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Abstract 
 

1. Many animal species show individual differences in behaviour that are partially consistent across 

repeated measurements. Commonly referred to as personality traits, differences in average 

behaviours are often correlated across individuals, forming ‘behavioural syndromes’ (e.g. individuals 

who are more aggressive are also bolder). 

 

2. Generally, differences in the average behaviour of individuals explains less than half the variation 

in behavioural traits. To explain the rest, we need to consider how individuals themselves vary both 

plastically and unpredictably.  

 

3. Here, we integrate the study of multiple individual differences. With a reproducible worked 

example based on zebrafish (Danio rerio) behaviours, we give guidance for measuring individual 

differences in average phenotypes (i.e. personality), responses to an environmental or biological 

context (i.e. plasticity), and intrinsic variability across time (i.e. predictability, or intra-individual 

variability). 

 

4. Individuality is multi-faceted. By modelling personality, plasticity, and predictability 

simultaneously, empiricists can quantify how these traits covary across individuals, and test 

theoretical ideas about phenotypic integration. We provide detailed descriptions and resources for 

measuring behavioural syndromes, plasticity syndromes, predictability syndromes, personality-

plasticity associations, personality-predictability associations, and plasticity-predictability 

associations. These methods can be extended to incorporate plastic changes in predictability 

(termed ‘stochastic malleability’).  

 

5. Overall, we showcase the unfulfilled potential of existing statistical tools. Empiricists can use these 

methods to test more holistic and nuanced questions about the evolution, function, and 

maintenance of phenotypic variation, for any trait that is repeatedly expressed. 
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Introduction 
Over the past decade, behavioural ecologists have studied how behaviours vary across 

environments, and between individuals within populations (Allegue et al., 2017). Across 

environments, the average behaviour of a population can show phenotypic plasticity, either as an 

adaptive response to predictable environmental change, or a maladaptive consequence of 

environmental stress (Snell-Rood, 2013). Within a population, individuals can vary both in their 

average behavioural response to a given environment, and in their plastic response to 

environmental change; these individual differences can be measured with multilevel models 

(Dingemanse & Dochtermann, 2013; Dingemanse et al., 2010b). Most commonly, researchers use 

multilevel models to measure how consistently individuals differ from each other in a stable 

environment, for one or more behavioural traits. These ‘animal personality’ studies have identified 

‘behavioural syndromes’, whereby individual differences are correlated across behaviours (e.g. some 

individuals are consistently more risk-averse) (Bell, 2007; Dingemanse et al., 2010a; Dochtermann, 

2010; Sih et al., 2004). While the ‘consistency’ of individual differences in behaviour has received 

much attention, in general most behavioural variation is driven not by differences between 

individuals, but instead by residual variation (meta-analysis of repeatability: Bell et al., 2009). 

 

Residual variation is a composite of both biologically meaningful variation (e.g. within-individual 

variation), and variation that is inherent to the method of measurement. To estimate intra-

individual variability from residual variance, we could quantify the precision of our measurements, 

and manually subtract the portion of residual variance that is attributable to measurement error. 

More simply, by using a measurement method that is as precise as possible, we explicitly assume 

that residual variance approximately represents within-individual variance. Regardless of the 

proportion of residual variance that we take to represent intra-individual variability, we hereafter 

refer to magnitude of within-individual variance as ‘predictability’ (Cleasby et al., 2015). 

 

Standard multilevel models assume that each individual has the same level of predictability (i.e. 

assume homogeneity of residual variances). The homogeneity assumption is violated when some 

individuals are more variable than others across time (Ramakers et al., 2020), and this 

‘heteroscedasticity’ could represent interesting non-adaptive deviations from an optimal phenotype 

(e.g. maladaptive imprecision; Hansen et al., 2006), or adaptive variation between individuals in 

their level of predictability (e.g. alternative strategies; Wolf et al., 2007). The underlying mechanisms 

that dictate predictability are likely to be shared across different phenotypic traits. Such ‘phenotypic 
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integration’ could lead to a trade-off that constrains or maintains phenotypic variance for a given 

trait, where individuals are more predictable than optimal for some traits, and less predictable than 

optimal for others (Pigliucci, 2003; Viney & Reece, 2013; Willmore et al., 2007). 

 

Statistical methods for studying individual differences in labile (i.e. repeatedly expressed) traits will 

be most powerful when multiple individual differences are considered together. The field of animal 

personality has spent over a decade quantifying individual differences in intercepts (personalities) 

and their between-individual correlations (behavioural syndromes). We can take the same approach 

to the study of two other types of individual differences (Fig. 1): slopes for environmental variables 

(plasticity) and within-individual variances (predictability). In addition to behavioural syndromes, 

below we describe and quantify five other biologically meaningful correlations. This major 

extension will allow empiricists to study factors contributing to the maintenance of within-individual 

variation. Quantifying phenotypic integration among personality, plasticity, and predictability is 

within the reach of many, however without a guide, navigating the statistical methods could 

discourage the uninitiated. Here, we lower the barrier to entry for quantifying various types of 

individual differences, and their correlations, for multiple phenotypic traits. Using a reproducible 

worked example with zebrafish behavioural data, we demonstrate how researchers can use these 

statistical tools to tackle biological questions. 
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Figure 1 
Conceptual illustration of three types of individual differences for a labile trait (in this case, 

behaviour). In each panel, black curves represent the normal distribution of a phenotypic trait in a 

population. Smaller, coloured curves represent the distribution of phenotypes expressed by an 

individual within that population. (A) ‘Personality’: individual differences in average behaviour. (B) 

‘Plasticity’ due to a change in the environment. In environment 2, compared with environment 1, 

the average phenotype of the population increases, as shown by the black distribution shifting to the 

right. Individuals’ averages (distributions) shift to varying extents (i.e. variation in reaction norm 

slopes). (C) ‘Predictability’: individuals’ level of variability (the breadth of individual distributions). 

Even individuals with the same ‘personality’ can show differences in predictability. 

Table 1: Mathematical notation describing statistical models 

Throughout this paper we assume that we are modelling behavioural traits in a multilevel model 
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framework, and we are interested in the biological variables of sex, age, and individual identity. 

Note that when presenting square matrices, the bottom triangle elements are omitted for simplicity 

(as they are identical to the upper triangle). 

Notation Definition 

 !!" 
Response variable (i.e., a behavioural trait): the measured phenotypic 

value of trait y for the jth individual at instance i. 

 #$ 
Superscript is used for bivariate models, to indicate model parameters for 

trait 1 (t1) and trait 2 (t2). 

 "!" 
Residual error: difference between the predicted and fitted value for the jth 

individual at instance i. 

 #%& Residual variance for single hierarchical models (‘mean’ model only). 

 #%!"&  
Residual variance for double hierarchical models (‘mean’ and ‘dispersion’ 

models): unique value for each individual and instance. 

 $$" 
Categorical input variable for the ‘sex’ of individual j ($$" = 0 for female, 

and 1 for male). 

 $&!" 
Continuous input variable for the z-transformed ‘age’ of individual j at 

instance i ($&!"= 0 is the average age of the population). 

