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Abstract 
 
Healthy soils are critical to the health of ecosystems, economies, and human populations. Thus, 
it is widely acknowledged that soil health is important to quantify, both for assessment and as a 
tool to help guide management strategies. What is less clear is how soil health should actually 
be measured, especially considering that soil health is not exclusively a product of soil physical 
and chemical characteristics. Given their well-established importance to many aspects of soil 
health, microbes and microbial processes are often used as metrics of soil health with a range 
of different microbe-based metrics routinely used across the globe. Unfortunately, it is our 
opinion that many of these pre-existing microbial measurements are not easy to interpret and 
may not necessarily provide credible inferences about soil health status. Here we review the 
microbial indices used to assess or monitor soil health and discuss some of the broader issues 
associated with their use. We provide recommendations to more effectively guide and improve 
how microbial information could be used to yield relevant and actionable assessments of soil 
health. 

Introduction 
Soils are a valuable resource because they are linked to human health, agriculture-based 
economies, air and water quality, and food security. Yet, soil health is under threat across the 
globe. These threats include: climate change, salinization, erosion, compaction, nutrient 
depletion, contamination with toxic heavy metals or pesticides, human-assisted migration of soil-
borne pests, and overgrazing (FAO, 2015). Many of these threats are long-lasting and often 
difficult to ameliorate. We rely on the dwindling supply of healthy soils for the ecosystem 
services they provide, from maintaining a potable drinking water supply to sequestering carbon 
from the atmosphere (McBratney et al., 2014). "Don't treat our soils like dirt" is not just a slogan 
on a bumper sticker, but a rallying call with broad economic, societal, and public health 
implications. 
 
There have been many efforts to describe what makes a ‘good’ soil. Notions such as soil tilth, 
fertility, and quality have all articulated various aspects of the physical, chemical, and biological 
nature of how soils function. The concept of ‘soil health’ is the most recent attempt to define and 
measure a soil that supports positive agricultural and environmental outcomes (Kibblewhite et 
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al., 2008; Lehmann et al., 2020; Norris et al., 2020). What conceptually distinguishes soil health 
is its emphasis on the integrated inclusion of soil biota and biotic processes (Doran and Zeiss, 
2000). While the importance of soil biota has been recognized for longer than modern soil 
science has existed (Darwin, 1881), there are at least three features that make the concept of 
soil health newly relevant. First is the capacity to link empirical measurements to soil biology. 
For this reason, there is strong motivation to include microbes, and other biota, in soil health 
assessments. Numerous microbial-based indicators of soil health have been proposed and 
some of these tests are already commercially available and used routinely (Table 1). Second, 
there is demand for indicators of soil health that apply outside of row crop agricultural systems 
that have traditionally been the main focus of long-standing efforts to quantify soil quality. For 
example, there is growing interest in being able to characterize soil health in rangelands, but soil 
health indicators that may be applicable in row crop agricultural systems may not necessarily be 
applicable in rangelands. Third, there is growth in the demand for rapid, management-relevant 
soil testing in the age of precision agriculture. Companies that make public commitments to 
advancing soil health now demand empirical tests that are rapid, affordable, and highlight the 
biological, as well as physical and chemical, nature of soil health. Yet many existing methods 
were developed for research purposes, not explicitly to provide management guidance or plot-
to-ecosystem scale assessments. Therefore, these pre-existing biological indices may not 
necessarily be useful for making credible inferences about soil health status or to select and 
monitor strategies to improve soil health.  
 
Our aim in this article is to review the microbial indices that could be used to assess and monitor 
soil health, and to provide guidance on their use. We focus here on microbial indices though we 
recognize that microbes are not the only group of organisms that could be considered in soil 
health assessments (e.g. Neher, 2001; Velasquez et al., 2007). We also acknowledge that this 
topic is not new. Soil biologists have long studied, and debated, how microbes and microbial 
activities can be used to quantify soil health (Lehman et al., 2015; Schloter et al., 2018). 
However, it is our opinion that these discussions are at a critical juncture because of the 
increasing demand for microbial measurements to provide management-relevant guidance.  

