maynard Smith 1982, pp. 11-20). In this game, the two strategies are

‘Hawk’ H and ‘Dove’ D. Suppose a population made of two phenotypes

H and D. There is some resource in the environment and each patch of

resource (V ) can only be contested by two individuals at a time. If a patch

is contested by an H and a D, the H takes all the resources while the D flies

away and gets nothing. If the patch is now contested by two Ds, they share

the resources equally so that each gets V
2 units of resources. Finally, if the

patch is now contested by two Hs, they fight and pay a cost C to each get

an equal amount, namely V−C
2 units of resources. Assuming resources are

directly transformed into offspring, in a population made purely of Hs, if

the cost paid by an H is larger than the resources obtained, a D mutant will

always have more offspring than an H. Conversely, in a population made

only of Ds, an H will systematically reap all the resources without paying

any cost, and thus have more offspring than Ds. An equilibrium will be

obtained at a certain frequency for H and D (depending on the values given

to V and C), known as a ‘Nash equilibrium’. At that equilibrium, none

of the two strategies does better than the other. It can be shown (see for
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instance Donovan and Welden 2002, pp. 499-508) that with certain values of

V and C, when the equilibrium obtains the mean population fitness is lower

than what it was initially, leading to the same conclusion that an increase in

mean fitness only obtains in a set of restricted conditions.

In adaptive dynamics (Geritz et al. 1998; Dieckmann and Ferrière 2004;

Brännström et al. 2013; Okasha 2018, chap. 4), which is a more recent and

sophisticated approach to study frequency-dependent selection than evolu-

tionary game theory, the environment experienced by a mutant variant in a

population at any point in time is considered the resident population, which

is made of a single resident morph considered at equilibrium and with a phe-

notype close to that of the mutant. Classical results in adaptive dynamics,

like those of evolutionary game theory, show that even though ‘fitter’ vari-

ants might be able to invade a resident population, the overall mean fitness

of the population might decrease and be stable.

When these results are taken at face value, they clearly seem to contra-

dict the idea that natural selection can be strongly tied to adaptation when a

surrogate for adaptation is taken to be mean population fitness. One might

think, however, that although it is easy to break the link between natural

selection and adaptation theoretically, most natural populations behave in

way that conform with Wright’s formula. If it was true, counterexamples

would show that natural selection does not necessarily lead to adaptation

in principle without invalidating the claim that it mostly does empirically.

However, this response will not work. In fact, frequency-dependent selec-

tion, as defined here, is an umbrella terms that covers a large number of

situations. Under this definition, banal situations of kin selection, where, for

instance, an altruist type sees its fitness decreasing as the number of selfish

individuals increase in the population, are situations of frequency-dependent
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situations. Furthermore, as noted by Maynard Smith (1998, p. 69) among

others, regarding frequency-dependent selection sensu stricto: “There are

good ecological reasons for thinking that frequency-dependent selection is a

major cause of genetic variability. Many of the most obvious kinds of selec-

tion are likely to be frequency-dependent in their effects.” Maynard-Smith

proceeds to describe four common non-exhaustive types of ecological situ-

ations in which frequency-dependent selection will typically occur, namely,

disease, predation, resource utilization, and behavior variability. In light of

these two responses, it seems that relegating the situation in which natu-

ral selection does not produce a mean fitness increase to rare phenomena

will not do to save the link between natural selection and adaptation. In

consequence, another strategy must be deployed.

3 Fisher’s Fundamental Theorem

The exact problem discussed in the previous section, namely, that selection is

generally not an improving process, has been at the heart of the controversy

surrounding the so-called Fisher’s fundamental theorem of natural selection.

Fisher wrote a formulation of the theorem as “[t]he rate of increase in fitness

of any organism [i.e., the mean fitness of the population] at any time is

equal to its genetic variance in fitness at that time” (Fisher 1930, p.35).

This formulation puzzled evolutionary theorists for more than 40 years, as

it seems to be contradicted by even simple cases of frequency-dependent

selection of the type shown in the previous section, until Price (1972b) gave

an interpretation of the theorem, itself later clarified by others (Ewens 1989,

see Edwards 1994; Plutynski 2006; Okasha 2008).

Following the ‘modern’ interpretation, fitness is here considered in the

same frame of reference (Frank and Slatkin 1992), that is, the same envi-
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ronment at all times. By considering the effect of natural selection on mean

fitness while keeping the environment constant, the theorem shows that nat-

ural selection increases mean fitness. However, there is a catch. We saw that

in case of frequency-dependent selection, the environment experienced by an

individual changes as a result of the change in frequency of individuals in

the population. Since this change can be due to natural selection occurring

at an earlier point in time, then the ‘indirect effect’ of natural selection, part

of which corresponds to what Fisher (1930, pp. 41-42) called the ‘deteriora-

tion of the environment’, might be opposite to its direct effect. As a result,

in spite of a positive direct effect of natural selection on mean fitness, the

overall effect might be nil or negative. For that reason, there is no guaran-

tee that when both direct and indirect effects of natural selection are taken

into consideration, the overall outcome will result in a mean fitness increase,

and consequently that natural selection can be tied to adaptation via mean

fitness.