 %'( 
Population intercept for the mean model. Average value of y when all 

other input variables are set to zero (females of average age). 

 %)(,+,- 

Population intercept for the dispersion (variance) model. Average value of 

ln(#%!"& )when all other input variables are set to zero (females of average 

age). Estimated on the natural logarithm (ln) scale. 

 %'$ Population slope for the female-male contrast for the mean model. 

 %)$,+,- 
Population slope for the female-male contrast for the dispersion model). 

Estimated on the ln scale. 

 %'& 
Population slope. Average value of phenotypic plasticity (reaction norm) 

for  $&!" = z-scaled age, for the mean model. 

 %)&,+,- 

Population slope. Average value of phenotypic plasticity (reaction norm) 

for $&!" = z-scaled age, for the dispersion model). Estimated on the ln 

scale. 

 ID'(" 
Deviation between the population intercept %'( and the random intercept 

for individual j for the mean model. 

 

Table continued on next page 
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Table 1 — continued 

Notation Definition 

 ID)(",exp 
Deviation between the population intercept %)( and the random intercept 

for individual j for the dispersion model. Estimated on the ln scale. 

 ID'&" 
Deviation between the population slope %'& and the random slope for 

individual j for the mean model. 

 |%'& + ID'&"| 
Absolute value of the (age) slope for individual j for the mean model. 

Describes the magnitude of individuals’ average plasticity. 

 #./#$
&  

Between-individual variance for the individual intercepts for the mean 

model. 

 #./#%
&  Between-individual variance for the individual slopes for the mean model. 

 #./&$,()*&  
Between-individual variance for the individual intercepts for the dispersion 

model, on the ln scale. 

 #01,+2#&  Variance due to fixed effects for the mean model. 

 #01,+2&,exp&  
Variance due to fixed effects for the dispersion model. Estimated on the ln 

scale. 

 var(a	 + 	b) Variance of the sum of random variables (vectors) a and b. 

 3(a, b) Correlation between two random variables a and b. 

 #34 Covariance between two random variables a and b. 

 

First individual difference: Personality  

Animal behaviours are deemed ‘personality traits’ when, after measuring the same behaviour two or 

more times for multiple individuals, the differences among individuals are consistent across time and 

contexts (i.e. non-zero between-individual variance) (Bell, 2007; Sih et al., 2004). Individual 

differences can be quantified with a random intercept for each individual, using a multilevel model. 

Other sources of variation can be modelled as fixed effects (and, if necessary, additional random 

effects). Throughout this paper, we will present Gaussian multilevel models containing two fixed 

effects: the first for sex (i.e. a fixed effect with two categories, female and male), and the second for 

age (i.e. a continuous fixed effect). Age is mean-centred, so that the overall intercept of the model 

represents the average phenotype of females at the average age of the population. Notation for all 

equations are explained in Table 1 (note that the same principles can be applied to non-Gaussian 

data too; Nakagawa & Schielzeth, 2010). To measure differences in personalities, our basic model 

can be written as: 

!%& = #$'( + ID'(&( + $')))& + $'*)*%& + *%& ,    eqn 1 
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*%& ∼ (0, /+*),         eqn 2 

ID'(& ∼ #0, /,-%&
* (,       eqn 3 

/./012%
* = var#$')))& + $'*)*%&(.      eqn 4 

The model described by equations 1-3 assume homoscedasticity, meaning we model differences in 

individuals’ average behaviour, but not variability in behaviour (Fig. 1A). The spread of individual 

averages allows us to estimate the between-individual variance in behaviour, which is used to 

quantify the strength of personality traits (with equations described in the Supplementary 

Information). When fixed effects represent biological variation (rather than experimental artefacts), 

it is recommended to add the fixed effect variance (calculated as in equation 4) back into the total 

variance (de Villemereuil  et al., 2018) before calculating repeatability. 

 

Second individual difference: Phenotypic plasticity 

When we expect a predictable relationship between a phenotypic trait and an environmental or 

biological context (e.g. environmental temperature, or biological age), we can model this 

relationship with a function called a ‘reaction norm’ (Gavrilets & Scheiner, 1993; Gomulkiewicz & 

Kirkpatrick, 1992; Stearns & Koella, 1986). In the simplest case of a linear relationship (specified by 

an intercept and slope), the slope ($'*) describes the magnitude and direction of the population’s 

average phenotypic plasticity. If the same individuals were measured multiple times across different 

contexts, we can use ‘random regression’ to estimate random slopes for each individual ($'* +

ID'*&). Individuals can vary in both intercepts (personality) and slopes (plasticity) (Fig. 1B). As a 

consequence, the magnitude of differences in average individual behaviour (/,-%& ) could depend 

upon the context at which the intercept is estimated (in this case, the value of )* = 0, which is 

usually set to be the ‘average’ environment). Whereas the model in equation 1 assumes that 

personality is fixed, this ‘random slope’ model allows for individuals to converge upon, or diverge 

from, the population mean in different environments: 

!%& = #$'( + ID'(&( + $')))& + #$'* + ID'*&()*%& + *%& ,   eqn 5 

*%& ∼ (0, /+*),        eqn 6 

5
ID'(&
ID'*&

6 ∼ MVN:;00< , =
/,-%&
* >#ID'(& , ID'*&(/,-%&/,-%'
… /,-%'

* @A.  eqn 7 

 

Multiple individual differences are modelled together using the multivariate normal distribution 

(MVN), which estimates the covariance between the random intercepts and slopes across 
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individuals. This covariance is written (in the upper triangle of equation 7) as the product of the 

correlation between the intercepts and slopes [>(ID'(& , ID'*&)], the standard deviation for the 

intercepts (/,-%& ), and standard deviation for the slopes (/,-%' ). 

 

Personality-plasticity associations: Correlation between personality types and 

plasticity 

Theoretically, individuals with different personalities might differ in their ability to accurately assess 

their environment or change their phenotype, and there are empirical observations of such 

‘personality-plasticity’ associations (Bogacz et al., 2010; Sih & Del Giudice, 2012). For example, in a 

marine gastropod boldness was negatively correlated with plasticity in response to tidal and 

temperature changes (Cornwell et al., 2019), in sticklebacks, exploration was positively correlated 

with acclimation to a novel environment (Dingemanse et al., 2012), and in house sparrows, the level 

of parental care was shown to be correlated with plasticity in response to brood size, nestling age, 

precipitation, and the provisioning effort of the breeding partner (Westneat et al., 2011). 

Theoretically, Dubois (2019) predicted a negative correlation between proactive personalities and 

plasticity, based on the assumption that proactive individuals are less capable of accurately assessing 

their environment, due to higher cognitive demands of proactivity. A positive correlation, 

meanwhile, could represent a “rich get richer” scenario, whereby individuals in better condition are 

more proactive and better able to bear the costs associated with plasticity (DeWitt et al., 1998; 

Reznick et al., 2000). Alternatively, phenotypic plasticity can represent a maladaptive change in the 

phenotype (e.g. due to environmental stress), and therefore personality types that show reduced 

plasticity might be more resilient to environmental change (Ghalambor et al., 2007). 