What do we mean when we talk about soil 'health'? 
Soil health can be defined both conceptually and operationally (Bünemann et al., 2018). As a 
conceptual definition, the U.S. Department of Agriculture Natural Resource Conservation 
Service (USDA-NRCS) offers: “Soil health, also referred to as soil quality, is defined as the 
continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, 
and humans.” This definition attempts to define what a healthy soil is without defining how to 
measure it. However, the USDA-NRCS also offers a more operational definition by providing a 
key list of soil health indicators, that include physical, chemical, and biological properties (Stott, 
2019) with an ongoing project to evaluate these indicators (Norris et al., 2020). 
 
There is no ‘optimal’ soil nor a universal set of ideal soil characteristics (Bünemann et al., 2018; 
Lehmann et al., 2020). Although certain soil indicators may always be relevant when trying to 
assess soil health, including soil texture, bulk density, pH, and organic carbon concentrations 
(Stewart et al., 2018), their interpretation will always be highly context dependent. For instance, 
having low pH may be unsuitable for production of certain crops, but could be optimal for other 
desirable vegetation types or crop species (like blueberries). The functioning of soil will always 
depend on all six soil forming factors: climate, organisms, relief, parent material, time, and 
human activities (Jenny, 1994). While soil health, like beauty, is in the eye of the beholder, there 
are soil indicators that, when taken on their own, can be useful for quantifying specific soil 
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processes and soil-related agronomic and environmental outcomes. What is needed is the 
ability to effectively monitor these indicators over time to guide management, recognizing that 
these metrics, and the desired values for these metrics, can vary depending on the soil in 
question. 
 
Measurements of soil biology are similar to soil physical and chemical properties in that the 
interpretation of what is a “good” level will be context-specific. However, soil biological indicators 
differ in that what counts as a relevant indicator to measure also tends to be highly context-
specific. In other words, the selection of which microbial metrics to measure to infer soil health 
will depend on the soil or site in question and the particular aspects of soil health that are of 
interest. Our recommendations rest on a change in mindset away from a universal set of soil 
health indicators, to a more nuanced recommendation of selecting indicators to meet specific 
management and/or policy objectives. Our goal here is to highlight which pieces of microbial 
information can be useful for monitoring soil health, from an agriculture and conservation 
perspective - whether the goal is to maximize soil carbon sequestration efforts or improve long-
term crop production. We offer guidance for how to select microbial measures based on a set of 
common management and policy goals.  

Limitations of existing methods 
Soil microbes, including archaea, bacteria, fungi, and protists are associated with many aspects 
of soil quality and health (Bach et al., 2020; Fierer, 2017). Among the many facets of soil quality, 
microbes can regulate nutrient availability, aggregate stability, C sequestration, pollutant 
degradation, plant disease prevalence, and plant growth promotion. Soil microbes are neither 
'good' nor 'bad' with regards to soil health - they just are. While some bacteria and fungi are 
well-established plant pathogens, others (even closely related taxa) may confer protection 
against pathogens (Schlatter et al., 2017). Likewise, microbes that are capable of pesticide 
degradation can effectively reduce soil pesticide concentrations, but the metabolites of active 
ingredients in pesticides can accumulate during degradation and end up being more toxic than 
the active ingredients themselves (Odukkathil and Vasudevan, 2013).   
 
