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Abstract 31 

 32 

1. Organisms use labile traits to respond to different conditions over short timescales. 33 

When a population experiences the same conditions, we might expect all individuals 34 

to adjust their trait expression to the same, optimal, value, thereby minimising 35 

phenotypic variation. Instead, variation abounds. Individuals substantially differ not 36 

only from each other, but also from their former selves, with the expression of labile 37 

traits varying both predictably and unpredictably over time. 38 

 39 

2. A powerful tool for studying the evolution of phenotypic variation in labile traits is 40 

the mixed model. Here, we review how mixed models are used to quantify individual 41 

differences in both means and variability, and their between-individual correlations. 42 

Individuals can differ in their average phenotypes (e.g. behavioural personalities), their 43 

variability (known as ‘predictability’ or intra-individual variability), and their plastic 44 

response to different contexts. 45 

 46 

3. We provide detailed descriptions and resources for simultaneously modelling 47 

individual differences in averages, plasticity, and predictability. Empiricists can use 48 

these methods to quantify how traits covary across individuals and test theoretical 49 

ideas about phenotypic integration. These methods can be extended to incorporate 50 

plastic changes in predictability (termed ‘stochastic malleability’).  51 

 52 

4. Overall, we showcase the unfulfilled potential of existing statistical tools to test more 53 

holistic and nuanced questions about the evolution, function, and maintenance of 54 

phenotypic variation, for any trait that is repeatedly expressed. 55 

  56 
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1|INTRODUCTION 57 

Life is full of variation. Phenotypic variation among taxa and species has been 58 

chronicled for centuries, but studying variation within populations, and even within 59 

individuals, is a newer venture for biologists (Westneat et al., 2015). While it is relatively 60 

straightforward to measure genetic differences between individuals, we cannot simply 61 

extrapolate from genetic variation to its phenotypic consequences (Frazer et al., 2009). 62 

Much phenotypic variation is rooted in environmental variation (Stamps, 2015), either 63 

as adaptive responses to environmental change, or maladaptive consequences of 64 

environmental stress (Snell-Rood, 2013), and individuals can differ in their responses 65 

(Dingemanse & Dochtermann, 2013). Even in benign environments phenotypes vary 66 

unpredictably (Hansen et al., 2006). For labile traits — which can be measured at 67 

multiple instances for the same individual — understanding what causes and maintains 68 

phenotypic variation both between and within individuals is a growing field (Mitchell 69 

et al. 2021). 70 

 71 

Behavioural ecologists commonly use mixed models to measure how behaviours vary 72 

across environments, and between individuals within populations (Allegue et al., 2017). 73 

For non-human animals, behavioural traits that consistently vary between individuals 74 

have been deemed ‘personality’ traits, and sometimes these individual differences are 75 

correlated in ‘behavioural syndromes’ (e.g. some individuals are more risk-averse) (Bell, 76 

2007; Dingemanse et al., 2010a; Dochtermann, 2010; Sih et al., 2004). Studies of 77 

individual differences in behaviour have generally revealed most behavioural variation 78 

is driven not by differences between individuals, but instead by residual variation 79 

(meta-analysis of repeatability ~ 0.37: Bell et al., 2009). 80 

 81 

Standard mixed models assume homogeneity of residual variances. Residual variation 82 

represents both biological variability (e.g. within-individual variability) and 83 

measurement error. The homogeneity assumption is violated when some individuals 84 
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are more variable than others across time (Ramakers et al., 2020). High 85 

‘heteroscedasticity’ could represent: measurement artefacts (e.g. individual differences 86 

in measurement error), non-adaptive deviations from an optimal phenotype (e.g. 87 

maladaptive imprecision; Hansen et al., 2006), or adaptive variation between 88 

individuals in their level of variability (e.g. alternative strategies; Wolf et al., 2007). We 89 

hereafter refer to an individual’s level of variability in a given environment as 90 

‘predictability’ (Cleasby et al., 2015). If biological mechanisms drive variation in 91 

predictability and are shared across different phenotypic traits, trade-offs could 92 

constrain predictability levels (e.g. individuals are more predictable than optimal for 93 

some traits, and less predictable than optimal for others; Pigliucci, 2003; Viney & 94 

Reece, 2013; Willmore et al., 2007). 95 

 96 

Statistical methods for studying individual differences in labile (i.e. repeatedly 97 

expressed) traits will be most powerful when individual differences in averages (i.e. 98 

tendencies or personalities), plasticity, and predictability are considered together (Fig. 99 

1). Here, we provide a guide for empiricists on methods that can be used to study 100 

factors contributing to the evolution of phenotypic variation in labile traits, while 101 

lowering the barrier to entry with a reproducible worked example. Throughout this 102 

review we describe models of behavioural traits (and therefore use terminology 103 

common in behavioural ecology), but the methods can be applied more broadly to 104 

different types of phenotypic traits, and different types of data clusters. For example, 105 

the clustering variable could be family or population origin rather than individual 106 

identity. 107 

 108 
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 109 

FIGURE 1 110 

Conceptual illustration of three types of individual differences for a labile trait (in this 111 

case, behaviour). In each panel, black curves represent the normal distribution of a 112 

phenotypic trait in a population. Smaller, coloured curves represent the distribution of 113 

phenotypes expressed by an individual within that population. (A) ‘Personality’: 114 

individual differences in mean trait values, also known as phenotypic ‘tendencies’. (B) 115 

‘Plasticity’ due to a change in the environment (also known as ‘flexibility’ or 116 

‘responsiveness’). In environment 2, compared with environment 1, the average 117 

phenotype of the population increases, as shown by the black distribution shifting to 118 
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the right. Individual differences in plasticity are shown by individual averages shifting 119 

to varying extents (i.e. variation in reaction norm slopes). (C) ‘Predictability’: 120 

individuals’ level of variability (the breadth of individual distributions), also known as 121 

within- or intra-individual variability. 122 

TABLE 1 123 

Mathematical notation describing statistical models. Throughout this paper we assume 124 

that we are modelling behavioural traits in a mixed model framework, and we are 125 

interested in the biological variables of sex, age, and individual identity. Note that 126 

when presenting square matrices, the bottom triangle elements are omitted for 127 

simplicity (as they are identical to the upper triangle). 128 

Notation Definition 

 𝑦𝑖𝑗 
Response variable (i.e., a behavioural trait): the measured phenotypic 

value of trait y for the jth individual at instance i. 

 t1 
Superscript is used for bivariate models, to indicate model 

parameters for trait 1 (t1) and trait 2 (t2). 

 𝑒𝑖𝑗 
Residual error: difference between the predicted and fitted value for 

the jth individual at instance i. 

 𝜎𝑒
2 Residual variance for single hierarchical models (‘mean’ model only). 

 𝜎𝑒𝑖𝑗
2  

Residual variance for double hierarchical models (‘mean’ and 

‘dispersion’ models): unique value for each individual and instance. 

 𝑥1𝑗 
Categorical input variable for the ‘sex’ of individual j (𝑥1𝑗  = 0 for 

female, and 1 for male). 

 𝑥2𝑖𝑗 
Continuous input variable for the z-transformed ‘age’ of individual j 

at instance i (𝑥2𝑖𝑗= 0 is the average age of the population). 

 𝛽m0 
Population intercept for the mean model. Average value of y when 

all other input variables are set to zero (females of average age). 

 𝛽v0,exp 

Population intercept for the dispersion (variance) model. Average 

value of ln(𝜎𝑒𝑖𝑗
2 )when all other input variables are set to zero (females 

of average age). Estimated on the natural logarithm (ln) scale. 
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 𝛽m1 Population slope for the female-male contrast for the mean model. 

 𝛽v1,exp 
Population slope for the female-male contrast for the dispersion 

model. Estimated on the ln scale. 

 

Table continued on next page 

Table 1 — continued 

Notation Definition 

 𝛽m2 
Population slope. Average value of phenotypic plasticity (reaction 

norm) for  𝑥2𝑖𝑗 = z-scaled age, for the mean model. 