 

There are two possible types of personality-plasticity associations. First, from the multivariate 

normal distribution in equation 7, we can ask whether individual differences in intercepts are 

correlated with individual differences in slopes. The correlation provided by the model is the rank 

correlation between individual deviations (i.e. the best linear unbiased predictions: BLUPs) from the 

average population intercept ($'() and the average population slope ($'*). This correlation 

represents the covariance between the random intercepts and slopes (/,-%&,-%' ), divided by the 

product of their standard deviations: 

>#ID'(& , ID'*&( =
3()%&()%'
3()%&3()%'

.      eqn 8 

To understand this rank correlation, we need to consider the direction of plasticity — increasing 

phenotypes, decreasing phenotypes, or both — by plotting individual’s reaction norms. The 



unpublished preprint              August 2020 

 Page 10 

importance of considering the direction of phenotypic change is shown in Fig. 2 (and was 

recognised by Stamps & Biro, 2016), because different scenarios can produce the same correlations 

between intercepts and slope deviations. When individual reaction norms ‘fan out’ (or in), 

personalities that are above (or below) the population average have a more positive slope, and 

individuals that are below (or above) the population average have a more negative slope. A 

conceptual model of ‘fanning’ is presented by Sih et al. (2015) as a result from within-individual 

feedback loops. Fanning can also occur when adaptive plasticity is condition-dependent, and only 

high-quality individuals can express adaptive plasticity. Individuals in poor condition might express 

maladaptive plasticity in the opposite direction to the adaptive response. Regardless of the cause of 

these patterns, in a full fan scenario, the ranking of individual intercepts does not correlate with 

their magnitude of phenotypic plasticity. Contrasting with a full fan pattern, often we might expect 

all individuals in a population to respond to an environmental change with a plastic response in the 

same direction. In Fig. 2, we call these scenarios ‘positive fans’ (when all phenotypes increase or stay 

the same) and ‘negative fans’ (when all phenotypes decrease or stay the same). For example, in a 

warmer environment, members of an ectothermic population might all show increased activity 

levels, and reduced developmental times. 

 

The direction of plastic responses is central to many research questions, but there will often be 

scenarios where we care more about the magnitude of plasticity, irrespective of the direction (e.g. in 

comparative analyses). In these cases, we propose a second type of personality-plasticity association, 

which is calculated from the magnitude of each individual’s reaction norm (i.e. the sum of the 

population slope, and individuals’ BLUP deviation; |$'* + ID'*&|). This personality-plasticity 

association, 

>#ID'(& , C$'* + ID'*&C( =
3()%&|+%',()%'|
3()%&3|+%',()%'|

,    eqn 9 

can be calculated from the posterior distributions of individual differences, and the population slope. 

Here (as with all calculations involving BLUPs), we should use posterior distributions of estimated 

parameters (Hadfield et al., 2010; Postma, 2006) (which can be obtained using Bayesian methods; 

the worked example, below, includes code for the calculations). Posterior distributions retain 

uncertainty from each estimate, and carry those uncertainties forward in each calculation. This 

method therefore retains uncertainty in >(ID'(& , |$'* + ID'*&|), which we would lose if the 

correlation was obtained from point estimates alone, making it easy to present credible intervals. 

While bootstrapping methods could be used to estimate uncertainty from frequentist (likelihood-

based) models (cf. Stoffel et al., 2017) these methods would become very difficult when predictability 
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is incorporated into the model structure (using double hierarchical models, discussed below). 

 

 

Figure 2 
The influence of three ‘shapes’ of population plasticity on the direction of plasticity syndromes and 

personality-plasticity associations, measured with either BLUPs (deviations from the average slope) 

or the absolute value of individual slopes (magnitudes). The bottom-left box illustrates three 

shapes of population plasticity, for a hypothetical population measured in two environments. Each 

coloured point represents a different individual measured in one environment. The coloured lines 

that connect two points depict a reaction norm, with the direction and magnitude of phenotypic 

plasticity shown by the direction and steepness of each slope. The three plasticity shapes are: (1) 

Full fan: individuals vary in both the magnitude and direction of their slopes, such that some 

phenotypes increase in the changed environment, while others decrease; (2) Positive fan: 

individual slopes have a lower-bound at zero, such that phenotypes always increase or stay the same 

in the changed environment; (3) Negative fan: individual slopes have an upper-bound at zero, 

such that phenotypes always decrease or stay the same in the changed environment. The grid 

boxes are arranged to depict each possible combination of plasticity shapes and their resulting 

between-individual correlations. In each box, correlations involving slope deviations (BLUPs) are 

shown in the upper row, whereas correlations involving slope magnitudes (absolute slopes) are 
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shown in the lower row, with grey shading. Ellipses depict positive and negative correlations, 

whereas circles depict null correlations. Plasticity syndromes (shown in green) are the 

correlations between slopes (deviations, equation 15, or magnitudes, equation 16) from reaction 

norms from two different traits. Personality-plasticity associations (shown in blue) are the 

correlations between intercepts and slopes (deviations, equation 8, or magnitudes, equation 9) from 

reaction norms measured for one trait. 

 

Behavioural and plasticity syndromes 

When two different traits are measured repeatedly for the same individuals, we can use a bivariate 

model to estimate the covariances (and therefore correlations) between individual differences in 

intercepts and slopes for these traits (shown in equation 13, below). Between-individual correlations 

that span across distinct traits might reflect biologically interesting dependence, such as genetic 

correlations (e.g. due to linkage disequilibrium) or developmental constraints (Sih et al., 2012). Such 

phenotypic integration can prevent phenotypic traits from evolving independently (Fawcett et al., 

2012; Pigliucci, 2003). Trait correlations could also reflect correlated selective pressures, where a 

change in one trait encourages an adaptive change in the other. In theory, multivariate models can 

estimate the dependence between many traits at once, but here, for ease of presentation, we focus 

on the simplest scenario of two traits (‘t1’ and ‘t2’). The bivariate model can be written as: 

!%&4) = #$'(4) + ID'(&4) ( + $')4) ))&4) + #$'*4) + ID'*&4) ()*%&4) + *%&4),   eqn 10 

!%&4* = #$'(4* + ID'(&4* ( + $')4* ))&4* + #$'*4* + ID'*&4* ()*%&4* + *%&4*,   eqn 11 

=
*4)

*4*
@ ∼ MVN:;00< , =

/+-.
* >(*4), *4*)/+-./+-'
… /+-'

* @A,    eqn 12 

⎣
⎢
⎢
⎢
⎡ID!"#

$%

ID!&#$%

ID!"#$&

ID!&#$& ⎦
⎥
⎥
⎥
⎤
∼ MVN

⎝

⎜⎜
⎛
0
0
0
0
0
2 ,

⎣
⎢
⎢
⎢
⎢
⎡4'(!"#$

& 56ID!"#$% , ID!&#$% 74'(!"#$ 4'(!%#$ 56ID!"#$% , ID!"#$& 74'(!"#$ 4'(!"#% 56ID!"#$% , ID!&#$& 74'(!"#$ 4'(!"#%
… 4'(!%#$

& 56ID!&#$% , ID!"#$& 74'(!%#$ 4'(!"#% 56ID!&#$% , ID!&#$& 74'(!%#$ 4'(!"#%
… … 4'(!"#%

& 56ID!"#$& , ID!&#$& 74'(!"#% 4'(!"#%
… … … 4'(!%#%

& ⎦
⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞
.    eqn 13 

Dependence between residual errors for different traits is modelled using the multivariate normal 

distribution (MVN) in equation 12. Similarly, in equation 13, the covariance matrix to describe the 

relationship between individual differences has been expanded to include correlations both within 

and between traits. 