Although the modern interpretation illuminates in what sense the mean

fitness of a population increases, it does not permit to vindicate the link

between natural selection and adaptation which is classically assumed in

modern textbooks. Yet, it is precisely this link that is invoked by evolution-

ary biologists to explain adaptation. Fisher’s fundamental theorem confirms

from a very abstract perspective, the conclusions reached in the previous

section about the tension between, on the one hand, the view that natu-

ral selection leads to adaptation, and on the other hand, the view that this

will only be attainable when natural selection is frequency independent. Al-

though the predictive power of abstract descriptions of evolutionary concepts

is limited for any given real system, their virtue lies in their explanatory and

unificatory power. Such an approach has recently been used in different but
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related contexts (e.g., Queller 2017; Lehtonen 2018; Lion 2018). In Section

5, I will attempt to alleviate this tension. However, before doing so, I need

to formalize the problem posed by the deterioration of the environment so

that the solution I will present is not misunderstood.

To start with, recall that Fisher’s fundamental theorem, in its modern

interpretation, concerns only the direct change due to natural selection, while

the tension originates from the possible indirect effects of natural selection.

Thus, to understand the relationship between these two types of effects, one

needs to approach the theorem in the wider context of total evolutionary

change. The Price equation (Price 1970; Price 1972a; Frank 1998; Rice 2004;

Okasha 2006), permits such an approach. This equation is a mathematical

identity (i.e., true by definition) that describes the mean total evolutionary

change of a character z between two times. Roughly following Frank (1998),

I provide below a version of Fisher’s fundamental theorem in a time-discrete

setting (synchronous discrete generations).5

We start by defining the average value of character z in the population

z as:

∆z = z′ − z, (3)

where z and z′ are the mean values of z at generations θ and θ+1 respectively,

and z =
∑n

i=1 zi and z′ = 1
n

∑n
1=i ωi(zi + ∆zi). zi is the character of the

i-th individual in the population of n entities at the generation t, ∆zi is the

average deviation of the offspring character from the value of the character

of i, and ωi is the relative fitness of the i-th individual and is defined as

ωi = wi
w , where wi is the absolute fitness of i and w is the average absolute

fitness of the population.
5Fisher’s original version of the theorem is proposed in a time-continuous setting.
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Replacing these terms with their definitions in Equation (3), we get:

∆z =
1

n

n∑
i=1

ωi(zi + ∆zi)−
1

n

n∑
i=1

zi, (4)

which once developed leads to:

∆z =
1

n

n∑
i=1

ωizi −
1

n

n∑
i=1

zi +
1

n

n∑
i=1

ωi∆zi. (5)

As I show below, the first and second term of the right-hand side of Equa-

tion (5) satisfy the definition of a covariance as Cov(X,Y ) = E(XY ) −

E(X) E(Y ), where E(X), the expectation of X and is defined as E(X) =

1
n

∑n
1=iXi. The third term on the right-hand side of Equation (5) is the

expectation of the quantity ω∆z. Noticing furthermore that E(ωi) = 1 and

thus that it can added as the product of any term, we can rewrite Equation

(5) as:

∆z =
1

n

n∑
i=1

ωizi −
1

n

n∑
i=1

zi
1

n

n∑
i=1

ωi +
1

n

n∑
i=1

ωi∆zi, (6)

which is equal to:

∆z = Cov(ωi, zi) + E(ωi∆zi). (7)

Equation (7) is one of the classical forms of the Price equation. The first

term on the right-hand side is classically interpreted as the change in z due

to natural selection, while the second term is the transmission bias term and

corresponds to all other causes of change.