 𝛽v2,exp 

Population slope. Average value of phenotypic plasticity (reaction 

norm) for 𝑥2𝑖𝑗 = z-scaled age, for the dispersion model). Estimated 

on the ln scale. 

 IDm0𝑗 
Difference between the population intercept 𝛽m0 and the random 

intercept for individual j for the mean model. 

 IDv0𝑗,exp 

Difference between the population intercept 𝛽v0  and the random 

intercept for individual j for the dispersion model. Estimated on the 

ln scale. 

 IDm2𝑗 
Difference between the population slope 𝛽m2 and the random slope 

for individual j for the mean model. 

 |𝛽m2 + IDm2𝑗| 
Absolute value of the (age) slope for individual j for the mean model. 

Describes the magnitude of individuals’ average plasticity. 

 𝜎IDm0

2  
Between-individual variance for the individual intercepts for the 

mean model. 

 𝜎IDm2

2  
Between-individual variance for the individual slopes for the mean 

model. 

 𝜎IDv0,exp

2  
Between-individual variance for the individual intercepts for the 

dispersion model, on the ln scale. 

 𝜎fixedm

2  Variance due to fixed effects for the mean model. 

 𝜎fixedv,exp

2  
Variance due to fixed effects for the dispersion model. Estimated on 

the ln scale. 
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 var(a +  b) Variance of the sum of random variables (vectors) a and b. 

 𝜌(a, b) Correlation between two random variables a and b. 

 𝜎ab Covariance between two random variables a and b. 

 129 

2|INDIVIDUAL DIFFERENCES IN PERSONALITY AND 130 

PLASTICITY 131 

Personalities are usually quantified by including a random intercept for each individual 132 

in a mixed model. Other sources of variation can be modelled as fixed effects (and, if 133 

necessary, additional random effects). Throughout this paper, we will present Gaussian 134 

mixed models containing two fixed effects: the first for sex (i.e. a fixed effect with two 135 

categories, female and male), and a second for age (i.e. a continuous fixed effect. While 136 

an environmental gradient would be preferable to age, our data were not collected 137 

with the intention of exploring plasticity). Age is mean-centred, so that the overall 138 

intercept of the model represents the average phenotype of females at the average 139 

age of the population. Notation for all equations are explained in Table 1 (note that 140 

the same principles can be applied to non-Gaussian data too; Nakagawa & Schielzeth, 141 

2010).  142 

 143 

Non-human animal behaviours are commonly deemed ‘personality traits’ when, after 144 

measuring the same behaviour two or more times for multiple individuals, the 145 

differences among individuals are consistent across time and contexts (Bell, 2007; Sih 146 

et al., 2004). To measure differences in personalities, our basic model can be written 147 

as: 148 

𝑦𝑖𝑗 = (𝛽m0 + IDm0𝑗) + 𝛽m1𝑥1𝑗 + 𝛽m2𝑥2𝑖𝑗 + 𝑒𝑖𝑗 ,    eqn 1 149 

𝑒𝑖𝑗 ∼ (0, 𝜎𝑒
2),         eqn 2 150 

IDm0𝑗 ∼ (0, 𝜎IDm0

2 ),       eqn 3 151 

𝜎fixedm

2 = var(𝛽m1𝑥1𝑗 + 𝛽m2𝑥2𝑖𝑗).      eqn 4 152 
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The model described by equations 1-3 assume homoscedasticity, meaning we model 153 

differences in personalities but not predictabilities (Fig. 1A). The spread of personalities 154 

allows us to estimate the between-individual variance in behaviour, which is used to 155 

quantify the consistency of individual differences (equations for calculating 156 

repeatability and the coefficient of individual variation are provided in Section 4, 157 

below). When fixed effects represent biological variation (rather than experimental 158 

artefacts), it is recommended to add the fixed effect variance (calculated as in equation 159 

4) back into the total variance (de Villemereuil et al., 2018) before calculating 160 

repeatability. 161 

 162 

When phenotypic traits are affected by an environmental or biological context (e.g. 163 

environmental temperature, hormone concentraitons, or biological age), we can 164 

model this relationship with a function called a ‘reaction norm’ (Gavrilets & Scheiner, 165 

1993; Gomulkiewicz & Kirkpatrick, 1992; Stearns & Koella, 1986). In the simplest case 166 

of a linear relationship (specified by an intercept and slope), the slope (𝛽m2) describes 167 

the magnitude and direction of the population’s average phenotypic plasticity. If the 168 

same individuals were measured multiple times across different contexts, we can use 169 

‘random regression’ to estimate random slopes for each individual (𝛽m2 + IDm2𝑗 ). 170 

Individuals can vary in both intercepts (personality; Fig. 1A) and slopes (plasticity; Fig. 171 

1B). Consequently, the magnitude of differences in personality (𝜎IDm0
) could depend 172 

upon the context at which the intercept is estimated (in this case, the value of 𝑥2 = 0, 173 

which is set to be the average age). In contrast to the model in equation 1 (which 174 

assumed that individuals always maintain their ranking relative to the rest of the 175 

group), this ‘random slope’ model allows for individual rankings to change in different 176 

environments: 177 

𝑦𝑖𝑗 = (𝛽m0 + IDm0𝑗) + 𝛽m1𝑥1𝑗 + (𝛽m2 + IDm2𝑗)𝑥2𝑖𝑗 + 𝑒𝑖𝑗 ,   eqn 5 178 

𝑒𝑖𝑗 ∼ (0, 𝜎𝑒
2),        eqn 6 179 

[
IDm0𝑗

IDm2𝑗
] ∼ MVN([

0
0
] , [

𝜎IDm0

2 𝜌(IDm0𝑗 , IDm2𝑗)𝜎IDm0
𝜎IDm2

… 𝜎IDm2

2 ]).  eqn 7 180 
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 181 

Multiple individual differences are modelled together using the multivariate normal 182 

distribution (MVN), which estimates the covariance between the random intercepts 183 

and slopes across individuals (for simulations and discussion of what occurs when 184 

fitted data violate the MVN assumption, see Schielzeth et al., 2020). This covariance is 185 

written (in the upper triangle of equation 7) as the product of the correlation between 186 

the intercepts and slopes [𝜌(IDm0𝑗 , IDm2𝑗)], the standard deviation for the intercepts 187 

(𝜎IDm0
), and standard deviation for the slopes (𝜎IDm2

). 188 

 189 

2.1|PERSONALITY-PLASTICITY ASSOCIATIONS 190 

There are empirical observations of ‘personality-plasticity associations’, whereby 191 

individuals with different personalities differ in their plastic responses to environmental 192 

change. For example: in a marine gastropod, boldness was negatively correlated with 193 

plasticity in response to tidal and temperature changes (Cornwell et al., 2019); in 194 

sticklebacks, exploration was positively correlated with acclimation to a novel 195 

environment (Dingemanse et al., 2012); and in house sparrows, the level of parental 196 

care was shown to be correlated with plasticity in response to brood size, nestling age, 197 

precipitation, and the provisioning effort of the breeding partner (Westneat et al., 198 

2011). 199 

 200 

Theoretically, Dubois (2019) predicted a negative correlation between proactive 201 

personalities and adaptive plasticity, based on the assumption that proactive 202 

individuals are less capable of accurately assessing their environment, due to the 203 

higher cognitive demands of proactivity. A positive correlation, meanwhile, could 204 

represent a “rich get richer” scenario, whereby more well-resourced individuals are 205 

more proactive and better able to bear the costs associated with plasticity (DeWitt et 206 

al., 1998; Reznick et al., 2000). Alternatively, phenotypic plasticity can represent a 207 

maladaptive change in the phenotype (e.g. due to environmental stress), and therefore 208 



PREPRINT     Last updated: August 2021 

 12 

personality types that show reduced plasticity might be more resilient to 209 

environmental change (Ghalambor et al., 2007).  210 

 211 

There are two possible types of personality-plasticity associations, the results of which 212 

are contrasted in Fig. 2. First, from the multivariate normal distribution in equation 7, 213 

we can ask whether individuals’ personalities are correlated with individual differences 214 

in plasticity. The correlation provided by the model is the ordinal association between 215 

individual differences (i.e. the best linear unbiased predictions: BLUPs) from the 216 

average population intercept (𝛽m0 ) and the average population slope (𝛽m2 ). This 217 

correlation represents the covariance between the random intercepts and slopes 218 