Behavioural syndrome: Correlation across trait intercepts 

Bivariate models can quantify the relationship between different types of personality traits 

(equations 10-11). When individual intercepts in behavioural traits are correlated (i.e. between-

individual correlation between personality traits), those traits are said to exhibit a ‘behavioural 
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syndrome’ (Dingemanse et al., 2010a), which we can estimate as: 

>#ID'(&4) , ID'(&4* ( =
3()%&-. ()%&-'

3()%&-. 3()%&-'
.      eqn 14 

While many empirical papers purport to have found these syndromes, far fewer have done so 

following the recommended method of decomposing total phenotypic variance into its among- and 

within- individual components (Dingemanse & Dochtermann, 2013; Moirón et al., 2020; Niemelä 

& Dingemanse, 2018). Combining both levels of the phenotypic correlation can be misleading, as 

selection should occur at the between-individual level, and the strength and direction of this 

correlation can be different from the within-individual level (i.e. violating the ‘individual gambit’; 

Brommer, 2013). 

Plasticity syndrome: Correlation across trait slopes 

Correlations between the reaction norm slopes for the same individuals can be measured for 

multiple traits, or multiple environmental manipulations. Positive correlations might be common, 

due to shared mechanisms in the maintenance of plasticity. Plasticity that shows phenotypic 

integration, or modularity, has been of enduring interest to plant scientists (Gianoli & Palacio-

Lopez, 2009; Mallitt et al., 2010; Pigliucci, 2002; Schlichting, 1989). Alternatively, a negative 

correlation in the magnitude of plasticity could reflect trade-offs due to associated costs (DeWitt et 

al., 1998), while the absence of a correlation suggests the traits have been selected to be decoupled, 

or face independent selective pressures. 

 

‘Plasticity syndromes’ are more challenging to interpret than behavioural syndromes, due to the 

rank order of individual differences in slopes not necessarily being correlated with the magnitude of 

individuals’ plasticity. As with personality-plasticity associations, plasticity syndromes can be 

estimated in two different ways (which are compared in Fig. 2, above). Taken directly from the 

model, the correlation between individual slope deviations, 

>#ID'*&4) , ID'*&4* ( =
3()%'-. ()%'-'

3()%'-. 3()%'-'
,      eqn 15 

describes whether the ‘rank order’ of slopes is maintained between the two traits. That is, a rank 

correlation from equation 15 indicates that individuals whose slopes are more positive than average 

in trait 1 tend to also be more positive than average in trait 2. This rank correlation could be useful 

for certain patterns of plasticity (see Fig. 2). However, when we care about the total slope (rather 

than its deviation), we should consider the slope’s magnitude rather than direction. In this case, a 

‘plasticity syndrome’ (equation 16) is calculated as the correlation between the absolute magnitude 

of individuals’ reaction norms, such that: 
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>#C$'*4) + ID'*&4) C, C$'*4* + ID'*&4* C( =
3/+%'-. ,()%'0

-. //+%'-' ,()%'0
-' /

3/+%'-. ,()%'0
-. /3/+%'-' ,()%'0

-' /
.   Eqn 16 

As with equation 9, this correlation of magnitudes can be calculated from the posterior distributions 

of model estimates (with code provided in materials accompanying the worked example) 

Summary of personality and plasticity 

Individuals can have different personalities, as measured by differences in average behaviour 

(intercepts), and differences in plasticity, as measured by differences in their average change in 

behaviour across a covariate (slopes). The covariate can be an external variable such as 

temperature, or an internal variable such as developmental history. Between-individual variation in 

plasticity has implications for estimates of personality (and related correlations), because the 

magnitude of between-individual variation can depend upon the point at which the ‘intercept’ in 

behaviour is measured. From individual differences in two BLUPs (personality and plasticity) we 

can measure three types of biologically relevant correlations: first, personality-plasticity associations 

are a correlation between reaction norm intercepts and slopes (either deviations or magnitudes); 

second, behavioural syndromes are a correlation between individual intercepts for more than one 

trait; third, plasticity syndromes are a correlation between the deviations or magnitudes of 

individual slopes for more than one trait, or the same trait measured across more than one 

covariate. When interpreting rank correlations involving slopes, which have both a direction and 

magnitude, researchers should plot each individual’s reaction norm to consider the ‘shape’ of 

phenotypic plasticity. In circumstances where we care more about the magnitude of plasticity than 

its direction, researchers can perform additional calculations to capture the absolute value of 

individual slopes, rather than individuals’ deviations from the average slope. Performing vector 

calculations on posterior distributions (from a Bayesian model) ensures that uncertainty in model 

estimates is carried forward.  

 

Third individual difference: Predictability 

The impact that animals have on their surroundings depends not only on their average behaviour, 

but also on how their behaviour fluctuates through time. Individual differences can be consistent yet 

small, and these might not have a material impact on fitness (and therefore might not respond to 

selection). Despite the variability of individuals’ behaviour being biologically important, it is 

currently rare for animal behaviour studies to distinguish between individuals who are very 

consistent through time, and those whose behaviour fluctuates enormously (an early example is seen 

in Westneat et al., 2013). Individual differences in within-individual variance (i.e. heteroscedasticity) 
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can be modelled with a Double Hierarchical Generalized Linear Model (DHGLM; Cleasby et al., 

2015). The ‘double’ in DHGLM refers to a random effect being included in both the mean model, 

and the residual variance model. In the social and medical sciences, DHGLMs are also known as 

location-scale regression models (with ‘location’ indicating the mean, and ‘scale’ indicating the 

variance; e.g. Lin et al., 2018; Rast et al., 2012). The residual variance model, hereafter referred to 

as the ‘dispersion’ model, is usually estimated on the natural logarithm scale. Fitting a random 

intercept for individual identity at both levels of the model allows individuals to vary in both their 

average behaviour, and residual variance (equations 17-18, below). We can therefore consider a 

third individual difference alongside personality and plasticity: predictability. 

 

Modelling personality, plasticity, and predictability simultaneously 

For labile traits, by allowing individuals to vary in both personality (Fig. 1A) and predictability (Fig. 

1C), we effectively estimate a different distribution for each individual. Extending the univariate 

model shown in equations 5-8, we can write the double hierarchical model as: 

!%& = #$'( + ID'(&( + $')))& + #$'* + ID'*&()*%& + *%& ,   eqn 17 

ln F/+10
* G = #$5(,106 + ID5(&,106( + $5),106))& + $5*,106)*%& ,   eqn 18 

*%& ∼ H(0, /+10
* )        eqn 19 

!
ID+,-,
ID.,-,/01
ID+2-

$ ∼ &'()*
0
0
0
, , .