Starting from Equation (7), following Frank (1998, p. 21), one can derive

a version of the Price equation that contains Fisher’s fundamental theorem

in which both the direct and indirect effects of natural selection (i.e., the

deterioration of the environment) are present, by considering z to be relative
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fitness itself, i.e. ω.6 We replace z by ω in Equation (7), we thus have:

∆ω = Cov(ωi, ωi) + E(ωi∆ωi). (8)

Since a covariance of a variable with itself is the variance of this variable, we

have:

∆ω = Var(ωi) + E(ωi∆ωi) (9)

We define the relative fitness of an individual i as:

ωi = bi + δi, (10)

where bi is the breeding value of individual i for relative fitness and δi is the

residual. The breeding value is defined as:

bi =
k∑
j

βjxij (11)

which is the multiple linear regression predicting ω, where the independent

variable xij represents the number of alleles of type j in individual i and βj

the partial regression coefficient of ω on xij . Mutatis mutandis, for the θ+ 1

generation we define :

ω′i = b′i + δ′i

= bi + ∆bi + δi + ∆δi,

(12)

where i′ is an offsrping of i. Thus, we have:

∆ωi = ∆bi + ∆δi. (13)
6Note that Frank derives this equation from a version of the Price equation in which

absolute rather than relative fitness is used. Besides this difference, the equation is similar.
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With this in place, we can replace the terms of Equation (9) with the

definitions provided in equations (10) and (13). We get:

∆ω = ∆b = Var(ωi) + E(ωi∆ωi)

= Var(bi + δi) + E((bi + δi)(∆bi + ∆δi))

= Var(bi) + V ar(δi) + E((bi∆bi) + (bi∆δi) + (δi∆bi) + (δi∆δi))

= Var(bi) + V ar(δi) + E(bi∆bi) + E(bi∆δi) + E(δi∆bi) + E(δi∆δi).

(14)

Since for two independent variables we have E(XY ) = E(X) E(Y ), and

by definition b and δ are independent, we can rewrite this equation as:

∆ω = Var(bi) + V ar(δi) + E(bi∆bi) + E(bi∆δi) + E(δi) E(∆bi)

+ E(δi) E(∆δi)

(15)

Since we also have by definition E(δi) = 0, this equation simplifies:

∆ω = Var(bi) + V ar(δi) + E(bi∆bi) + E(bi∆δi) (16)

Furthermore, since we have E(XY ) = Cov(X,Y ) + E(X) E(Y ) we can

rewrite this equation as:

∆ω = Var(bi) + V ar(δi) + Cov(bi,∆bi) + E(bi) E(∆bi)

+ Cov(bi,∆δi) + E(bi) E(∆δi)

(17)

Finally, assuming there is no covariance between the parental breed-

ing values and the average deviation of their offspring’s breeding values

(Cov(bi,∆bi) = 0), no covariance between the parental breeding values and

the average deviation of the offspring residuals from the parental residuals

15



(Cov(bi,∆δi) = 0), and that the expected value of the average deviation

of offspring residuals from parental residuals is nil (E(∆δi) = 0) (which

are all reasonable assumptions since there are no particular biological rea-

sons why any of them would be different from 0), and since by definition

E(bi) = E(ωi) = 1, i.e. expected breeding value of an individual equals ex-

pected relative fitness of this individual equals one this equation simplifies

into:

∆ω = Var(bi) + Var(δi) + E(∆bi). (18)

If we furthermore assume that Var(bi) � Var(δi), so that the variance in

residuals can be neglected or that the breeding values predict perfectly the

fitness of an individual (Var(δi) = 0), then we get:

∆ω = Var(bi)︸ ︷︷ ︸
∆ωns

Direct change due to natural selection

+

Change due to the environement
(including indirect effects of natural selection)

∆ωe︷ ︸︸ ︷
E(∆bi) . (19)

The first term on the right-hand side of Equation (19) represents the par-

tial change in mean fitness due to the direct effect of natural selection and

is equal to the variance in breeding value or additive genetic value. It rep-

resents the evolutionary change due to natural selection, keeping everything

else constant, and is the term referring to Fisher’s fundamental theorem in

its modern interpretation. Since a variance is always positive, this term is al-

ways positive. Thus, it vindicates Fisher’s view that natural selection always

increases mean fitness. The second term on the right-hand side represents

the change in mean fitness due to changes in b over time. For any given

individual, whether b changes between two generations will depend on the

influence of many factors – the deterioration of the environment following
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Fisher – including but not restricted to the indirect effects of natural selec-

tion, as well as the effects of the abiotic environment, drift or mutations.

The reformulation of the theorem in the context of total evolutionary

change using the Price equation shows that in any population in which the

inequality Var(bi)+E(∆bi) < 0 is satisfied, the population fitness mean might

decrease. Thus whether mean fitness decreases between two generations

depends on whether E(∆bi) is negative and its absolute value superior to that

of Var(bi). For this to occur, the breeding value b of at least some individuals

must be variable. If E(b) is an invariant quantity, then by definition, so long

as there is some variation in breeding values between the individuals of a

population, then the mean fitness of the population will increase.