(𝜎IDm0IDm2
), divided by the product of their standard deviations: 219 

𝜌(IDm0𝑗 , IDm2𝑗) =
𝜎IDm0IDm2

𝜎IDm0𝜎IDm2

.      eqn 8 220 

Alternatively, our question might be about the magnitude of plasticity irrespective of 221 

the direction of phenotypic change. For example, under thermal stress, are some 222 

individuals consistently better at maintaining homeostasis in physiological traits? The 223 

magnitude of plasticity is estimated as the absolute value of the summed population 224 

slope and individual slope difference, |𝛽m2 + IDm2𝑗| . When fitting Bayesian mixed 225 

models, the correlation between the magnitude of each individual’s slope and the 226 

difference in their intercept from the population average, 227 

𝜌(IDm0𝑗 , |𝛽m2 + IDm2𝑗|) =
𝜎IDm0|𝛽m2+IDm2|

𝜎IDm0𝜎|𝛽m2+IDm2|
,    eqn 9 228 

can be calculated from the posterior distributions of individual differences, and the 229 

population slope. As for all calculations involving BLUPs, posterior distributions should 230 

be used when estimating equation 9 to retain uncertainty and estimate credible 231 

intervals (Hadfield et al., 2010; Postma, 2006). While bootstrapping methods could be 232 

used to estimate uncertainty from frequentist (likelihood-based) models (cf. Stoffel et 233 

al., 2017) these methods would become very difficult when predictability is 234 

incorporated into the model structure. 235 

 236 
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 237 

FIGURE 2 238 

Personality-plasticity associations calculated with either slope differences, 239 

𝜌(IDm0𝑗 , IDm2𝑗) (equation 8), or slope magnitudes, 𝜌(IDm0𝑗 , |𝛽m2 + IDm2𝑗|) (equation 240 

9), for three simplified shapes of phenotypic plasticity. Associations are shown for a 241 

population of seven individuals, where phenotypes either ‘fan out’ (i.e. variance 242 

increases) or ‘fan in’ (i.e. variance decreases) across two environments. Points represent 243 

each individual’s average phenotype in two environments. Lines depict the direction 244 

and magnitude of phenotypic plasticity. Parameters estimated from models with 245 

random slopes are sensitive to the location we choose to set the intercept. While the 246 

ranking of individual averages is maintained across the two environments shown here, 247 

you can imagine extrapolating the lines into an environment where individuals who 248 

were below the population average are now above it, and vice versa. (A) Full fan: 249 

individuals vary in both the magnitude and direction of their slopes, meaning that 250 

some phenotypes increase in the second environment while others decrease. The 251 

personality-plasticity association is zero for slope magnitudes, positive for slope 252 

differences that fan out, and negative for slope differences that fan in. (B) Positive fan: 253 

phenotypes always increase or stay the same in the second environment (i.e. individual 254 

slopes have a lower-bound at zero). Personality-plasticity associations are identical for 255 
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slope differences and magnitudes, with opposite signs for rection norms that fan out 256 

or in (positive or negative correlations, respectively). (C) Negative fan: phenotypes 257 

always decrease or stay the same in the second environment (i.e. individual slopes have 258 

an upper-bound at zero). Personality-plasticity associations are either positive or 259 

negative, depending both on whether slope differences or magnitudes are used, and 260 

whether the reaction norms fan in or out. 261 

 262 

Interpreting personality-plasticity associations at a given position of the intercept 263 

requires careful consideration, because multiple patterns of reaction norm slopes can 264 

produce the same correlations (as shown in Fig. 2, and noted by Stamps & Biro, 2016). 265 

A conceptual model of ‘fanning’ is described by Sih et al. (2015) as resulting from 266 

within-individual feedback loops. Fanning can also occur when adaptive plasticity is 267 

condition-dependent, and only high-quality individuals can express adaptive plasticity. 268 

Individuals in poor condition (e.g. ill or injured) might express maladaptive plasticity in 269 

the opposite direction to the adaptive response. Regardless of the cause of these 270 

patterns, in a full fan scenario, the ranking of individual intercepts does not correlate 271 

with their magnitude of phenotypic plasticity (i.e. does not correlate with the absolute 272 

value of their slope). Contrasting with a full fan pattern, often we might expect all 273 

individuals in a population to respond to an environmental change with a plastic 274 

response in the same direction. In Fig. 2, we call these scenarios ‘positive fans’ (when 275 

all phenotypes increase or stay the same) and ‘negative fans’ (when all phenotypes 276 

decrease or stay the same). For example, ectotherms exposed to a warmer 277 

environment will often show a plastic response in the same direction (e.g., increased 278 

activity levels). Half-fans could be more likely to occur when the population average is 279 

close to a boundary (e.g. lower-bound at zero), which is also likely to pose problems 280 

for the common assumption of residual normality. 281 

 282 
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2.2|BIVARIATE MODEL 283 

When two different traits are measured repeatedly for the same individuals, we can 284 

use a bivariate model to estimate the covariances (and therefore correlations) between 285 

individual differences in personality and plasticity for these two traits (shown in 286 

equation 13, below). Between-individual correlations that span across distinct traits 287 

might reflect integration preventing phenotypic traits from evolving independently 288 

(Fawcett et al., 2012; Pigliucci, 2003), such as genetic correlations (e.g. due to linkage 289 

disequilibrium) or developmental constraints (Sih et al., 2012). Trait correlations could 290 

also reflect correlated selective pressures, where a change in one trait encourages an 291 

adaptive change in the other. In theory, multivariate models can estimate the 292 

dependence between many traits at once. However, additional traits rapidly inflate the 293 

number of estimated covariances. Here — to reduce the computational and sample 294 

size burden, and for ease of presentation — we focus on the simplest scenario of two 295 

traits (‘t1’ and ‘t2’). The bivariate model can be written as: 296 

𝑦𝑖𝑗
t1 = (𝛽m0

t1 + IDm0𝑗
t1 ) + 𝛽m1

t1 𝑥1𝑗
t1 + (𝛽m2

t1 + IDm2𝑗
t1 )𝑥2𝑖𝑗

t1 + 𝑒𝑖𝑗
t1,   eqn 10 297 

𝑦𝑖𝑗
t2 = (𝛽m0

t2 + IDm0𝑗
t2 ) + 𝛽m1

t2 𝑥1𝑗
t2 + (𝛽m2

t2 + IDm2𝑗
t2 )𝑥2𝑖𝑗

t2 + 𝑒𝑖𝑗
t2,   eqn 11 298 

[
𝑒t1

𝑒t2] ∼ MVN([
0
0
] , [

𝜎𝑒t1
2 𝜌(𝑒t1, 𝑒t2)𝜎𝑒t1𝜎𝑒t2

… 𝜎𝑒t2
2 ]),    eqn 12 299 

[
 
 
 
 
IDm0𝑗

t1

IDm2𝑗
t1

IDm0𝑗
t2

IDm2𝑗
t2

]
 
 
 
 

∼ MVN

(

  
 

[

0
0
0
0

] ,

[
 
 
 
 
 
𝜎

IDm0
t1

2 𝜌(IDm0𝑗
t1 , IDm2𝑗

t1 )𝜎IDm0
t1 𝜎IDm2

t1 𝜌(IDm0𝑗
t1 , IDm0𝑗

t2 )𝜎IDm0
t1 𝜎IDm0

t2 𝜌(IDm0𝑗
t1 , IDm2𝑗

t2 )𝜎IDm0
t1 𝜎IDm0

t2

… 𝜎IDm2
t1

2 𝜌(IDm2𝑗
t1 , IDm0𝑗

t2 )𝜎IDm2
t1 𝜎IDm0

t2 𝜌(IDm2𝑗
t1 , IDm2𝑗

t2 )𝜎IDm2
t1 𝜎IDm0

t2

… … 𝜎IDm0
t2

2 𝜌(IDm0𝑗
t2 , IDm2𝑗

t2 )𝜎IDm0
t2 𝜎IDm0

t2

… … … 𝜎
IDm2

t2
2

]
 