/34)*
2 01ID+,- , ID.,-,/012/34)*/34+*,-./ 01ID+,- , ID+2-2/34)*/34)0

… /34+*,-./2 01ID.,- , ID+2-2/34+*,/01/34)0

… … /34)0
2

45. eqn 20 

 

Estimating individual variances requires many repeated measurements at the individual level, which 

is relatively uncommon in animal personality studies (sample size recommendations depend on the 

number of individuals and the magnitude of heteroscedasticity, which is explored in Cleasby et al., 

2015). Note that equations 17-20 vary from equations 19-24 in Cleasby et al. (2015), as the 

dispersion model is based on residual variances, rather than residual standard deviations (which has 

some benefits for summarising the magnitude of individual differences, which we elaborate on in the 

Supplementary Information). 

 

Personality-predictability association: Correlation between personality types and 

individual consistency 

From the correlation between individual intercepts in both the mean and dispersion models, we can 

estimate whether some personality types are more prone to being unpredictable than others. From 
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the multivariate distribution in equation 20, we have: 

>#ID'(& , ID5(&,106( =
3()%&()2&,345
3()%&3()2&,345

.     eqn 21 

Interpreting equation 21 is somewhat unintuitive; remember that an individual having more 

residual variance is likely to be less predictable (i.e. because they have more within-individual 

variance). Therefore, a positive correlation between mean and dispersion intercepts represents a 

negative correlation between personality and predictability. When presenting results, we therefore 

recommend multiplying correlations involving dispersion intercepts by minus 1, to make their 

interpretation intuitive (e.g. a positive correlation signifies a bolder individual is more predictable, 

with a smaller residual variance), such that: 

>#ID'(& , −1 × ID5(&,106( = −
3()%&()2&,345
3()%&3()2&,345

.    eqn 22 

The worked example below presents this sign-reversed correlation for personality-predictability 

associations. Although little theory exits on the personality-predictability association, we might 

expect risker personality types to also be less predictable; being more variable can be a risky 

strategy. Alternatively, riskier individuals could be closer to a hypothetical ‘ceiling’, whereby a 

fluctuation beyond that point would be fatal to the individual. Riskier individuals might therefore 

show greater precision around their mean phenotype, to avoid crossing some point of no return (a 

similar idea around stability of more ‘extreme’ personalities is discussed in Stamps & Groothuis, 

2010). 

 

Plasticity-predictability association: Correlation between plasticity and individual 

consistency 

Broadly, plasticity is the expression of different phenotypes by the same genotype in a different 

environment (Stamps, 2015). The environment will always be slightly different each time an 

individual expresses a labile trait because of variation in endogenous variables (internal and 

developmental), and uncontrolled fluctuations in the external environment (Flatt, 2005; Hansen et 

al., 2006). Therefore, predictability is a special type of ‘unpredictable’ plasticity, because there are 

stochastic changes in internal and external environments that prevent us from knowing exactly 

which phenotype will be expressed at any point in time. From the slope in the mean model and the 

intercept in the dispersion model, we can estimate whether individual differences in predictable and 

unpredictable plasticity are correlated. There is theoretical interest in whether different types of 

plasticity (or ‘flexibility’ or ‘responsiveness’) are related to each other (e.g. through shared 

mechanisms), but to date this type of question has received little empirical attention (Stamps & Biro, 
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2016). Less predictable individuals express a larger range of behaviours, which could imply a greater 

scope for showing an average plastic response to an environmental change. Predictability and 

plasticity could therefore be positively correlated. The rank correlation between individual 

deviations from mean slopes, and dispersion intercepts, 

>#ID'*& , ID5(&,106( =
3()%'()2&,345
3()%'3()2&,345

,     eqn 23 

measures whether individuals that are further away from the average level of plasticity are more or 

less predictable than average. The correlation between the magnitudes of mean slopes and 

dispersion intercepts, 

>#C$'* + ID'*&C, −1 × ID5(&,106( = −
3|+%',()%'|()2&,345
3|+%',()%'|3()2&,345

,   eqn 24 

estimates whether individuals who are more plastic (in either direction) are more or less predictable. 

Multiplying by minus 1 makes this correlation interpretable is a ‘plasticity-predictability association’. 

Multivariate DHGLM: personality, plasticity, and predictability 

Up to this point, we have discussed fives types of correlations: behavioural syndromes (Fig. 3A); 

plasticity syndromes (Fig. 3B); personality-plasticity associations (Fig. 3D); personality-predictability 

associations (Fig. 3E); and plasticity-predictability associations (Fig. 3F). Given sufficient data, one 

bivariate with three individual differences can estimate all of these correlations, plus a sixth: 

predictability syndromes (Fig. 3C), which we describe below. The bivariate model can be written as: 
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!!"#$ = #$%&#$ + &'%&"#$ ( + $%$#$ )$"#$ + #$%'#$ + &'%'"#$ ()'!"#$ + *!"#$,         eqn 25 
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The variance-covariance matrix in equation 30 emphasises, in bold, the off-diagonal elements that comprise the six types of correlations we are 

interested in (shown in Fig. 3). 
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Figure 3: Legend on following page 
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Figure 3 
Conceptual illustration of six types of correlations, from three types of individual differences 

(personality, individual differences in plasticity, and individual differences in predictability). Each 

coloured line and distribution represents a different individual from the same population. The top 

row shows positive between-trait correlations (‘syndromes’), where individual differences are 

correlated with each other for multiple traits. The bottom row shows within-trait correlations 

between pairs of individual differences. (A) Behavioural syndrome: individual differences in 

average behaviour (measured by random intercepts) are positively correlated between two traits, 

meaning that the ‘rank order’ of intercepts is maintained (equation 14). (B) Plasticity syndrome: the 

magnitudes of random slopes are positively correlated (equation 16). (C) Predictability syndrome: 

individuals that are less predictable in one trait (shown by a wider distribution) are less predictable 

in the second trait (equation 31). (D) Personality-plasticity association: individuals with a higher 

ranking in average behaviour (intercept) have larger absolute slopes (equation 9). 

(E) Personality-predictability association: individuals’ intercepts are correlated 

with    the    (reversed)    magnitude    of    within-individual    variance    (equation  22). 

(F) Plasticity-predictability syndrome: the magnitude of individual slopes correlates with the ranking 

of (reversed) individual variances (equation 24). 

Predictability syndrome: Correlation across trait predictabilities 

Given sufficient data for two phenotypic traits, we can measure whether individuals who are less (or 

more) predictable in one trait are also less (or more) predictable in another trait (i.e., a positive, or 

negative, correlation between within-individual variances), such that: 

!"ID!"#,%&'() , ID!"#,%&'(* & =
+!"#$,&'()* !"#$,&'()+

+!"#$,&'()* +!"#$,&'()+
.     eqn 31 

As with behavioural syndromes, the presence of a ‘predictability syndrome’ implies some 

modularity, or phenotypic integration (which can represent correlated selective pressures, or genetic 

correlations; Pigliucci, 2003). The absence of a predictability syndrome implies that different types 

of traits might be selected to have different levels of predictability. 