What the formalization of Fisher’s fundamental theorem contextualized

in the Price equation shows, is that the link between natural selection and

increase in mean fitness (and ultimately adaptation) hinges on whether, in

the general case, the breeding value, which is used to compute the additive

genetic variance, is an invariant quantity. This represents a generalization

of the different cases seen in the previous section. If b does not vary, then

by definition the second term is nil and the mean fitness of a population

will increase over time. If on the other hand, it is not invariant, and more

particularly if it decreases over time, for instance, because the environment

is deteriorating due to the indirect effects of natural selection, then the link

between natural selection and adaptation will be compromised.

To derive Equation (19), we have put no restrictions on the variability

of b. Similarly, in evolutionary game theory and adaptive dynamics, the

fitness of a variant is allowed to vary. In the next section, I argue that

allowing fitness to vary can be a problematic assumption with respect to the

theorization of natural selection and consequently the links between natural

17



selection and adaptation.

4 Additivity, Fitness and Natural Selection

The idea that the breeding value or fitness of an individual can be a variable

quantity will seem quite counterintuitive to many. In fact, the notion of ‘ad-

ditive contribution’, upon which the notion of breeding value rests, elicits the

idea of a contribution that is independent from the contribution(s) from any

other factor. Following this view, the breeding value of an individual is just

the contribution to the reproductive output of this individual, independently

from any other factor.

Yet, this latter notion of additivity is not the one corresponding to the

notion of additivity used in regression analysis, which underlies the concep-

tual apparatus of quantitative genetics and the determination of b. As aptly

noted by Frank (1998, p. 19), the method of least squares used in regression

analysis “makes additive the contribution of each factor [...]. But a factor [...]

may be created by any functional combination of the individual predictors.”

Consequently, this means that, in regression analyses, an additive contribu-

tion resulting from a particular set of functional interactions between two

or more factors in a given context, say the population at the parental gen-

eration, measured by the breeding value of an individual, might change or

disappear in a different context, say the population at the offspring genera-

tion, because the frequencies of the different types, the size of the population

and/or the abiotic environment have changed between the two generations.

In sum, the notion of independence associated with regression analysis is not

a functional one but a statistical one.

The sensitivity to the context of the statistical notion of additivity –

that is, additivity in the context of regression analysis – has one important
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implication I want to highlight, namely, that the same individual in a pop-

ulation of a given size, a given mean and given phenotypic variance might

contribute an amount of additive genetic variance which is different from the

one it would contribute in a different population of same size, same mean

and same phenotypic variance.7 It follows from this remark that it cannot be

concluded that substituting an individual with the same genotype by means

of an ideal intervention, following the interventionist account of causation

(Woodward 2003; Pearl 2009), by a different individual of a different geno-

type in two populations of the same size with the the same genetic additive

and same phenotypic variance will necessarily lead to the same difference

(if any) in additive genetic variance in these two populations – changes in

phenotypic variance will however be the same.

This implication is important in the context of the fundamental theorem

of natural selection. In fact, as mentioned in the previous section, the ad-

ditive contribution to fitness of an individual, in the context of regression

analysis corresponds to its breeding value. Recall that following the linear

regression model of Equation (10), we defined the fitness of an individual as

a function of its breeding value, that is, as a function of the additive con-

tribution of its alleles in the population. Yet, if the breeding value of an

individual is not an invariant quantity and so can easily change over time

and space, this makes fitness itself a variable quantity, which leads to some

conceptual difficulties with respect to natural selection.8

7It also follows that in two populations of different sizes with the same phenotypic and
additive genetic means and variances, the difference made on additive genetic variance
by the same intervention on phenotypic variance (increasing or decreasing by the same
amount the variance) might be different in the two populations.

8As a side note, similar considerations on the notion of additive genetic effect led Fisher
to distinguish between what he calls the ‘average excess’ and ‘average effect’ of an allele
substitution (Fisher 1941), the former of which corresponds to effect of the substitution
of an allele in the context of a given population, while the latter corresponds to the effect
of the substitution in a larger range of population parameters (e.g., different frequencies
of alleles). For more on the distinction between average effect and average excess see
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To see that, notice that the idea that fitness is a variable quantity goes

against the view that the fitness of an organism can be given independently

from the context in which this individual is found. This is, for instance,

how Ramsey (2006) conceives of individual fitness, which he defines as an

infinite long run measure of the weighted average number of descendants

produced by this individual. The weighted average refers to all the possible

environments (which include both biotic and abiotic factors) an individual

might experience, with consequences on the number of its progeny (see also

Abrams 2009).9 The facts that Ramsey defines fitness as an infinite long run

measure, and over all possible environments, are not superfluous aspects of

his approach. Rather, they enable him to escape some problems that notions

of fitness as a variable quantity all fall into prey, most notably that they do

not permit to assess the extent to which a given reproductive output should

be associated to drift or other evolutionary processes different from natural

selection, rather than to natural selection. As pointed out by Ramsey (2006),

making this distinction has been an important motivation to develop the

initial propensity interpretation of fitness (Brandon 1978; Mills and Beatty

1979; Rosenberg 1982).