 
 
 
 

)

  
 

.    eqn 13 300 

Dependence between residual errors for different traits is modelled using the 301 

multivariate normal distribution (MVN) in equation 12. Similarly, in equation 13, the 302 

covariance matrix describing the relationship between individual-level differences has 303 

been expanded to include correlations both within and between traits. 304 

2.3|BETWEEN-TRAIT CORRELATION: BEHAVIOURAL SYNDROMES 305 

Bivariate models quantify relationships between two traits (equations 10-13). When 306 

personality traits are correlated they are said to exhibit a ‘behavioural syndrome’ 307 

(Dingemanse et al., 2010a), which we can estimate as: 308 
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𝜌(IDm0𝑗
t1 , IDm0𝑗

t2 ) =
𝜎

IDm0
t1 IDm0

t2

𝜎
IDm0

t1 𝜎
IDm0

t2
.      eqn 14 309 

While many empirical papers purport to have found these syndromes, far fewer have 310 

done so following the recommended method of decomposing total phenotypic 311 

variance into its between- and within- individual components (Dingemanse & 312 

Dochtermann, 2013; Moirón et al., 2020; Niemelä & Dingemanse, 2018). Combining 313 

both levels of the phenotypic correlation can be misleading because their strength and 314 

direction can differ (i.e. violating the ‘individual gambit’; Brommer, 2013). Whereas 315 

both between- and within-individual correlations can be caused by environmental 316 

effects, only between-individual correlations can harbour additive genetic covariances. 317 

2.4|BETWEEN-TRAIT CORRELATION: PLASTICITY SYNDROMES 318 

Between-individual plasticity correlations can be measured for multiple traits, or 319 

multiple environmental manipulations. Positive correlations could be caused by shared 320 

mechanisms in the maintenance of plasticity; the plant sciences have long studied 321 

plasticity integration (Gianoli & Palacio-Lopez, 2009; Mallitt et al., 2010; Pigliucci, 2002; 322 

Schlichting, 1989). Alternatively, a negative correlation in the magnitude of plasticity 323 

could reflect trade-offs due to associated costs (DeWitt et al., 1998), while the absence 324 

of a correlation suggests the traits are decoupled (e.g. face independent selective 325 

pressures). 326 

 327 

‘Plasticity syndromes’ are more challenging to interpret than behavioural syndromes, 328 

due to the rankings of individual differences in slopes not necessarily corresponding 329 

with the magnitude of individuals’ plasticity. As with personality-plasticity associations, 330 

plasticity syndromes can be estimated in two different ways (which are compared in 331 

Fig. S1, Supplementary Information). Taken directly from the model, the correlation 332 

between individual slope differences, 333 

𝜌(IDm2𝑗
t1 , IDm2𝑗

t2 ) =
𝜎

IDm2
t1 IDm2

t2

𝜎
IDm2

t1 𝜎
IDm2

t2
,      eqn 15 334 

describes whether the order of slopes is maintained between the two traits. When 335 



PREPRINT     Last updated: August 2021 

 17 

equation 15 is positive, individuals whose slopes are more positive than average in 336 

trait 1 tend to also be more positive than average in trait 2. Quantifying the 337 

maintenance of rankings is useful for certain patterns of plasticity. For example, 338 

imagine in response to a low-quality diet the activity of some digestive enzymes 339 

decreases (negative slopes for trait 1, negative half-fan). Some individuals will be able 340 

to compensate with increased foraging effort (trait 2) and show less change in enzyme 341 

activity, while those in poor condition might show reduced foraging effort as they 342 

conserve energy alongside a greater decrease in enzyme activity (i.e. both negative 343 

and positive slopes for trait 2, resulting in a positive correlation from equation 15). 344 

 345 

We can imagine other scenarios where slope steepness is of greater interest than 346 

individual differences from the average slope (e.g. maintaining homeostasis for 347 

multiple traits under thermal stress). In this case, a ‘plasticity syndrome’ (equation 16) 348 

is calculated as the correlation between the absolute magnitude of individuals’ 349 

reaction norms, such that: 350 

𝜌(|𝛽m2
t1 + IDm2𝑗

t1 |, |𝛽m2
t2 + IDm2𝑗

t2 |) =
𝜎

|𝛽m2
t1 +IDm2𝑗

t1 ||𝛽m2
t2 +IDm2𝑗

t2 |

𝜎
|𝛽m2

t1 +IDm2𝑗
t1 |

𝜎
|𝛽m2

t2 +IDm2𝑗
t2 |

.   eqn 16 351 

As with equation 9, correlations involving absolute values of slopes can be calculated 352 

from the posterior distributions of model estimates. 353 

 354 

2.5|SUMMARY OF PERSONALITY AND PLASTICITY 355 

Individual differences in personality and plasticity produce three types of biologically 356 

relevant correlations: first, personality-plasticity associations are a correlation between 357 

reaction norm intercepts and slope differences or magnitudes; second, behavioural 358 

syndromes are a correlation between individual intercepts for more than one trait; 359 

third, plasticity syndromes are a correlation between slope differences or magnitudes 360 

for more than one trait, or the same trait measured across more than one covariate. 361 

Individual differences in plasticity can cause estimates of personality and related 362 

correlations to differ, depending on the biological interpretation of the intercept. 363 
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When interpreting ordinal associations involving slopes, which have both a direction 364 

and magnitude, researchers should plot each individual’s reaction norm to consider 365 

the ‘shape’ of phenotypic plasticity. For some research questions, the magnitude of 366 

plasticity could be more relevant than the direction of change away from the 367 

population average. In these circumstances, researchers can perform additional 368 

calculations to capture the absolute value of individual slopes, rather than individual 369 

differences from the average slope. Performing vector calculations on posterior 370 

distributions (from a Bayesian model) ensures that uncertainty in model estimates is 371 

carried forward.  372 

 373 

3|INDIVIDUAL DIFFERENCES IN PREDICTABILITY 374 

The effect animals have on their surroundings depends not only on their average 375 

behaviour, but also on how their behaviour fluctuates through time. Individual 376 

differences can be consistent yet small, and these might not have a material impact on 377 

fitness (and therefore might not respond to selection). Despite the variability of 378 

individuals’ behaviour being biologically important, it is currently rare for behavioural 379 

studies to distinguish between individuals who are very consistent through time, and 380 

those whose behaviour fluctuates enormously (an early example is seen in Westneat 381 

et al., 2013). Individual differences in predictability can be modelled with a Double 382 

Hierarchical Generalized Linear Model (DHGLM; Cleasby et al., 2015). The ‘double’ in 383 

DHGLM refers to a random effect being included in both the mean and dispersion 384 

models. The dispersion model — also known as the residual variance model — is 385 

usually estimated on the natural logarithm scale. In the social and medical sciences, 386 

DHGLMs are also known as location-scale regression models (with ‘location’ indicating 387 

the mean, and ‘scale’ indicating the variance; e.g. Lin et al., 2018; Rast et al., 2012). 388 

Fitting a random intercept for individual identity at both levels of the model allows 389 

individuals to vary in both personality (Fig. 1A) and predictability (Fig. 1C). 390 
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 391 