Given the importance of soil microbes to many aspects of soil functioning, it makes intuitive 
sense that there should be microbial metrics of soil health. This is a logical argument and it 
underlies much of the promise of using microbial data to quantify and monitor soil health. In fact, 
there are already companies offering microbial tests as potential metrics of soil health (e.g. 
Trace Genomics, Ward Laboratories, EarthFort, Prolific Earth Sciences, Woods End 
Laboratories). In Table 1, we describe some of the more commonly used microbial metrics of 
soil health, the assumptions underlying their use, and some of the caveats associated with 
these metrics. We note that these pre-existing metrics include those that involve measuring the 
abundances of particular taxa or genes of interest, quantifying rates of microbial activities, or 
estimating pools of microbial biomass or their enzymatic capacities (Table 1). These pre-
existing metrics may be useful in some situations; however, the science underlying the use and 
application of these pre-existing metrics is often insufficient to guide clear interpretation for 
management and policy purposes. For example, fungal:bacterial ratios have been used as 
indicators of effective nutrient cycling in ecosystems (de Vries and Bardgett, 2012; Six et al., 
2006; Wardle et al., 2004), but the utility of these metrics has been strongly questioned due to a 
lack of evidence for clear distinctions between fungal and bacterial-dominated pathways (Rousk 
and Frey, 2015; Strickland and Rousk, 2010). Likewise, it has been proposed that bacterial 
diversity could be a useful indicator of soil health (Maron et al., 2018; van Bruggen and 
Semenov, 2000; Van Der Heijden et al., 2008), but higher soil bacterial diversity is not always 
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'ideal' and bacterial diversity is often well-correlated with soil pH (Fierer and Jackson, 2006; 
Griffiths et al., 2011) and changing soil pH levels is not always feasible nor desirable. As yet 
another example, a soil with higher abundances of bacterial and fungal pathogens could be 
considered less healthy than a soil with lower pathogen loads. However, the mere presence of 
soil pathogens does not necessarily correlate with elevated likelihood of plant disease (Lievens 
et al., 2006). Even the same dataset could be interpreted in opposite ways. This is the case with 
the potential activities of extracellular enzymes that are commonly measured to infer N and P 
availability where higher activities could be interpreted as evidence of nutrient limitation 
(Sinsabaugh et al., 2008) or as evidence of greater nutrient availability (Nannipieri et al., 2012). 
As a final example, the measurement of soil microbial biomass, or the ratio of microbial biomass 
to soil organic carbon (Anderson and Domsch, 1989), may not necessarily provide a useful, or 
readily interpretable, assessment of soil health (Dalal, 1998). While pre-existing microbial 
metrics can be useful under some situations, many of these metrics are not well-supported by 
the available scientific evidence. Caveat emptor. 
 
The potential utility of microbial community analyses 
It is easy to highlight the flaws in pre-existing microbial metrics of soil health, or at least to point 
out when these metrics are, or are not, useful. However, a key question remains: How do we 
move forward in trying to leverage microbial information to provide relevant, and actionable, 
assessments of soil health? 
  
We argue that DNA-based analyses of microbial communities represent an under-utilized metric 
of soil health that has the potential to transform how we measure and understand soil health. 
Such analyses most commonly involve either quantitative PCR to quantify the abundances of 
particular microbial genes or taxa, amplicon sequencing of marker genes for broad community 
analyses (e.g. ITS or 16S rRNA gene sequencing for fungal or bacterial analyses, respectively), 
or shotgun metagenomic sequencing for an untargeted survey of both the microbial taxa and 
functional genes found in a given sample. These are by no means the only molecular methods 
that could be used to characterize soil microbial communities (Prosser, 2015; Schloter et al., 
2018), but they meet a number of criteria for widespread adoption: 
  
- Microbial analyses can be reasonably cheap, fast, and high-throughput. Hundreds of 
samples can be analyzed per week in a reasonably small laboratory at a cost that is on par, or 
perhaps even cheaper, than many of the pre-existing methods. For example, high-throughput 
DNA sequencing to assess bacterial and fungal community composition can now be conducted 
for a per-sample cost that is lower than the cost of the commonly used Haney test (~ $50 USD 
per sample) and improvements in DNA sequencing technologies will continue to drive these 
analytical costs down even further. Furthermore, while processing and analyzing these data still 
requires expertise and training, the bioinformatics pipelines are becoming more and more user-
friendly and accessible.  
  
- Microbial communities are temporally variable, but not too variable. Soil characteristics 
that change very slowly are not useful for monitoring how soils respond to changes in 
management practices. For example, the soil organic carbon pool is large and annual changes 
in the size of that pool can often be very difficult to detect (Bradford et al., 2016). Likewise, soil 
characteristics that change very quickly are often of limited utility as collecting samples a few 
weeks apart could yield very different results. This is a problem when measuring extractable 
NH4

+ or NO3
- concentrations which can change appreciably over days to weeks. Microbial 

communities could be considered to fall into the 'Goldilocks' sweetspot - variable, but not too 
variable. Communities can change over seasons to years, but the DNA pool does not typically 
exhibit a lot of variability over days to weeks (Carini et al., 2020; Lauber et al., 2013). This could 
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be important for efforts to predict emissions of N2O and CH4, both important greenhouse gases, 
from agricultural lands. Direct measurements of gas fluxes from individual plots are often 
stymied by the high temporal variability in emission rates (Groffman et al., 2009; Hendriks et al., 
2010), but microbial analyses could provide a temporally-integrated metric of the variation in the 
emissions of these trace gases (Conrad, 2007; Deslippe et al., 2014; Nazaries et al., 2013). 
  