Summary of incorporating predictability into multilevel models 

With two individual differences — a random intercept and slope in the mean model — we can look 

at three correlations: two types of syndromes (between traits; Fig. 3A and Fig. 3B) and one intercept-

slope association (within trait; Fig. 3D). Modelling predictability adds a third individual difference — 

a random intercept in the dispersion model. Using a bivariate (multivariate) model, we can 
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simultaneously model these three individual differences in two (or more) types of traits (equations 

25-30), and estimate three additional correlations: (1) a predictability syndrome (between traits; Fig. 

3C); (2) an association (within traits) between personality and predictability (Fig. 3E); and (3) an 

association between plasticity and predictability (Fig. 3F). Given that most of the variation in 

behaviour is contained within residual variation — the lowest level of the phenotypic hierarchy — 

we cannot meaningfully explain important biological variation without considering the variability of 

individuals. 

 

Summary statistics for individual differences in personality and predictability 

The Supplementary Information includes equations for quantifying the magnitude of individual 

differences in personality and predictability with two different summary statistics: repeatability (Rp), 

which is variance-standardised, and the coefficient of individual variation (CVID), which is mean-

standardised. Both statistics are used to summarise results in the worked example, below. When 

standardising variance estimates is important to consider the scale of measurement, mean-variance 

relationships, and any transformations that were performed prior to analysis (formulas for common 

back-transformations are also provided in the supplement). An accessible summary of the limitations 

of coefficients of variation is provided by Pélabon et al. (2020). For ratio-scale data, both 

repeatability and the coefficient of individual variation are phenotypic analogues for statistics 

relating to evolutionary potential (the utility of which are, themselves, debatable; Hansen et al., 

2011). Repeatability roughly sets the upper limit on narrow-sense heritability (but see: Dohm, 2002), 

whereas the coefficient of individual variation is analogous to the coefficient of additive genetic 

variance, CVA (Dochtermann & Royauté, 2019; Holtmann et al., 2017; Houle, 1992). Notably, by 

definition (detailed in the Supplementary Information), a repeatability estimate from the dispersion 

model will always be smaller than its counterpart from the mean model, whereas estimates of the 

coefficient of individual variation for means and variances are comparable to each other. 
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Worked example: Zebrafish behaviour 
Abridged descriptions of data collection and analyses are presented here, with further details 

available in the Supplementary Information.  

Data description 

To demonstrate the models and calculations described here and in the main text, we use behaviour 

data from a laboratory population of 248 adult zebrafish (Danio rerio) following protocols developed 

by Fangmeier et al. (2018). We presented individual zebrafish with stimuli on computer tablets, and 

used automated tracking software to record five behavioural traits: (1) aggression: time spent within 

5 cm of an aggressor stimulus; (2) sociability: time spent within 5 cm of a shoal stimulus; 

(3) neophilia: time spent within 10 cm of a novel object stimulus; (4) boldness: time spent within 10 

cm of a predator stimulus; and (5) activity: the average distance travelled without stimulus present. 

Stimuli lasted for three minutes each, with four minutes of no stimulus separating them. Individuals 

were measured a maximum of 12 times each, with around two weeks separating each measurement. 

Data analysis 

Data and code to reproduce results from this worked example are available from 

http://doi.org/10.17605/OSF.IO/V3QAX (O’Dea & Nakagawa, 2020). All analyses were 

conducted in the R computing environment (v. 4.0.2; R Core Team, 2020), and Bayesian models 

were run using Stan, accessed through the R environment using the ‘stan’ function from the ‘RStan’ 

package (v. 2.21.2; Stan Development Team, 2020). Neophilia and boldness were strongly positively 

skewed, due to most fish spending little to no time within 10 cm of the stimulus (reflecting aversive 

behavioural responses to the ‘risky’ stimulus zone). We therefore analysed neophilia and boldness on 

the square-root scale, which greatly improved the normality of residuals. In addition, to help model 

fitting, the five response variables were z-transformed prior to analysis (to put them all in standard 

deviation units, with a mean of zero). For biological interpretation of model estimates, the unscaled 

descriptive statistics were used for back-transformation from the z-scale (back-transformations are 

described in the Supplementary Information, and shown in Fig. 4, below).  

 

For illustrative purposes, we specified six different models: (1) random intercept in mean model only 

(personality; single hierarchical, as in equations 1-4); (2) random intercept and random slope in 

mean model (personality and plasticity; single hierarchical, as in equations 5-7); (3) bivariate model, 

random intercept and random slope in mean model only (personality and plasticity syndromes and 

associations; single hierarchical, as in equations 10-13); (4) random intercept in both the mean and 
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dispersion models (personality and predictability; double hierarchical); (5) random intercept in both 

the mean and dispersion models, random slope in the mean model only (personality, plasticity, and 

predictability; double hierarchical, as in equations 17-20); (6) bivariate model, random intercept in 

both the mean and dispersion models, random slope in the mean model only (personality, plasticity, 

and predictability syndromes and associations; double hierarchical, as in equations 25-30). Estimates 

of repeatability (Rp, and Rp!) and the coefficient of individual variation (CV-., and CV-.!) were 

made using the formulas presented in the Supplementary Information (with small modifications for 

single hierarchical models, available in the supplementary script ‘Step 3 - Process Models.R’). 

Results and discussion: worked example  

Full results are available in Supplementary Tables S1, S2, and S3, and a selection of diagnostic plots 

are shown in Supplementary Figures S01-S14. Statistical significance was determined from 95% 

credible intervals not crossing zero. Descriptive statistics 

 (µ ± σ) for the five behavioural traits were: (1) aggression = 79.3 ± 49.3 seconds spent within 5 cm 

of aggressor video; (2) sociability = 109.0 ± 54.1 seconds spent within 5 cm of shoal video; (3) 

neophilia (square-root transformed) = 4.75 ± 3.48 seconds spent within 10 cm of novel object 

animation; (4) boldness (square-root transformed) = 6.16 ± 3.18 seconds spent within 10 cm of 

predator animation; (5) activity = 0.559 ± 0.217 cm moved in 1 second. 
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Figure 4 
Individual differences, summary statistics, and sex differences in five behaviours, estimated from 

univariate double hierarchical linear models, with a random intercept in mean and dispersion 

(i.e. personality and predictability), and a random slope for the effect of age (i.e. plasticity). Left-

hand panels show simulated distributions for the behaviour of NID = 248 individuals. Females = 

purple; males = green. Purple and green vertical lines show the population averages for female 

and male zebrafish, respectively. Filled points indicate the mean and peak of each individual’s 
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distribution; taller peaks indicate a narrower distribution, and therefore a smaller variance 

(i.e. greater predictability). Each individual’s distribution is simulated from the posterior mean 

estimate of their phenotypic mean and variance, which were back-transformed from the z-scale to 

the raw scale (within-individual variances were first converted back from the ln- scale by taking the 

exponent). Right-hand panels show summary statistics (posterior means and 95% credible 

intervals) for the magnitude of individual differences in both the mean and dispersion models (CV = 

coefficient of individual variation; Rp = repeatability; see Supplementary Information), and the 

personality predictability association for each behaviour (i.e. the sign-reversed correlation between 

individual intercepts in the mean and dispersion model; equation 22). 