3.1|MODELLING INDIVIDUAL DISTRIBUTIONS 392 

Extending the univariate model shown in equations 5-8, we can write the double 393 

hierarchical model as: 394 

𝑦𝑖𝑗 = (𝛽m0 + IDm0𝑗) + 𝛽m1𝑥1𝑗 + (𝛽m2 + IDm2𝑗)𝑥2𝑖𝑗 + 𝑒𝑖𝑗 ,   eqn 17 395 

ln (𝜎𝑒𝑖𝑗
2 ) = (𝛽v0,exp + IDv0𝑗,exp) + 𝛽v1,exp𝑥1𝑗 + 𝛽v2,exp𝑥2𝑖𝑗 ,   eqn 18 396 

𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒𝑖𝑗
2 )        eqn 19 397 

[

IDm0𝑗,

IDv0𝑗,exp

IDm2𝑗

] ∼ 𝑀𝑉𝑁 ([
0
0
0
] , [

𝜎IDm0

2 𝜌(IDm0𝑗, IDv0𝑗,exp)𝜎IDm0
𝜎IDv0,exp

𝜌(IDm0𝑗, IDm2𝑗)𝜎IDm0
𝜎IDm2

… 𝜎IDv0,exp

2 𝜌(IDv0𝑗, IDm2𝑗)𝜎IDv0,exp𝜎IDm2

… … 𝜎IDm2

2

]). eqn 20 398 

 399 

Estimating individual variances requires many repeated measurements at the 400 

individual level, which is relatively uncommon in animal personality studies (sample 401 

size recommendations depend on the number of individuals and the magnitude of 402 

heteroscedasticity, which is explored in Cleasby et al., 2015). Note that equations 17-403 

20 vary from equations 19-24 in Cleasby et al. (2015), as the dispersion model is based 404 

on residual variances, rather than residual standard deviations (which has some 405 

benefits for summarising the magnitude of individual differences; see Section 4.3, 406 

below). 407 

 408 

3.2|WITHIN-TRAIT CORRELATIONS BETWEEN PERSONALITY, PLASTICITY, 409 

AND PREDICTABILITY 410 

From the correlation between individual intercepts in both the mean and dispersion 411 

models, we can estimate whether some personality types are more prone to being 412 

unpredictable than others. From the multivariate distribution in equation 20, we have: 413 

𝜌(IDm0𝑗 , IDv0𝑗,exp) =
𝜎IDm0IDv0,exp

𝜎IDm0𝜎IDv0,exp

.     eqn 21 414 

Interpreting equation 21 is somewhat unintuitive; remember that an individual having 415 

more residual variance is less predictable. Therefore, a positive correlation between 416 
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mean and dispersion intercepts represents a negative correlation between personality 417 

and predictability. When presenting results, we prefer to multiply correlations 418 

involving dispersion intercepts by minus 1, to make their interpretation intuitive (e.g. 419 

a positive correlation signifies a bolder individual is more predictable, with a smaller 420 

residual variance), such that: 421 

𝜌(IDm0𝑗 , −IDv0𝑗,exp) = −
𝜎IDm0IDv0,exp

𝜎IDm0𝜎IDv0,exp

.    eqn 22 422 

Our supplementary example presents this sign-reversed correlation for personality-423 

predictability associations. Although little theory exits on the personality-predictability 424 

association, we might expect risker personality types to be less predictable (as being 425 

more variable can be a risky strategy). Alternatively, riskier individuals could be closer 426 

to a hypothetical ‘ceiling’, whereby a fluctuation beyond that point would be fatal to 427 

the individual. Riskier individuals might therefore show greater precision around their 428 

mean phenotype, to avoid crossing some point of no return (a similar idea around 429 

stability of more ‘extreme’ personalities is discussed in Stamps & Groothuis, 2010). 430 

 431 

Broadly, plasticity is the expression of different phenotypes by the same genotype in 432 

a different environment (Stamps, 2015). The environment will always be slightly 433 

different each time an individual expresses a labile trait because of variation in 434 

endogenous variables (internal and developmental), and uncontrolled fluctuations in 435 

the external environment (Flatt, 2005; Hansen et al., 2006). Therefore, predictability is 436 

a special type of ‘stochastic plasticity’; there are stochastic changes in internal and 437 

external environments that prevent us from knowing exactly which phenotype will be 438 

expressed at any point in time. From the slope in the mean model and the intercept in 439 

the dispersion model, we can estimate whether individual differences in traditional and 440 

stochastic plasticity are correlated. There is theoretical interest in whether different 441 

types of plasticity are related to each other but to date this type of question has 442 

received little empirical attention (Stamps & Biro, 2016). For a given trait and a given 443 

environment, less predictable individuals have a wider range of trait expressions. This 444 

range could be correlated with a stronger plastic response when exposed to a different 445 
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environment. The correlation between ordered individual differences from mean 446 

slopes and dispersion intercepts, 447 

𝜌(IDm2𝑗 , IDv0𝑗,exp) =
𝜎IDm2IDv0,exp

𝜎IDm2𝜎IDv0,exp

,     eqn 23 448 

measures whether individuals that are further away from the average level of plasticity 449 

are more or less predictable than average. The correlation between the magnitudes of 450 

mean slopes and dispersion intercepts, 451 

𝜌(|𝛽m2 + IDm2𝑗|,−IDv0𝑗,exp) = −
𝜎|𝛽m2+IDm2|IDv0,exp

𝜎|𝛽m2+IDm2|𝜎IDv0,exp

,   eqn 24 452 

estimates whether individuals who are more plastic (in either direction) are more or 453 

less predictable. The minus term makes this correlation interpretable as a ‘plasticity-454 

predictability association’. 455 

3.3|BETWEEN-TRAIT CORRELATION: PREDICTABILITY SYNDROMES 456 

Up to this point, we have discussed fives types of correlations between individual 457 

differences: behavioural syndromes (Fig. 3A); plasticity syndromes (Fig. 3B); 458 

personality-plasticity associations (Fig. 3D); personality-predictability associations (Fig. 459 

3E); and plasticity-predictability associations (Fig. 3F). Given sufficient data, a sixth 460 

correlation can be estimated simultaneously: predictability syndromes (Fig. 3C). The 461 

bivariate model can be written as: 462 
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𝑦𝑖𝑗
𝑡1 = (𝛽𝑚0

𝑡1 + 𝐼𝐷𝑚0𝑗
𝑡1 ) + 𝛽𝑚1

𝑡1 𝑥1𝑗
𝑡1 + (𝛽𝑚2

𝑡1 + 𝐼𝐷𝑚2𝑗
𝑡1 )𝑥2𝑖𝑗

𝑡1 + 𝑒𝑖𝑗
𝑡1,        eqn 25 463 

𝑦𝑖𝑗
t2 = (𝛽m0

t2 + IDm0𝑗
t2 ) + 𝛽m1

t2 𝑥1𝑗
t2 + (𝛽m2

t2 + IDm2𝑗
t2 )𝑥2𝑖𝑗

𝑡2 + 𝑒𝑖𝑗
t2,         eqn 26 464 

ln (𝜎
𝑒𝑖𝑗

t1
2 ) = (𝛽v0

t1 + IDv0𝑗,exp
t1 ) + 𝛽v1

t1𝑥1𝑗
t1 + 𝛽v2

t1𝑥2𝑖𝑗
t1 ,          eqn 27 465 

ln (𝜎
𝑒𝑖𝑗

t2
2 ) = (𝛽v0

t2 + IDv0𝑗,exp
t2 ) + 𝛽v1

t2𝑥1𝑗
t2 + 𝛽v2

t2𝑥2𝑖𝑗
t2 ,         eqn 28 466 

[
𝑒𝑖𝑗

t1

𝑒𝑖𝑗
t2] ∼ MVN([

0
0
] , [

𝜎
𝑒𝑖𝑗

t1
2 𝜌(𝑒𝑖𝑗

t1, 𝑒𝑖𝑗
t2)𝜎𝑒𝑖𝑗

t1𝜎𝑒𝑖𝑗
t2

… 𝜎
𝑒𝑖𝑗

t2
2 ]),          eqn 29 467 
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. eqn 30 469 

The variance-covariance matrix in equation 30 emphasises, in bold, the off-diagonal elements that comprise the six types of 470 

correlations we are interested in (shown in Fig. 3). 471 
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Predictability syndromes describe whether individuals’ level of predictability in one 472 

trait correlates with their level of predictability in a second trait, such that: 473 