- Microbial communities are highly diverse and this diversity can be used to characterize 
many aspects of the soil environment. The high diversity of soil microbial communities is 
often considered a daunting analytical problem as a single soil can harbor thousands of different 
microbial taxa and functional genes, many which remain poorly characterized (Delgado-
Baquerizo et al., 2018; Howe et al., 2014; Tedersoo et al., 2014). However, this diversity also 
presents opportunities for exploring many different aspects of the soil environment in much the 
same way that satellite hyperspectral images (where hundreds of different spectra can be 
measured for any given location on Earth) are more informative than simple black and white 
photos of the Earth's surface. Just as leaf nutrient concentrations can be inferred from 
hyperspectral imagery (Martin et al., 2018), even if the specific mechanisms underlying the 
relationships between particular spectra and nutrient ratios are undetermined, we may be able 
to infer specific soil properties by quantifying the relative abundances of specific microbial taxa 
or genes, even if we do not necessarily know why such relationships exist (as discussed in 
more detail below). The potential of this approach was demonstrated in a recent cross-site study 
that used information on soil bacterial community composition to predict key physico-chemical 
variables associated with soil quality (Hermans et al., 2020). 
  
Microbes as bio-indicators 
 
Microbes not only drive many important soil processes, they also respond to biotic and abiotic 
soil conditions. For example, consistent changes in soil microbial communities have been 
associated with changes in P availability (Hermans et al., 2017), soil pH (Delgado-Baquerizo et 
al., 2018), labile organic carbon pools (Ramírez et al., 2020), and soil moisture levels (Isobe et 
al., 2020). Likewise, we can often identify particular microbial taxa or functional genes 
associated with specific soil processes, including nitrification, methane production, 
denitrification, and cellulose degradation. Instead of focusing on particular microbial attributes 
(including taxa or genes) that we think should be indicative of soil health, we can instead use 
these microbial attributes to determine changes in soil characteristics and processes that we 
already know to be important components of soil health, leveraging the potential advantages of 
DNA-based microbial analyses. Of course, the complexity of microbial communities and their 
functional attributes makes microbial community data difficult to analyze and interpret. Giving a 
gardener a list of microbial genes or taxa found in their soil may be scientifically interesting, but 
it is not practically useful. Instead, if such data are used to identify particular bio-indicators of 
particular soil conditions or processes, the microbial information is far more useful. We note that 
the idea of using microbes as soil bio-sensors or bio-indicators is not new (Visser and 
Parkinson, 1992; Waksman, 1927), but the approach has not yet been widely adopted.  
 
Microbial-based indices of soil conditions are only useful if they are broadly applicable across a 
wide range of soil and ecosystem types. Just because particular taxa increase or decrease in 
response to P availability at a single site does not mean those same taxa are broadly indicative 
of P availability in different soils. Not all taxa or genes will be found in all soils, but identifying 
microbial bioindicators requires validating that those taxa, or genes, are consistently associated 
with particular aspects of soil health regardless of the soil in question. Identifying these microbial 
bio-indicators thus requires comprehensive, cross-site analyses of soils that are well-
characterized (e.g. Hermans et al., 2017). This is analogous to the use of spectral libraries to 
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calibrate infra-red measurements of soil health properties (Sanderman et al., 2020). These 
measurements use infrared reflectance of soils to correlate with known, measured soil 
properties, which requires large libraries of spectral signatures across many soil types. 
 
Identifying microbial bio-indicators greatly simplifies the integration of microbial data into 
decision-making processes as there is often already preexisting information on the parameters 
of interest. For example, assessing the degree of soil contamination with heavy metals is critical 
to monitoring and managing soil pollution, but heavy metal concentrations can be expensive to 
measure. Thus, microbial indicators of heavy metal contamination can provide information 
directly relevant to determining the suitability of sites for agriculture, designing remediation 
strategies, and monitoring the success of the remediation efforts (Tang et al., 2019). The same 
idea applies to the measurement of P bioavailability in soil, a notoriously difficult problem given 
the limitations of chemical testing approaches (Das et al., 2019). Instead, we can likely use 
microbes as bio-indicators of P availability (Hermans et al., 2017), providing information that can 
be directly integrated into decades of accumulated knowledge on management strategies to 
alleviate P limitation in agricultural systems.  
 