 

Individual differences in personalities 

The average behaviour of individuals varied substantially, as can be seen by the spread of 

distributions in Fig. 4. From the coefficient of individual variation, relative to the population mean, 

neophilia and boldness showed the most individual differences in average behaviours (CV-., ≈ 0.5 

and 0.4, respectively). Note that neophilia was positively skewed, even after the square-root 

transformation, which likely over-estimated CV-.,  (Fig. 4C; the importance of normality for 

DHGLMs is discussed in the Supplementary Information). While aggression, sociability, and 

activity had a similar magnitude of individual differences (CV-., ≈ 0.3), those differences were the 

most consistent for activity (Rp, ≈ 0.6; Fig. 4E). The consistencies of individual differences were 

similar for sociability, aggression, neophilia, and boldness (Rp, ≈ 0.2-0.3). Estimates of repeatability 

from the single hierarchical models were around 5-10% lower than those from DHGLMs, 

suggesting that when homoscedasticity is assumed, the total estimate of residual variance 

can be inflated, and therefore underestimate repeatability. 

 

Males were significantly more active, less aggressive and social, and less bold and neophilic than 

females (Fig. 5; Table S1). Previous studies on zebrafish have also found male zebrafish to be more 

active (e.g. Dereje et al., 2012; Moretz et al., 2007; Mustafa et al., 2019), but males are also 

generally reported to be bolder than females (e.g. Dahlbom et al., 2011; Dereje et al., 2012; Kern et 

al., 2016). However, estimates of sex differences can depend on both the type of behavioural assays, 

and the zebrafish strain (Mustafa et al., 2019). Often measures of ‘boldness’ are conflated with 

activity levels (e.g. distanced moved in an open arena). Here, it is conceivable that female zebrafish, 

who were less active than males, happened to settle close to the stimulus screen, although across 

individuals more activity was correlated with more time near the predator stimulus (e.g. positive 
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activity-boldness correlation). 

 

Zebrafish behavioural syndromes 

While zebrafish studies have found mixed results for a total (i.e. un-partitioned) phenotypic 

correlation between aggression and boldness (Martins & Bhat, 2014; Norton & Bally-Cuif, 2012), 

the across-individual correlations we estimated here provide evidence for proactive behavioural 

syndromes. Statistically significant correlations between mean individual intercepts (equation 14) 

were all in the positive direction (Fig. 6). Strong correlations existed between neophilia and 

boldness, and between aggression and sociability. Moderate correlations were seen between 

neophilia and aggression, neophilia and sociability, and aggression and boldness. In addition to the 

moderate positive correlation between activity and boldness, there was a weaker negative 

correlation between activity and sociability (albeit this negative correlation was not statistically 

significant). Activity was not significantly correlated with aggression or neophilia. 

Individual differences in predictability of behaviour 

All measured behaviours showed considerable heteroscedasticity, which is depicted in Fig. 4 as 

variability in the heights of individual peaks. The magnitude of individual differences in 

predictability was most pronounced in activity (CV-.!	≈ 1.25) and least pronounced for aggression, 

neophilia, and boldness (CV-.! ≈ 0.6) (Table S2). For comparisons to studies that model individual 

differences in residual standard deviations, rather than variances, this translates into a range of 

CV-./0 from 0.3 to 0.5 (the Supplementary Information and code contain conversion formulas), 

which is in the range of estimates seen over shorter timespans for guppies and zebrafish (Mitchell & 

Biro, 2017; Mitchell et al., 2016). As with mean differences, the behaviour with the greatest 

magnitude of individual differences in predictability did not have the greatest consistency of 

differences, as measured by repeatability. Individual differences in predictability were most 

consistent for boldness (Rp! ≈ 0.11), although the other behaviours were not far behind (Rp! ≈ 0.06 

– 0.09). 

 

Zebrafish personality-plasticity associations and plasticity syndromes 

Over the course of the experiment zebrafish became, on average, less active, aggressive, and 

sociable, but tended to become more neophilic and bold (Fig. 5). The plastic effect of age could be 

driven by habituation (Biro, 2012). Plasticity in sociability (Fig. 5C) was the most integrated with 

other individual differences. Individuals with more active and more sociable personalities were less 
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plastic (moderate negative personality-plasticity associations; equation 9, Fig. 3D), which could 

provide some support for predictions by Dubois (2019). However, the magnitudes of plasticity in 

aggression, neophilia, and boldness were unrelated to individual personalities (Fig. 6, green 

diagonal: A,F,J,M,O). For plasticity syndromes (equation 16, Fig. 3B), individuals who were more 

plastic in sociability also tended to be more plastic in aggression, and less plastic in activity 

(moderately positive and negative plasticity syndromes, respectively; Fig. 6, blue boxes). No other 

combinations of traits showed statistically significant plasticity syndromes. Within the same system, 

therefore, we found all possible outcomes for plasticity syndromes — position, negative, and null 

relationships — suggesting individual 

differences in plasticity are underpinned by multiple mechanisms.
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Figure 5 
Individual differences in personality, plasticity, and predictability. Purple = female zebrafish, and 
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green = male zebrafish. In left-hand panels, points show the raw values of zebrafish behaviour 

across age. Population estimates for male and female zebrafish are shown as thick green and purple 

lines, respectively. Personality: the left-hand column shows individual differences in intercepts (i.e. 

the point at which the sloped lines cross the vertical line at zero). Plasticity: the left-hand column 

shows individual differences in slopes (i.e. the change in average behaviour with zebrafish age). 

Predictability: the right-hand column shows individual intercepts for within-individual variances, 

and the population-level change in predictability with time. 

 

Zebrafish predictabilities and predictability syndromes 

Male zebrafish were significantly less predictable than female zebrafish in activity and sociability 

(i.e. greater within-individual variance), and more predictable in aggression (i.e. smaller within-

individual variance) (Fig. 5, right column; Supplementary Table S1). There were no statistically 

significant sex differences in predictability for neophilia (Fig. 5 F) or boldness (Fig. 5H). 

Predictability tended to increase with age for aggression (Fig. 5B), neophilia (Fig. 5F), and boldness 

(Fig. 5H), as seen by negative slopes for age against within-individual variance. In contrast, 

sociability became less predictable with time (Fig. 5D), and there was no change in the predictability 

of activity with time (Fig. 5J). From bivariate models, we found moderate-to-strong positive 

predictability syndromes for all combinations of traits (see blue boxes in Fig. 6, derived from 

equation 31; see also Fig. 3C and Table S3). In contrast to plasticity, therefore, predictability was 

strongly integrated among behavioural traits. Positive predictability syndromes could be indicative 

of mechanistic constraints, which limit the independent evolution of individual’s predictability 

across traits, or correlated selective pressures, such that individuals are selected to be more or less 

predictable for a suite of related traits. Quantitative genetic methods can be incorporated into 

studies of predictability to determine the relative contribution of environmental and genetic effects 

on individual differences in predictability (e.g. Martin et al., 2017; Prentice et al., 2020). 