𝜌(IDv0𝑗,exp
t1 , IDv0𝑗,exp

t2 ) =
𝜎

IDv0,exp
t1 IDv0,exp

t2

𝜎
IDv0,exp

t1 𝜎
IDv0,exp

t2
.     eqn 31 474 

(Following the notations described in Table 1, the numerator 𝜎IDv0,exp
t1 IDv0,exp

t2  is the 475 

covariance between IDv0𝑗,exp
t1  and IDv0𝑗,exp

t2 , while the denominator 𝜎IDv0,exp
t1 𝜎IDv0,exp

t2  is 476 

the product of their standard deviations). The presence of a ‘predictability syndrome’ 477 

could imply integration (which might represent correlated selective pressures, or 478 

genetic correlations; Pigliucci, 2003), or correlations could be an artefact of 479 

measurement error (e.g., the labile traits of smaller or more active individuals might be 480 

recorded with lower precision). The absence of a predictability syndrome implies that 481 

different types of traits might be selected to have different levels of predictability. 482 

 483 
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 484 

FIGURE 3 485 

Conceptual illustration of six types of correlations, from individual differences in 486 

personality, plasticity, and predictability. Each coloured line and distribution represents 487 

a different individual from the same population. The left column (panels A-C) shows 488 

positive between-trait correlations (‘syndromes’), where individual differences are 489 

correlated with each other for multiple traits. The right column (panels D-F) shows 490 

within-trait correlations between pairs of individual differences. (A) Behavioural 491 

syndrome: individual differences in personality (measured by random intercepts) are 492 
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positively correlated between two traits, meaning that the ‘rank order’ of intercepts is 493 

maintained (equation 14). (B) Plasticity syndrome: the magnitudes of random slopes 494 

are positively correlated (equation 16). (C) Predictability syndrome: individuals that are 495 

less predictable in one trait (shown by a wider distribution) are less predictable in the 496 

second trait (equation 31). (D) Personality-plasticity association: individuals with a 497 

higher personality ranking (more positive intercept intercept) have larger absolute 498 

slopes (equation 9). (E) Personality-predictability association: individuals’ personality 499 

(intercepts) are correlated with their level of predictability (their reversed magnitude 500 

of within-individual variance; equation 22). (F) Plasticity-predictability syndrome: the 501 

magnitude of individual slopes correlates with the ranking of predictability (reversed 502 

within-individual variance; equation 24). 503 

 504 

3.4|INTRODUCING STOCHASTIC MALLEABILITY 505 

As a future extension to the methods reviewed here, it is possible (given sufficient data) 506 

to include a random slope in the dispersion model (i.e. to add IDv2𝑗,exp into equation 507 

18), to estimate individual differences in ‘stochastic malleability’ (i.e. plasticity in 508 

predictability, or simply ‘malleability’). While it would require many repeated 509 

measurements across different contexts (data simulations are required to estimate the 510 

minimum sample size requirements), a fourth type of individual difference, in 511 

malleability, could answer three additional questions (Fig. 4, below): (1) is the level of 512 

malleability correlated across traits (i.e. malleability syndromes), or can individuals be 513 

malleable in one trait and show fixed predictability in another? (2): do individuals with 514 

more plasticity in personality show more plasticity in variability (i.e. 515 

plasticity-malleability associations)? (3) are some personality types more or less likely 516 

to change their level of predictability in response to an environmental change (i.e. 517 

personality-malleability associations)? Stochastic malleability could be an important 518 

aspect of learning or adapting to novel conditions: naïve individuals (i.e. individuals 519 

who are young, or in an unfamiliar environment) might increase variability to ‘sample’ 520 
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a wider array of options. As individuals gain more experience, they might hone in upon 521 

the optimal phenotype, and therefore become more predictable (McNamara et al., 522 

2006). An interesting avenue of future research, therefore, could be to incorporate 523 

individual differences in malleability into studies of learning or invasion biology (c.f. 524 

Chapple et al., 2012; Griffin et al., 2015). 525 

 526 

 527 

FIGURE 4 528 

Ten types of interpretable between-individual correlations can be modelled in a 529 

bivariate DHGLM (t1 = trait 1, and t2 = trait 2; as in Table 1), containing four individual 530 

differences: (1) personality (random intercept in mean models); (2) plasticity (random 531 

slope in mean models); (3) predictability (random intercept in dispersion models); and 532 

(4) malleability (random slope in dispersion models). Solid lines indicate correlations 533 

that were modelled in the supplementary worked example; our dataset was not 534 

suitable to model the correlations shown by dashed lines. Note that a covariance 535 

matrix for eight individual differences would estimate 28 correlations total (18 more 536 

than those named here, which are hard to interpret). Any correlation from such a 537 

model should be interpreted cautiously, given multiple comparisons inflate the rate of 538 
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spurious associations. 539 

 540 

3.5|SUMMARY OF PREDICTABILITY 541 

With two individual differences — a random intercept and slope in the mean model to 542 

quantify personality and plasticity — we can look at three correlations: two types of 543 

syndromes (between traits; Fig. 3A and Fig. 3B) and one intercept-slope association 544 

(within trait; Fig. 3D). Modelling predictability adds a third individual difference — a 545 

random intercept in the dispersion model. Using a bivariate (multivariate) model, we 546 

can simultaneously model these three individual differences in two (or more) types of 547 

traits (equations 25-30), and estimate three additional correlations: (1) a predictability 548 

syndrome (between traits; Fig. 3C); (2) an association (within traits) between 549 

personality and predictability (Fig. 3E); and (3) an association between plasticity and 550 

predictability (Fig. 3F). With adequate sampling designs and statistical power this 551 

model can be extended to quantify how much individuals differ in their change in 552 

predictability in different contexts (i.e. ‘stochastic malleability’; Fig. 4). 553 

4|SUMMARY STATISTICS FOR META-ANALYSIS 554 

The preceding sections described how mixed models can be used to quantify 555 

individual differences in personality, plasticity, and predictability, but how can we 556 

compare our results to those from other studies? For between-study comparisons and 557 

synthesis (including meta-analyses), the magnitude of individual differences in 558 

personality and predictability can be quantified with two different summary statistics: 559 

repeatability (Rp), which is variance-standardised, and the coefficient of individual 560 

variation (CVID), which is mean-standardised. The coefficient of individual variation is 561 

suitable for ratio-scale measurements (i.e. variables with a true zero and equal intervals 562 

between neighbours points, such as number of offspring or total activity time) (Houle 563 

et al., 2011), although Hansen et al. (2011) discuss how mean-standardisation can also 564 

be done with log-interval and signed-interval scales. 565 
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 566 

For ratio-scale data, both repeatability and the coefficient of individual variation are 567 

phenotypic analogues for statistics relating to evolutionary potential (Houle, 1992). 568 

Repeatability roughly sets the upper limit on narrow-sense heritability (but see: Dohm, 569 

2002), whereas the coefficient of individual variation is analogous to the coefficient of 570 

additive genetic variance, CVA (Dochtermann & Royauté, 2019; Holtmann et al., 2017; 571 

Houle, 1992). A repeatability estimate from the dispersion model, Rpv, will always be 572 

smaller than its counterpart from the mean model, Rpm (because the denominator for 573 

Rpv includes a term that multiplies the numerator by more than three, which is not the 574 

case for Rpm ; see the equations below), whereas estimates of the coefficient of 575 

individual variation for means and variances are more comparable to each other. We 576 

recognise that the utility of these evolutionary potential statistics are debatable (e.g. 577 

Hansen et al., 2011, argued that the square of the coefficient of variation, IA, has a more 578 

general interpretation and is therefore more relevant than CVA). 579 

 580 

Below we describe the calculations required to obtain Rp and CVID from DHGLM model 581 

described by equations 17-20. Supplementary R code (O’Dea et al. 2020) is available 582 

to calculate Rp and CVID for all models described above and, with some minor 583 

modifications, the formulas are broadly applicable for other model specifications too. 584 

 585 

4.1|REPEATABILITY AND THE COEFFICIENT OF INDIVIDUAL VARIATION 586 

Repeatability for the mean model (Rpm) and dispersion model (Rpv) are given by: 587 