  
How do we move forward? 
While microbial data have the potential to supplement pre-existing soil health metrics, we are 
not yet at the point where these microbial community metrics should be widely adopted. There 
are some important caveats and limitations that need to be carefully considered before such 
DNA-based microbial analyses can be, or should be, widely adopted. 
 
Choose microbial tests that match soil health parameters of interest. Rather than focusing 
only on broad profiling of the microbial community, we believe it will be most productive to 
develop specific microbial indices for specific soil health outcomes. If the goal is to limit nitrate 
losses from soil, measuring the abundances of taxa (or genes) known to be key to nitrification 
and denitrification will be more useful than trying to characterize the overall diversity of the 
bacterial community. Simply conducting more tests in hopes of finding a hit will not provide more 
actionable information and will add cost. In the medical field, for example, tests are conducted 
based on expert assessment of a likely problem; we recommend this same approach when 
using microbial measurements of soil health.  
  
Show how microbial measures can yield actionable information. Many soil microbial 
measurements lack clear, actionable interpretation. For instance, the USDA’s soil health 
measurement recommendations (Stott, 2019) acknowledge that microbial community data have 
no normative interpretation and this is needed for these data to be useful as a soil health metric. 
The USDA guidelines also acknowledge that their recommended non-genomic measures of 
microbial activity, including short-term C mineralization rates and enzymatic activity, have 
uncertainty about interpretation. By contrast, data on soil pH can yield very specific guidance as 
to whether liming a field is required and how much should be applied to achieve optimal crop 
growth. For microbial soil health measures to be broadly useful, they need to have clear 
interpretability. 
 
Provide guidance for how to interpret microbial data in specific contexts. Because of 
strong geographic differences in soil properties and microbial communities, it is critical to 
interpret results of microbial analyses in a context-specific manner. It is of limited utility to 
compare microbial biomass in one field against the biomass levels reported in other fields 
across a broad area because microbial biomass can be influenced by many factors that may not 
be directly relevant to soil health. Analogously, the weight of a specific person compared to the 
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U.S. average should not, by itself, be used to determine if that individual is healthy or not. 
Microbial-based metrics should not be used to indicate whether soil health is 'good' or 'bad' 
using arbitrarily defined cut-off values. However, comparing how samples from particular 
locations change is likely to provide more insight as it provides the necessary site-specific 
context required for informed interpretation. 
 
There is no 'ideal' soil microbial community. Just as healthy humans can have highly 
variable gut communities (Falony et al., 2016) and even highly productive, undisturbed 
ecosystems can have very distinct plant communities (that are not always high in diversity), we 
should not expect healthy soils to have a single 'optimal' community type - or that more diversity 
is always better. Comparing a given soil to an idealized 'optimal' soil microbial community will 
never be useful as such an 'optimal' soil microbial community simply does not exist. Rather, we 
can use microbial taxa, or their functional attributes, as metrics of particular soil characteristics 
to track how soil conditions change across time, space, or in response to shifts in management 
practices. 
 
Use microbial measurements when pre-existing methods are insufficient. There are 
microbial taxa that are consistent bio-indicators of soil temperature (Oliverio et al., 2017) and 
soil pH (Delgado-Baquerizo et al., 2018). However, both pH and temperature are reasonably 
cheap and fast to measure so using microbial data to infer these soil characteristics would be 
slower, more expensive, and provide less interpretable information. Using microbial analyses to 
assess pH or temperature would be akin to using microbial analyses of an individual’s feces to 
infer antibiotic usage, instead of just asking someone if they had recently taken antibiotics. 
Efforts should focus instead on identifying microbial bio-indicators of soil characteristics that are 
important, but can often be difficult (or expensive) to measure directly. These may include: O2 
levels, N/P availability, amounts of labile C, gross N/P mineralization rates, potential 'hot spots' 
of biogeochemical processes (e.g. denitrification, nitrification, methanogenesis), and 
concentrations of certain pollutants. While these characteristics could be measured using other 
means - these measurements are often logistically difficult or cost-prohibitive. 
  