Zebrafish personality-predictability associations 

We found both moderately positive, weakly negative, negative, and null personality-predictability 

associations (Fig. 3E; Fig. 6, green diagonal; equation 22). More active and sociable zebrafish also 

tended to be more predictable, as measured by a narrow distribution in behaviours. In contrast, 

individuals who were more aggressive and neophilic tended to be less predictable in their behaviour. 

Boldness did not show a significant personality-predictability association (Fig. 6M). Therefore, there 

was no clear trend for riskier personality types to also be less predictable, or for more extreme 

personalities to show greater precision around their mean. 
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Zebrafish plasticity-predictability associations 

Only activity and sociability showed an association between plasticity and predictability (equation 

24; Fig. 3F). This pattern is similar to the personality-plasticity associations, except in this case 

sociability and activity showed correlations in opposite directions. Individuals who were more 

predictable in activity were less plastic (i.e. had a smaller change in activity as they aged), whereas 

individuals who were more predictable in sociability showed a greater change in sociability as they 

aged. The remaining behaviours (aggression, neophilia, and boldness) did not show significant 

plasticity-predictability associations (Fig. 6; Supplementary Table S3). Given that we found strong 

phenotypic integration of predictability (in positive predictability syndromes), but variable or null 

integration of plasticity (in positive, negative, and null predictability syndromes), the variable 

relationships between plasticity and predictability were likely driven by independence of plasticity 

between traits, rather than flexibility in predictability. 
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Figure 6 
Six types of correlations between and within personality, plasticity, and predictability, estimated 

from bivariate double hierarchical linear models on five behavioural traits. Diagonal boxes, in 

green, show within-trait associations (averaged across the four bivariate models featuring each focal 

trait). Off-diagonal boxes, in blue, show between-trait correlations. In the upper triangle, each 

ellipsis represents a correlation; ellipses tilted to the right represent positive correlations (i.e. r > 0), 

and ellipses tilted to the left represent negative correlations (i.e. r < 0). Narrower ellipses, with more 

opaque shading, represent stronger correlations. Ellipses with no tilt, and more transparent 

colouration, represent little or no correlation (i.e. r = 0). The lower triangle shoes posterior mean 

estimates and 95% credible intervals for each correlation (bound between -1 and 0), with the range 

of lower and upper estimates shown on the x-axis. Personality-plasticity associations and plasticity 

syndromes were calculated from slope magnitudes (the absolute value of individual slopes; equations 

9 and 16). Equivalent correlations for slope deviations (equations 8 and 15) are available from the 

supplementary code. 

Discussion 

Extending the animal personality framework 

Incorporating predictability into studies of personality and plasticity creates an opportunity to test 

more nuanced questions about how phenotypic variation is maintained, or constrained. For some 

traits, it might be adaptive to be unpredictable, such as in predator-prey interactions (Briffa, 2013). 

For other traits, selection might act to minimise maladaptive imprecision around an optimal mean 

(Hansen et al., 2006). In the worked example, we showed phenotypic integration of predictability 

across multiple behavioural traits, and some integration of predictability with personality and 

plasticity. Phenotypic integration could hint at genetic integration too; other studies have found 

additive genetic variance in predictability (Martin et al., 2017; Prentice et al., 2020). Given that 

different traits might have different optimal levels of unpredictability, phenotypic integration of 

predictability could constrain variation in one trait (resulting in lower than optimal variability) and 

maintain variation in another (resulting in greater than optimal variability). Associations with 

personality and plasticity mean that variation in predictability — the lowest level of the phenotypic 

hierarchy — could have cascading effects upwards (Westneat et al., 2015). Empirical estimates of 

the strength of these associations can inform theoretical models on the simultaneous evolution of 

means and variances. 
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Beyond behaviour 

We focussed this paper on animal behaviour (the field we are most familiar with), but the models are 

broadly adaptable. Individuals can show differences in predictability for any trait that is repeatedly 

expressed. For example, medical researchers might want to quantify the variability of patient’s drug 

responses (Nettles et al., 2006), and selective breeders of plants might want to reduce individual 

variability in seed or fruit mass (Herrera, 2017). The review by Herrera (2017) discusses the 

overlooked importance of variability within the structures of an individual plant, including for plant-

animal interactions. Given the large sample sizes required to estimate multiple individual 

differences, the most tractable tests of the synchronous evolution of means and variances could 

come from non-animal systems. Clonal species can also be used to estimate individual differences in 

predictability of non-labile traits.  

 

Introducing a fourth individual difference: stochastic malleability 

As a future extension to the models presented here, it is possible (given sufficient data) to include a 

random slope in the dispersion model (i.e. to add ID!*#,%&' into equation 18), to estimate individual 

differences in ‘stochastic malleability’ (i.e. plasticity in predictability, or simply ‘malleability’). While 

it would require many repeated measurements across different contexts, a fourth type of individual 

difference, in malleability, could answer three additional questions about phenotypic integration 

(Fig. 7, below): (1) is the level of malleability integrated across traits (i.e. malleability syndromes), or can 

individuals be malleable in one trait and show fixed predictability in another? (2): do individuals 

with more flexibility in average phenotypes show more flexibility in variability (i.e. plasticity-

malleability associations)? (3) are some personality types more or less likely to change their level of 

predictability in response to an environmental change (i.e. personality-malleability associations)? 

Stochastic malleability could be an important aspect of learning or adapting to novel conditions: 

naïve individuals (i.e. individuals who are young, or in an unfamiliar environment) might increase 

variability, to ‘sample’ a wider array of options. As individuals gain more experience, they might 

hone in upon the optimal phenotype, and therefore become more predictable (McNamara et al., 

2006). An interesting avenue of future research, therefore, could be to incorporate individual 

differences in malleability into studies of learning or invasion biology (c.f. Chapple et al., 2012; 

Griffin et al., 2015). 
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Figure 7 
Ten types of between-individual correlations can be modelled in a bivariate DHGLM (t1 = trait 1, 

and t2 = trait 2; as in Table 1), containing four individual differences: (1) personality (random 

intercept in mean models); (2) plasticity (random slope in mean models); (3) predictability (random 

intercept in dispersion models); and (4) malleability (random slope in dispersion models). Solids lines 

indicate correlations that were modelled in the worked example; our dataset was not suitable to 

model the correlations shown by dashed lines. 

 

Conclusion 

While many studies quantify consistent individual differences in repeatedly expressed traits, such as 

behaviour, much of the mystery of phenotypic variation is obscured within residual variation. 

Individuals impact the world not only through their ‘average’ phenotype, but also through their 

extremes. Given that evolution can act on both averages and variances, to understand the evolution 

of labile traits, we need to measure both the magnitude and consistency of individual differences, as 

well as their phenotypic integration. Using the concepts and tools presented here, empiricists can 

chronicle the integration of multiple levels of phenotypic variation in diverse systems. In doing so we 

can improve our understanding of the factors promoting and constraining variability, as well as the 

evolution, and ecological consequences, of individuality.  
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