Rpm =
𝜎IDm

2

𝜎𝑝
2 ,        eqn 32 588 

Rpv =
𝜎IDv

2

𝜎
𝜎𝑝

2
2 ,         eqn 33 589 

where 𝜎𝑝
2  is the total phenotypic variance, 𝜎𝜎𝑝

2
2  is the total variance in phenotypic 590 

variance, and 𝜎IDm

2  and 𝜎IDv

2  are the variance components for between-individual 591 

differences in the mean and dispersion models, respectively (Nakagawa & Schielzeth, 592 
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2010).  593 

 594 

Coefficients of individual variation (similar to CV for additive genetic variance; Mulder 595 

et al., 2007; Sae-Lim et al., 2015) for the mean model (CVIDm) and dispersion model 596 

(CVIDv) are given by: 597 

CVIDm =
𝜎ID𝜇𝑝

𝜇𝑝
,         eqn 34 598 

CVIDv =
𝜎IDv

𝜎𝑤
2 .         eqn 35 599 

where 𝜇𝑝  is the average individual phenotype,  𝜎𝑤
2

 is the average within-individual 600 

variance (the ‘w’ represents ‘within’, and the bar represents the average), and 𝜎ID𝜇𝑝
 and 601 

𝜎IDv
 are the standard deviations for between-individual differences in the mean and 602 

dispersion models, respectively. If no transformations have been applied to the 603 

response variable, y, then 𝜎ID𝜇𝑝
= √𝜎IDm

2  (i.e., the square-root of the numerator for 604 

repeatability of the mean, equation 32), and the population mean is calculated for an 605 

even sex ratio at the average age of the population (𝜇𝑝 =
2𝛽m0+𝛽m1

2
). 606 

 607 

4.2|OBTAINING EACH PARAMETER 608 

Converting parameters from the dispersion model 609 

When calculating Rp and CVID from DHGLM models it is essential that all parameters 610 

from the dispersion model are first converted back from the natural logarithm (ln) scale 611 

onto the same scale as the mean model, so that variance terms can be summed. In 612 

general, if we have a mean and variance that are estimated on the ln scale, 𝜇𝑦,exp and 613 

𝜎𝑦,exp
2 , then we can convert them back to the normal (observed) scale as follows: 614 

𝜇𝑦 = exp (𝜇𝑦,exp +
𝜎𝑦,exp

2

2
),       eqn 36 615 

𝜎𝑦
2 = (exp(𝜎𝑦,exp

2 ) − 1)exp(2𝜇𝑦,exp + 𝜎𝑦,exp
2 ),     eqn 37 616 

where 𝜇𝑦 and 𝜎𝑦
2 are the mean and variance on the observed scale. Note that simply 617 

taking the exponent of the mean on the ln scale, exp (𝜇𝑦,exp) , gives the median 618 
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estimate on the observed scale, rather than the mean. 619 

Within-individual variance 620 

Usually, the within-individual variance 𝜎𝑤
2

 is assumed to be equal to the average 621 

residual variance, 𝜎𝑒
2
. However, there could be a scenario where we calculate 𝜎𝑤

2
< 𝜎𝑒

2
 622 

by removing an artificial source of variance from the dispersion model (e.g. estimated 623 

measurement error). For now, let us assume all the variance in 𝑦  is biologically 624 

meaningful (i.e. we assume 𝜎𝑝
2 = 𝜎𝑦

2) (de Villemereuil et al., 2018). We therefore take 625 

the total variance from the dispersion model as 𝜎v,exp
2 = 𝜎IDv0,exp

2 + 𝜎fixedv,exp

2 . 626 

 627 

On the ln-normal scale, the mean residual variance is the ‘population intercept’ from 628 

the dispersion model, 𝛽pv0,exp =
2𝛽v0,exp+𝛽v1,exp

2
, assuming an equal sex ratio with 629 

individuals at an average age, 𝑥2𝑖𝑗= 0 (where 𝛽v0,exp is the female intercept, and 𝛽v1,exp 630 

is the female-male contrast; Table 1). By substituting the ln-normal mean and variance 631 

into the mean conversion formula for a ln-normal distribution (i.e., 𝜇𝑦 in equation 36), 632 

we obtain 𝜎𝑤
2

 as: 633 

𝜎𝑤
2

= exp (𝛽pv0,exp +
𝜎IDv0,exp

2 +𝜎fixedv,exp
2

2
).      eqn 38 634 

Different model structures will require modifications of the above (and below) 635 

equations, for example, when 𝜎𝑦
2 ≠ 𝜎𝑝

2 and/or 𝜎𝑒
2

≠ 𝜎𝑤
2

.  636 

 637 

Between-individual variance and total phenotypic variance 638 

The variance components from the mean model (including variance due to fixed 639 

effects) can be summed to obtain 𝜎IDm

2 and 𝜎𝑝
2  (Allegue et al., 2017). In our case 640 

(equations 17-20), modelling individual differences in intercepts (IDm0) and slopes 641 

(IDm2) across age (𝑥2), the variances are written as: 642 

𝜎IDm

2 = 𝜎IDm0

2 + 𝜎IDm2

2 𝜎𝑥2
2 + 𝜎IDm2

2 𝜇𝑥2
2 + 𝜌(IDm0𝑗IDm2𝑗)𝜎IDm0

𝜎IDm2
2𝜇𝑥2

,  eqn 39 643 

𝜎𝑝
2 = 𝜎IDm

2 + 𝜎fixedm

2 + 𝜎𝑤
2
,       eqn 40 644 
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𝑥2𝑖𝑗~ D (𝜇𝑥2
, 𝜎𝑥2

2 ).        eqn 41 645 

The predictor variable 𝑥2 has a mean of 𝜇𝑥2
 and a variance of 𝜎𝑥2

2 , with an arbitrary 646 

distribution, D  (because no assumptions are made about the distribution of 647 

predictors). From equation 39, we can see that when individual differences in 648 

personality and plasticity are modelled at the same time, the magnitude of individual 649 

differences will depend upon the ‘environment’ or ‘context’ at which intercepts are 650 

estimated. Typically, continuous predictor variables are mean-centred, so that 651 

intercepts are estimated at the average value for that trait ( 𝜇𝑥2
= 0 ). When the 652 

predictor is also z-transformed (𝜎𝑥2

2 = 1), the between-individual variance is simply 653 

𝜎IDm

2 = 𝜎IDm0

2 + 𝜎IDm2

2  (this is the case in our worked example; Supplementary 654 

Information). 655 

 656 

Variance in total phenotypic variance 657 

To calculate variance of the total phenotypic variance, 𝜎𝜎𝑝
2

2 , we first need to find 658 

variance of predictability on the observed scale, 𝜎𝜎𝑤
2

2 . To do this, we enter the ln-normal 659 

scale vales of the total variance in predictability, 𝜎IDv0,exp

2 + 𝜎fixedv,exp

2 , and the average 660 

residual variance, 𝛽pv0,exp, into the formula for converting variance from a ln-normal 661 

distribution (equation 37), such that: 662 

𝜎𝜎𝑤
2

2 = (exp(𝜎IDv0,exp

2 + 𝜎fixedv,exp

2 ) − 1) exp (2𝛽pv0,exp + 𝜎IDv0,exp

2 + 𝜎fixedv,exp

2 ), eqn 42 663 

Then, the formula for 𝜎𝜎𝑝
2

2  is provided by Mulder et al. (2007) as:  664 

𝜎𝜎𝑝
2

2 =  2𝜎𝑝
4 + 3𝜎𝜎𝑤

2
2 ,        eqn 43 665 

where the value for 𝜎𝑝
2 is shown in equation 40. 666 

 667 

Between-individual variance for predictability 668 

In our case, the between-individual variance for predictability is 𝜎IDv

2 =  𝜎IDv0

2 , so we 669 

need to convert 𝜎IDv0,exp

2  (from the ln-normal scale) to 𝜎IDv0

2 . Our first thought might be 670 
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to apply the same transformation to 𝜎IDv0,exp