And in fact, one cannot easily do away with a context-dependent notion

of fitness, for it would imply that by merely changing the context in which

an individual is found, its fitness might instantly change as the environment

changes. What is more, different choices of descriptions made by the observer

Falconer (1985), Plutynski (2006), and Lee and Chow (2013).
9For another view that fitness needs to be invariant to be associated with natural

selection, see Godfrey-Smith (2009, p. 53) who links fitness and natural selection to
intrinsic features of objects forming populations, where he defines intrinsic features as
“those that do not depend on the existence and arrangement of other objects.” Bourrat
(2015a) and Bourrat (2017) develop Godfrey-Smith’s view and show, that to be linked
to natural selection, the properties of the members of a population should not only be
intrinsic but also be invariables. For a formalization of Ramsey’s proposal, see Pence and
Ramsey (2013).
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(i.e., what are the boundaries of a particular population, at which timescales

are the fitness measures done, etc.) could equally make an individual change

its fitness. Similarly, identical individuals might be considered as having

different fitnesses because they belong to different populations. Disposing

of the project of providing a general definition of fitness thus comes with a

high price, namely, the price of the link between fitness and natural selection

being, in the general case, not established. This problem propagates to the

link between natural selection and adaptation.10

Coming back to the regression analysis used in Equation (19), it seems

thus that considering b as the notion of fitness which ought to associated

with natural selection when it can vary between generations is in tension

with the desiderata that this latter notion is an invariant quantity. If fitness

is an invariant quantity, then breeding values only correspond to the concept

of fitness which ought to be associated with natural selection, and only when

they refer to invariant quantities. If such is the case, then we should consider

the link between natural selection only when the second term of Equation

(19) is nil.

Thus far, we saw that the different approaches to evolutionary dynamics

in frequency-dependent selection situations have a variable notion of fitness

(which is the equivalent of a variable b such that ∆bi 6= 0 in Equation

(19)). Unless b cannot be defined invariantly (or nearly so), the notion of

mean fitness used to vindicate the claim that natural selection does not

lead to adaptation presented in Section 2 does not rest upon an adequate

conception of fitness. To be in a position to make such a claim, in the next

two sections, I argue that there is a perspective permitting us to define fitness

as an invariant quantity.
10For in-depth defenses of the view that fitness needs to refer to invariant properties see

Ramsey (2006), Bourrat (2015a), and Bourrat (2017).
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5 Natural selection and adaptation: local and global

populations

In Section 3, we saw that following Equation (19), the mean change in fitness

in a population can be expressed as the sum of two terms, namely, one

which is the variance in breeding values (∆ωns), and the other which is the

expected value of the change in breeding values between two generations

(∆ωe). We also established that if the second term is negative and higher in

magnitude than the first, then the mean fitness between the two generations

will decrease. If the second term is negative and of higher magnitude because

of some indirect effect of natural selection (e.g., change in the proportion of

different alleles in the population, change in ecological conditions, etc.), then

the link between natural selection and fitness (as a proxy for adaptation)

cannot be forged.

In Section 2, we saw that frequency-dependent selection is a widespread

phenomenon. We also saw that one important motivation underlying evo-

lutionary game theory and adaptive dynamics (two general approaches to

study evolutionary dynamics), is to account for frequency-dependent selec-

tion. Finally, in Section 4, we saw that the notion of additivity used when

referring to breeding values in a regression analysis is a statistical notion

that does not necessarily refer to an invariant quantity, so that one and the

same individual placed in a population with the same phenotypic mean and

variance could have a very different additive genetic contribution because

the functional interactions between the different alleles of these two popula-

tions are different. I then argued, following others, that if fitness – through

breeding values – is not an invariant quantity, then one would have to con-

clude that fitness cannot be ascribed to entities independently of a particular
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context.

To solve this problem, breeding values need to refer to invariant quan-

tities – or at least nearly so – so that a fitness value can be ascribed to a

given individual independently from its context and its level of adaptation

compared with other entities. To be clear, being independent from the en-

vironmental context does not mean independent from any environment. An

organism’s fitness is always defined in reference to an environment. Yet, to

be defined generally, variation of the environment should not affect the fit-

ness of the organism. In this Section, I show that there is one way to define

the breeding values as nearly invariant quantities. In doing so, I resolve the

tension between the view, on the one hand, that natural selection produces

adaptations, and on the other hand, the view that the indirect effect of nat-

ural selection could easily counteract its direct effect, with the result that,

overall, the entities of a population fail to adapt.