Soils are spatially and temporally heterogeneous. We know that many soil conditions can 
vary dramatically across time and space. For example, N mineralization, nitrification, and 
denitrification rates can vary by several orders of magnitude across a single 0.5 ha field 
(Robertson et al., 1988). Likewise, soil emissions of N2O measured at a single location can vary 
week to week by multiple orders of magnitude (Kaiser et al., 1998). This variation can be 
daunting, but it can be handled with an appropriate sampling design. Thus, microbial metrics are 
likely more useful for identifying potential 'hotspots' (Kuzyakov and Blagodatskaya, 2015) of 
particular microbial processes, rather than for quantifying specific rates of a given process at a 
given point in time. To phrase this another way, microbes are unlikely to tell us when methane 
emissions are highest, but these data could be used to infer whether one field likely has higher 
potential for methane production or where in a given field conditions are likely to be conducive 
to methane production.  
 
The more spatial or temporal variation in a given microbial parameter, the more samples will 
need to be analyzed to adequately capture that variation and make robust decisions based on 
the analytical results. We note that this problem of spatiotemporal variation is not unique to 
microbial metrics of soil health. Soil attributes are rarely homogeneous and even subtle 
differences in soil conditions can have direct consequences for soil management efforts. 
  
Start by doing, but don’t overpromise. Despite the limitations and potential utility of microbial 
data, we recommend that more efforts, especially those outside of the ‘basic’ research domain, 
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be taken to measure microbial parameters and build the knowledge base needed to make them 
more practical. We believe such a “learning-by-doing” model is necessary to take these 
measurements outside of research labs and into real-world settings. However, it is essential that 
these efforts not over-promise on the usefulness of these data until it is well established how the 
measures can be interpreted for action.  
  
Summary 
  
The development and validation of new microbial indices of soil health is clearly needed. We 
argue that some microbial metrics of soil health are currently poorly validated and lack 
interpretability, but the affordability and availability of data offers great potential to improve this 
interpretability and make these measures more useful. We also propose that there is under-
recognized utility in using microbes as bio-indicators for soil attributes that we already know are 
important components of soil health, but are difficult to measure directly. To fully leverage this 
approach, we need cross-site studies of well-characterized soils so we can begin to determine 
what community attributes consistently provide relevant indices of soil health across time and 
space. We note that such efforts are already underway (Norris et al., 2020), but additional 
efforts to screen other potential microbial metrics across a range of sites and conditions are 
clearly needed. We believe that there is a strong opportunity for companies, governments, non-
profits, farmers, and universities to collaborate to produce these data. Such efforts will help 
guide the application and interpretation of new and emerging metrics, while helping to reduce 
the time and money potential users may spend on microbial-based assessments that are of 
limited utility. 
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Table 1. Description of some common microbial-based metrics of soil health, the methods often 
used to measure these metrics, and an overview of some of the assumptions and caveats 
associated with these metrics. We do not rank the metrics by their utility as the choice of metric 
strongly depends on the context in which it is applied, the specific methods used, and the care 
with which the metrics are interpreted. However, the abundance of caveats associated with 
these metrics does highlight that these metrics should always be interpreted with caution and 
analyses should only be conducted if the specific interpretation of the results is clear a priori. 
qPCR = quantitative polymerase chain reaction, PLFA = phospholipid fatty acid analysis, SIR = 
substrate induced respiration. 
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Microbial Metric Description Methods Used Assumptions Caveats 
Microbial biomass Amount of microbial biomass 

per gram soil, volume soil, or 
unit organic carbon 

Direct microscopy, 
culturing, qPCR, 
chloroform fumigation, 
PLFA, SIR 

Greater microbial biomass 
indicates a healthier soil  

- No information on which particular taxa are present 
- More biomass is not necessarily optimal nor desirable 
- More biomass does not necessarily equate with more 

microbial activity 
- Results can vary depending on methods and soil 

properties 
 

Fungal: bacterial ratio Amount of fungi versus 
bacteria in a given soil, 
expressed as a ratio of 
biomass, cell numbers, or DNA 
amounts 

Direct microscopy, qPCR, 
PLFA 

Higher fungal:bacterial ratio 
indicates a more 
sustainable soil system 

- Does not reflect current ecological understanding of 
complex, multi-trophic soil food webs 

- Fungi and bacteria often have overlapping niches and 
functions in soil 

- Fungal:bacterial ratios can vary for many reasons, making 
interpretation difficult 

 
Microbial enzyme 
activities and ratios 

Potential or actual activities of 
microbial extracellular 
enzymes per amount of soil 
per unit time. Enzymes 
typically include those 
associated with C, N, and P 
cycling.  

Substrate incubation 
assays 

Greater activity of a 
particular enzyme indicates 
the nutrient the enzyme is 
targeting is more limiting. 