2  as we did for 𝜎IDv0,exp

2 + 𝜎fixedv,exp

2  (i.e. 671 

equation 37). However, because the ln-transformation is non-linear, we cannot simply 672 

disentangle 𝜎IDv0,exp

2  from 𝜎fixedv,exp

2 . The solution, provided by Mulder et al. (2007), is 673 

to assume that the proportionality of variance components is preserved across 674 

different scales (see also Sae-Lim et al., 2015) so that:  675 

𝜎IDv0

2 = 𝜎𝜎𝑤
2

2 (
𝜎IDv0,exp

2

𝜎IDv0,exp
2 +𝜎fixedv,exp

2 ),       eqn 44 676 

where 𝜎𝜎𝑤
2

2  was calculated in equation 42 (on the observed scale we can write 𝜎𝜎𝑤
2

2  = 677 

𝜎IDv0

2 + 𝜎fixedv

2 ). Thus, we are assuming the ratio of variance components on the ln-678 

normal scale is the same as the ratio of variance components on the observed scale: 679 

𝜎IDv0,exp
2

𝜎IDv0,exp
2 +𝜎fixedv,exp

2 =
𝜎IDv0

2

𝜎IDv0
2 +𝜎fixedv

2  (we refer to this assumption as ‘the preservation of 680 

proportionality’). 681 

 682 

4.3|COMPARING ESTIMATES BETWEEN STUDIES 683 

When standardising variance estimates it is important to consider the scale of 684 

measurement, whether or not data were transformed prior to analysis, and mean-685 

variance relationships (e.g. comparing CVID across traits becomes challenging when 686 

mean-variance relationships deviate from proportionality predicted by Taylor’s law). 687 

An accessible summary of the limitations of coefficients of variation are provided by 688 

Hansen et al. (2011) and Pélabon et al. (2020). 689 

 690 

Between-study comparisons of the magnitude of individual differences would ideally 691 

re-analyse the raw data from original studies (which are increasingly made publicly 692 

available by authors in ecology and evolution). In addition to providing raw data, when 693 

reporting the results of DHGLMs we recommend authors report all variance 694 

components (including the fixed effect variance), as well as the population intercept 695 

for the dispersion model. Standardising the way Rp and CVID are calculated is 696 

important because between-study variance in estimates can be increased by variation 697 
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in statistical methods and chosen formulas (e.g., was fixed effect variance included or 698 

excluded from the total phenotypic variance?). Calculating Rp and CVID from scratch 699 

also allows sampling variance to be estimated for meta-analytic models. 700 

 701 

In addition to being influenced by analysis decisions, Rp and CVID can vary due to 702 

different experimental and sampling designs (Wilson, 2018). For instance, a statistical 703 

difference between individuals could reflect the effects of measuring individuals in 704 

different conditions (e.g., due to being sampled at different times), rather than true 705 

between-individual differences (e.g. ‘pseudo-repeatability’; Dingemanse & 706 

Dochtermann, 2013). Likewise, a short sampling interval between repeated 707 

measurements is likely to inflate estimates of individual differences, due to temporal 708 

autocorrelation. It is also important to consider the impact that sampling intervals have 709 

on individual’s behavioural responses (e.g. habituation) and, within studies, 710 

standardise these intervals across individuals. 711 

 712 

For comparisons of CVID, two additional points are important to consider. First, were 713 

data transformed prior to analysis? If so, estimated parameters need to be brought 714 

back to the observed scale (this applies both to comparisons across studies, and 715 

comparisons within studies for different phenotypic traits). The supplementary worked 716 

exampled describes how to reverse linear transformations (e.g., z-scaling) and non-717 

linear transformations (e.g., log- or square-root transformations, which are commonly 718 

done to improve the normality of residuals. For a DHGLM violations of normality cause 719 

problems with the estimation of variance in predictability). Second, when comparing 720 

estimates of CVIDv to another study, did that study also use residual variances as the 721 

response variable for the dispersion model, ln(𝜎𝑒𝑖𝑗
2 ), or did it use residual standard 722 

deviations, ln(𝜎𝑒𝑖𝑗
), as in Cleasby et al. (2015) and the current default in the R package 723 

‘brms’ (Bürkner, 2018)? Parameters from the dispersion models can be converted 724 

between these two scales using the relationship 
1

2
ln (𝜎𝑒𝑖𝑗

2 ) = ln (𝜎𝑒𝑖𝑗 ) (more details are 725 

provided in the Supplementary Information, including equations for converting 726 
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between CVIDv  and CVIDsd ). See the supplementary R code (O’Dea et al. 2020) for 727 

conversions between the ln(𝜎𝑒𝑖𝑗
2 ) and ln(𝜎𝑒𝑖𝑗

) models, fit with the ‘RStan’ (v. 2.21.2; 728 

Stan Development Team, 2020) and ‘brms’ (v. 2.15.0; Bürkner, 2018) packages, 729 

respectively. 730 

5|CONCLUSIONS AND FUTURE DIRECTIONS 731 

Incorporating predictability into studies of personality and plasticity creates an 732 

opportunity to test more nuanced questions about how phenotypic variation is 733 

maintained, or constrained. For some traits it might be adaptive to be unpredictable, 734 

such as in predator-prey interactions (Briffa, 2013). For other traits, selection might act 735 

to minimise maladaptive imprecision around an optimal mean (Hansen et al., 2006). 736 

The supplementary worked example and open code (O’Dea et al. 2020) shows 737 

between-individual correlations in predictability across multiple behavioural traits, and 738 

some correlations of predictability with personality and plasticity. If driven by 739 

biological integration and not measurement errors or statistical artefacts, these 740 

correlations could hint at genetic integration too; other studies have found additive 741 

genetic variance in predictability (Martin et al., 2017; Prentice et al., 2020). Given that 742 

different traits might have different optimal levels of unpredictability, integration of 743 

predictability could constrain variation in one trait (resulting in lower than optimal 744 

variability) and maintain variation in another (resulting in greater than optimal 745 

variability). Because of associations with personality and plasticity, variation in 746 

predictability — the lowest level of the phenotypic hierarchy — could have cascading 747 

effects upwards (Westneat et al., 2015). Empirical estimates of the strength of these 748 

associations can inform theoretical models on the simultaneous evolution of means 749 

and variances. 750 

Beyond behaviour 751 

We focussed this paper on animal behaviour (the field we are most familiar with), but 752 

the models are broadly adaptable. Individuals can show differences in predictability 753 
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for any trait that is repeatedly expressed. For example, medical researchers might want 754 

to quantify the variability of patient’s drug responses (Nettles et al., 2006), and 755 

selective breeders of plants might want to reduce individual variability in seed or fruit 756 

mass (Herrera, 2017). The review by Herrera (2017) discusses the overlooked 757 

importance of variability within the structures of an individual plant, including for 758 

plant-animal interactions. Given the large sample sizes required to estimate multiple 759 

individual differences, the most tractable tests of the synchronous evolution of means 760 

and variances could come from non-animal systems. Clonal species can also be used 761 

to estimate individual differences in predictability of non-labile traits.  762 

 763 

Conclusions 764 

While many studies quantify consistent individual differences in repeatedly expressed 765 

traits, such as behaviour, much of the mystery of phenotypic variation is obscured 766 

within residual variation. Individuals impact the world not only through their ‘average’ 767 

phenotype, but also through their extremes. Given that evolution can act on both 768 

averages and variances, to understand the evolution of labile traits, we need to 769 

measure both the magnitude and consistency of individual differences, as well as their 770 

associations. Limitations of the concepts and tools presented here include difficulties 771 

differentiating biological integration from correlations driven by measurement or 772 

design errors, the high sample sizes required to accurately estimate variance 773 

components and co-variances, and concerns about inflated rates of false-positive 774 

findings when estimating many parameters. Future simulation work is required to help 775 

empiricists design adequate sampling methods to chronicle the integration of multiple 776 

levels of phenotypic variation in diverse systems. In doing so we can improve our 777 

understanding of the factors promoting and constraining variability, as well as the 778 

evolution, and ecological consequences, of individuality.  779 
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