To make my case, consider a situation of a ‘global’ population made of

an infinite number of ‘local’ populations, each of which is made of an infinite

number of individuals. Assume that there is restricted gene flow between

local populations,11 so that each local population can be regarded as a deme.

The global population setting is presented in Figure 1. Switching from a

local to a global perspective has an important consequence for calculating

the breeding value of an individual.12 Computing the breeding value of an

individual in such a setting will typically lead to a different value than when

it is computed in a local population if selection in the local populations is

frequency-dependent – I assume here that the local environmental (biotic and

abiotic) conditions are different in different local populations. This is because
11Potentially the individuals of different populations could belong to different taxonomic

groups.
12for a review of the standardization of fitness when making comparisons between groups

see De Lisle and Svensson (2017).
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each allele of a given type will be found in a larger range of environmental

conditions than if considered only from a local perspective.

To see why, one needs to note that in a local population the additive

genetic effect and consequently the breeding values of individuals are com-

puted when only part of the environment is considered. In fact, each of the

alleles of a local population experiences the same allelic environment follow-

ing our assumptions.13 Thus, when computing the additive genetic values of

the entities by regression analyses, only one allelic environment is taken into

consideration in such analyses. Assuming there are interactions between in-

dividuals – which is necessarily the case in situations of frequency-dependent

selection – this value would have been different had the allelic environment

been different. Switching from a local to a global perspective permits us

to consider the average difference made by an allele when its allelic envi-

ronment varies. In fact, in a global population of infinite size made of an

infinite number of local populations, each allele of a given type will be found

in all possible combinations of allelic environments, and the average affect

of an allele will be the invariant value. Any deviation from this invariant

quantity will be attributable to the particle genetic composition of the local

population, that is, interactions occurring between individuals. Another way

to see this phenomenon is that local populations are like large individuals

composed of a number of alleles which is twice the number of lower-level

individuals in a local population, assuming here we are dealing with diploid

lower-level individuals. Interactions occur between individuals within a local

population and have effects on the fitness of local populations, in the same

way that the allele of a diploid organism can have effects on its fitness.

Furthermore, because there are restricted gene flows between local pop-
13Minus the effect of the focal allele, but in an infinitely large population this becomes

negligible.
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ulations, this implies that the interactions between individuals of two lo-

cal populations occur at a different rate than they do between individuals

within a population. One can suppose that the timescale (T ) over which fit-

ness interactions of a given magnitude occur between members of two local

populations is much larger than the timescale (t) (with T � t) over which

interactions of the same magnitude occur between two individuals of a local

population. This assumption can be justified on the basis, for instance, that

two individuals are less likely to interact – directly or indirectly – with one

another if they live far apart from each other. As a result, when studying

the evolutionary dynamics of the global population over a timescale close to

t, the fitness interaction between members of two local populations can be

considered as negligible, and consequently selection regarded as frequency

independent at the global level.

Thus, by switching from a local to a global perspective, the problem posed

by frequency-dependent selection, which leads b to vary between generations,

is largely eliminated. In fact, for any individual i, we can now define its

fitness as

Ωi = Bi + ∆i, (20)

where the capital letters denote that the values are defined in a global rather

than local population. We can then plug Equation (20) into Equation (9),

which, following the same assumption as in the previous section with the

local population, becomes:

∆Ω = Var(Bi) + E(∆Bi). (21)

Assuming that the main reason why E(∆Bi) changes between generations

is that the frequency of different alleles of the population changes due to
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Figure 1: Schematic representation of a global population composed of local pop-
ulations made of individuals. Fitness interactions (solid arrows) occur between
individuals of a local population at a timescale t. Fitness interactions of the same
magnitude occur between local populations (more particularly members of two
local populations) at a timescale T much larger than t. Because of this differ-
ence in timescales, over which interactions of a given magnitude occur, frequency-
dependent selection processes within local populations will result in a global nearly
frequency-independent selection process, since b, when computed globally as op-
posed to locally, is nearly invariant over periods of time in the vicinity of t.

the indirect effect of natural selection, this term becomes nil or nearly so,

leading to:

∆Ω = Var(Bi), (22)

which can be interpreted, following our assumption that an increase in mean

fitness is equivalent to a process of adaptation occurring as vindicating the

link between natural selection and adaptation.

Having presented a theoretical solution to the problem of forging the

link between natural selection and adaptation, this does not mean, however,

that this solution is supported empirically. In the next section, I respond to
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two possible objections one might have in response to the move from a local

to a global perspective, that I made in this section, which deals with the

problem of empirical adequacy. However, before proceeding, I should note

that Svensson and Connallon (n.d.) have recently discussed the implication

of frequency-dependent selection in relation to some biological problems such

as maladaptation, biological conservation, and evolutionary rescue. Worthy

of note is that Svensson and Connallon (n.d.) shows, using a quantitative

genetic model, that mean fitness can generally increase when, together with

negative frequency-dependent selection, there is also a process of directional

frequency-independent selection due to abiotic factors (see also Svensson

2017). This conclusion might be recast in terms of invariant (or less variant)

fitness values in the population in spite of variation in reproductive output

due to frequency-dependent effects.