- Activities of enzymes associated with C/N/P metabolism 
do not always accurately predict the actual limiting 
nutrient 

- Higher enzyme activities can be interpreted as more 
nutrient availability or reduced nutrient availability 

- Enzymes typically measured represent a small subset of 
potentially important enzymes 

 
Nitrifier abundance 
and composition 

Abundance and taxonomy of 
nitrifiers, including ammonia-
oxidizing archaea or bacteria 
and nitrite-oxidizing bacteria 

Potential nitrification 
assays, qPCR, high-
throughput marker gene 
sequencing 

Greater nitrifier richness 
and abundances indicate 
greater losses of soil N via 
nitrification and nitrate 
leaching 
 

- Nitrifier abundances may be related to factors other than 
N availability 

- Nitrifier abundances may not necessarily correlate with 
nitrification rates  

 

Mycorrhizal 
abundance and 
composition 

Abundance and composition of 
arbuscular mycorrhizal fungi 

Root staining and 
microscopy, spore counts 
and microscopy, qPCR, 
high-throughput marker 
gene sequencing 

Greater abundance and 
richness of mycorrhizae 
indicate greater benefit to 
plant growth 

- Relationships between mycorrhizae and plants are 
dynamic, context dependent, and move along the 
mutualism-parasitism continuum 

-There is a considerable amount of variation in the 
relationship between root colonization and plant growth 

- Root colonization can change over weekly time scales 
 

Bacterial and fungal 
pathogens 

Presence and/or abundance of 
known pathogenic taxa 

qPCR, high-throughput 
marker gene sequencing  

Greater abundance of 
pathogens is detrimental to 
plant growth 
 

- Other factors influence the severity of plant disease 
- Pathogen abundances may not predict disease 

prevalence 

C and N 
mineralization  rates 

Production of CO2 and net 
inorganic N per amount of soil 
or soil organic C per unit time. 

Lab or field incubations Greater C and N 
mineralization rates indicate 
more bioavailable C and N 
and a more active microbial 
community  
 

- Lab incubations may not reflect C and N mineralization 
rates in the field  

- High C and N mineralization rates are not necessarily 
desirable 
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Nitrification rates Production of net NO3
- per 

amount of soil or soil organic C 
per unit time 

Lab or field incubation Greater nitrification rates 
indicate greater losses of 
soil N from nitrification and 
nitrate leaching 
 

- Lab incubations may not reflect nitrification rates in the 
field 

- Does not account for uptake or leaching rates 

Microbial community 
composition 

Using DNA or RNA to infer the 
abundances of particular 
bacterial, archaeal, fungal 
and/or protist taxa in soil. 

qPCR or high-throughput 
marker gene (typically 
16S, 18S, ITS) 
sequencing 

Microbial community 
changes correlated with 
other metrics of soil health. 
Diverse communities 
achieve higher nutrient 
cycling rates and defense 
against pathogens 

- Contributions of many taxa to soil health often 
undetermined 

- Multivariate data difficult to analyze and interpret 
- Not all DNA comes from intact cells 
- RNA is highly unstable and may not reflect activities of 

individual taxa 

Microbial functional 
gene composition 

Abundances of particular 
known genes (e.g. amoA, nifK) 
in soil. Analogous to microbial 
community composition, with 
genes instead of taxa 

High-throughput shotgun 
metagenomic sequencing, 
qPCR of targeted genes 

Greater abundance of a 
gene indicates greater rate 
of processes related to the 
gene 

- Rare taxa overlooked 
-Other factors may influence the actual rates of processes 
- Difficult to identify which genes are most relevant to 

measure 
 

Nitrogen fixation Rate of N fixed per volume of 
soil per unit time 

Acetylene reduction assay Greater N-fixation rates 
promote greater N 
availability 

- Assay provides a snapshot of N-fixation which can exhibit 
a high degree of temporal variation 

 
Plant growth-
promoting 
rhizobacteria (PGPR) 

Abundances of specific 
bacteria in the rhizosphere 

qPCR, high-throughput 
marker gene (16S) 
sequencing 

Greater abundances of 
these taxa indicate greater 
benefits to plant growth 
Adding PGPR improves 
plant growth 

- PGPR must establish in the community, which can be 
challenging in some soils 

- Inconsistent results on plant growth 

 
 
 