6 Response to Objections

6.1 A global population is not the type of population in

which adaptation occurs

Perhaps the strongest objection one might have against switching from a

local to a global population perspective, as a solution to the problem of forg-

ing a link between natural selection and adaptation, is to say that evolution

occurs in local populations rather than in a global one. My response to this

objection is that forging the link between natural selection and adaptation

is a project that concerns, in many cases, the evolutionary dynamics of a

global population, not the evolutionary fate of local populations. In fact,

taking any of the classical structures referred to as ‘adaptation’ being the

result of the process of natural selection, they typically refer to structures
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found across taxonomic groups, which furthermore often do not interbreed.

One very clear example of this might be the lens eye, which is considered

an adaptation in many taxonomic groups. One might imagine a situation

in which some local population being able to better see, thanks to some

rudimentary eye, has some detrimental effects on the mean population fitness

over time. Yet, when considered over whole taxonomic groups, individuals

able to see in a large range of conditions will generally have an evolutionary

advantage. Thus, the global perspective is the one relevant to forge the link

between natural selection and adaptation in this situation.

However, perhaps the case of butterfly Batesian mimicry will make a bet-

ter case in point, since it might be argued that in the case of the eye, selection

will most typically be frequency-independent in local populations. Batesian

mimicry is classically regarded as a good example of negative frequency-

dependent selection. It is initially advantageous for some palatable species

(mimics) to resemble species that are unpalatable or poisonous (the models).

In fact, a predator preying once on an unpalatable individual will quickly

learn not to prey anymore on individuals with the same phenotype. Yet, as

the frequency of mimics increases, the advantage conferred by their pheno-

type decreases, since naive predators preying by chance on the phenotype

exhibited by both the mimic and the model are less likely to receive the

deleterious effect since a larger frequency of prey are palatable mimics. Ex-

amples of Batesian mimicry can be found in Futuyma (2005, pp. 445–446)

and Ruxton et al. (2019, chap. 10, which provides a synthesis of what is

known about batesian mimicry to date).

Although Batesian mimicry is a classical case of frequency-dependent

selection, there is, from the perspective of a global population comprising

of multiple species in the right ecological conditions, an advantage of being
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a species producing some morphs which are able to mimic models. And in

fact, all other things being equal, individuals of a given species being (better)

able to mimic rather than not (or able to mimic less well) will have a higher

fitness. Even though the deterioration of the environment in many local

populations when looked at independently (with Equation (19)) might seem

as if there is no constant increase in mean fitness, when looking at things from

a global perspective (with Equation (22)), there certainly is. The claim that

mimicry is an adaptation—an antipredator adaptation—which one can easily

find in the literature (Ruxton et al. 2019, pp. 152-153), does not refer to

any particular local population, but is rather a claim that, everything being

equal, it is better to be able to mimic rather than not. Moving from local to

global populations and performing a global regression analysis, can be seen

as performing—although imperfectly—an intervention on an independent

variable While holding everything else constant within the interventionist

account (Woodward 2003; Pearl 2009; Woodward 2010). This is because at

least some of the correlated variables within a local population will appear

as uncorrelated in a global population.

This remark leads to the last point I want to make. Harvey and Pagel

(1991) write: “If we compare snowy owls with tawny owls and polar bears

with brown bears, we note that the different species often match the colour of

their habitats. This leads to the reasonable conjecture that natural selection

against being conspicuous has produced the colour differences”. Harvey and

Purvis present here a classical way of reasoning about adaptations known

as the ‘comparative method’. The comparative method ultimately relies on

comparing a single phenotype among different taxonomic groups.14 Because
14This example, presented by Harvey and Purvis, is oversimplified. In fact, recent

methods relying on phylogenies and hypotheses about the rate of evolution permit to
estimate whether a phenotype observed in different taxonomic groups is due to natural
selection, or, for instance, a recent shared ancestry (Harvey and Pagel 1991; Harvey and
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this approach relies on comparing phenotypes between different taxonomic

groups, the distinction between local and global populations I made is in

tune with this classical approach to the study of adaptation.

One further advantage of the comparative method is that it permits us

to evaluate whether some structures lacking variation in a local population

(because they have been fixed in the populations or variation is so rare that

it cannot be detected) are nevertheless adaptations. The recognition that

structures shared between different taxonomic groups can be clear cases of

adaptation gives more weight to the claim that if natural selection can be

linked to adaptation, fitness should be regarded as an invariant property.

Before going further, it should be noted that the term ‘adaptation’ needs

not refer solely to global adaptation. In fact, local adaptations, which depend

on the particular environmental conditions of a population have been studied

in many taxonomic groups (for a review see Kawecki and Ebert 2004). Yet,

local adaptations only refer to units for which there is frequency-independent

selection at the level of the local population. Kawecki and Ebert (2004,

p. 1136) write that “[i]n general, frequency dependent selection will tend

to obscure local adaptation (if it favors rare genotypes), or to create an

appearance of one (if it discriminates against rare genotypes)”. This means

that local adaptations will occur when the breeding values of individuals in

the local population are invariant between generations at the local level or

variables over timescales that are much larger than the timescale at which

the environment changes. Said more precisely, appeal to local adaptation

will only occur when the deterioration of the local environment is much

lower than the direct effects of selection or going in the same direction. In

all other situations, there will not be any scope to invoke adaptation.15

Purvis 1991; Martins 2000).
15One important point to note is that what is regarded as a local adaptation, might
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6.2 The deterioration of the environment occurs whether

one refers to local or global population

The second objection against my proposal is that changing the scale of appli-

cation of Equation (19) does not ultimately solve the problem of the environ-

ment deteriorating. Whether considered locally or globally, the environment

being finite, it always deteriorates.

My response to this objection is that it does not take into consideration

the importance of evolutionary novelty that has occurred since life emerged

on Earth. The amount of energy available on Earth at any point in time is

finite and roughly constant. This certainly means that ultimately even the

mean fitness of a global population comprising all of life on Earth always

oscillates around zero. This is actually one reason that led Fisher to claim

that the environment must always deteriorate, otherwise the mean popula-

tion fitness would increase indefinitely. This is also the main argument that

led Van Valen to propose the red queen hypothesis (see Van Valen 1976).

Yet, although the logic of this argument makes sense, it does not take into

consideration that the energy received on Earth can be transformed into

biomass with different levels of efficiencies. Assuming that, on the whole,

organisms over evolutionary time become better at converting energy into

biomass (think, for instance, about the invention of photosynthesis), and

that the maximal possible efficiency is still nowadays far from having been

reached, then some scope for adaptation exists. Evolutionary innovations

such as photosynthesis or respiration, permitted the use of energy in a way

globally be regarded as a global maladaptation if adaptation is measured over a larger
timescale. This remark leads us to species selection territory (see, Jablonski 2008), in
which the fitness of a phenotype when looked at at the individual level or short term,
such as asexual reproduction, can provide a (spatiotemporal) local advantage that one
might consider as a local adaptation, while from a (spatiotemporal) global or clade per-
spective, there clearly is a long-term advantage for a different phenotype, such as sexual
reproduction (Bourrat 2015b).
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that was not possible before they occurred. All that is required for adapta-

tion to occur on a global scale is that new ways to utilize energy or more

efficient ways to convert it into biomass emerge at a rate that outpaces

the deterioration of the environment. Felsenstein (1978) provides a simple

macroevolution model vindicating this point. As summarized by Pennell

and O’Connor (2017, p. ii): “[m]ost remarkable is that [Felsentein’s] model

suggests the possibility that the total energy content of an ecosystem may

be generally predicted by adaptive evolution of energetic efficiencies.”

7 Conclusion

There has been a long-standing view that the link between natural selection

and adaptation does not come out of standard evolutionary theory. In this

paper, I have shown, focusing on frequency-dependence as a specific case,

but this analysis applies to other cases, that if one takes a global perspective

on evolutionary dynamics, this worry does not have as much as a grip as it

seems. There is no reason to consider adaptation solely from the perspective

of a local context. If the process of natural selection is ubiquitous, and the

structures we regard as in need of evolutionary explanation are displayed

in taxonomic groups above the level of the biological population, then it is

at that level of description that they should be assessed. Using a model

that refers to the wrong target system (i.e., the local population instead of

the global population) will simply not yield an appropriate answer to the

question being asked.

Having said that, using a notion of fitness that refers to the global popu-

lation (i.e., extremely invariant) comes at the cost of being unable to predict

the evolutionary dynamics of a local population since this invariant quan-

tity is generally unknown. The trade-off between generality and precision is
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a well-known one in the philosophy of modeling (Levins 1966; Matthewson

and Weisberg 2009). Studying evolutionary dynamics over the short term is

very valuable, and the advances of evolutionary game theory and adaptive

dynamics have clearly been major breakthroughs in the evolutionary biology

of the last 40 years. However, the precision obtained from these modeling

approaches does not permit us to make general claims about adaptation,

which require more abstract descriptions.
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