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Abstract 14 

 

Ocean acidification – deceasing oceanic pH resulting from the uptake of excess atmospheric CO2 15 

– is expected to affect marine life in the future. Among the possible consequences, a series of 16 

studies on coral reef fishes suggested that the direct effects of acidification on fish behaviour will 17 

be the most catastrophic. Recent studies documenting a lack of effect of experimental ocean 18 

acidification on fish behaviour, however, call this dire prediction into question. Here, we critically 19 

assess the past decade of ocean acidification research regarding direct effects on fish behaviour. 20 

Using a meta-analysis, we provide quantitative evidence that the research to date on this topic is 21 

strongly characterized by a phenomenon known as the “decline effect”, where large effects have 22 

all but disappeared over a decade. The decline effect in this field cannot be explained biologically, 23 

but is strongly associated with well-known biases to which the process of science is generally 24 

prone. We contend that ocean acidification does not have as much of a direct impact on fish 25 

behaviour as previously thought, and we advocate for improved approaches to minimize the 26 

potential for a decline effect in future avenues of research.  27 

 

Keywords: animal behaviour | bias | carbon dioxide | global change biology | scientific process  28 

 

 

Introduction 29 

Ground-breaking scientific discoveries are often followed by attempts to replicate and build upon 30 

the research. In many instances, however, follow-up studies fail to replicate initial effects. Indeed, 31 

this inability to replicate initial results is characteristic of many scientific fields and has fuelled the 32 

so-called ‘reproducibility crisis’ in science (Baker 2016). 33 

The tendency for initial scientific findings—which can show outstanding effects—to lose strength 34 

over time is referred to as the ‘decline effect’ (Schooler 2011). This phenomenon was first 35 

described in the 1930s, and has since been described in a range of scientific disciplines (Schooler 36 

2011). It captures the concept of inflated initial reports that overestimate reality; the real magnitude 37 

of an effect is only revealed once follow-up studies accumulate. In such instances, the early 38 
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inflation of effect sizes is the key problem, not the subsequent decline; the ‘decline effect’ could 39 

therefore equally be referred to as the ‘early inflation effect’. 40 

Here, we present the most striking example of the decline effect in ecology using research on ocean 41 

acidification and fish behaviour—a growing field that has underscored profound and concerning 42 

effects on ecosystem resilience. We provide evidence that initial effects of acidification on fish 43 

behaviour appear drastically overestimated, and present quantitative evidence for the biases 44 

causing the decline effect over the past decade. Ways to mitigate the issues, applicable to any 45 

scientific field, are proposed.  46 

Fishy effects  47 

Over the past 15 years, biologists have documented substantial negative effects of ocean 48 

acidification on marine biota (Kroeker et al. 2010). With more than 300 papers published per year 49 

from 2006 to 2015, the exponential growth of studies in this field is unprecedented in the marine 50 

sciences (4). In recent years, however, there has been increasing skepticism and uncertainty around 51 

the severity of ocean acidification effects on marine organisms (Browman 2016; Clark et al. 2020). 52 

Some of the most profound reports are those concerning fish behaviour, whereby a series of 53 

sentinel papers in 2009 and 2010 published in prestigious journals reported outstanding effects of 54 

laboratory-simulated ocean acidification (Munday et al. 2009, 2010; Dixson et al. 2010). The 55 

severe negative impacts and drastic ecological consequences outlined in those studies were highly 56 

publicized in some of the world’s most prominent media outlets (Yong 2009; Bllack 2011; Dixson 57 

2017) and through a presentation at the White House (Roberts 2015), perhaps partly due to the 58 

charismatic nature of the species studied (clownfish, sensu Finding Nemo). Not only were the 59 

findings alarming, the extraordinarily clear and strong results left little doubt that the effects were 60 
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real, and a multimillion-dollar investment of research funding was initiated to quantify the impact. 61 

In recent years, however, an increasing number of papers have reported a lack of ocean 62 

acidification effects on fish behaviour, calling into question the universality and reliability of initial 63 

effects (Fig. 1a). To shed light on this phenomenon of global relevance, we investigated whether 64 

or not the presence of a decline effect existed in ocean acidification studies concerning fish 65 

behaviour (see Supplementary File 1 for methods). 66 

Based on a systematic literature review (n = 95 studies), we found clear evidence for a decline 67 

effect in ocean acidification studies on fish behaviour. Strong effects of ocean acidification, as 68 

concluded by the authors of the studies, have decreased dramatically over time (Fig. 1a, b). 69 

Furthermore, we found that the mean effect size magnitude (absolute [unsigned] lnRR) was 70 

disproportionately large in early studies and has all but disappeared over time (Fig. 1c).  71 

 

Fig. 1. The decline effect in ocean acidification research on fish behaviour. (a) Number of papers testing 

for effects of ocean acidification on fish behaviour over the past 11 years reporting strong effects (red) , weak 

effects (yellow), and no effects (blue). (b) Proportion of articles concluding a strong effect as a function of 

time (publication year). (c) Mean effect size magnitude (absolute lnRR) as a function of time (publication 

year). For (c), error bars denote 95% confidence intervals and the dashed line indicates an effect size of 0. Note 

that using mean effect size magnitude results in an over-estimate of the ‘true’ effect size (see Supplementary 

File 1 for further details). 
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Outstandingly large effect size magnitudes from early studies on acidification and fish behaviour 72 

are not present in the majority of studies in the last five years, and the magnitudes of effect sizes 73 

have been statistically similar to zero in four of the past five years (Fig. 1c). Furthermore, the 74 

decline effect persisted when we accounted for two potential biological explanations: an increasing 75 

number of studies on (potentially) less-sensitive cold-water species, and an increasing number of 76 

studies measuring baseline behaviours (i.e., not behaviours in response to a cue) (Fig. 2; see 77 

Supplementary File 1 for methods). Together, these findings show that ocean acidification studies 78 

on fish behaviour are strongly characterized by the decline effect, perhaps to the most extreme 79 

level found in the biological literature to date. 80 

 

Fig 2. The decline effect cannot be explained by increasing number of studies on cold-water species, nor 

an increasing number of studies on baseline behaviours, over time. Mean effect size magnitude (absolute 

lnRR) as a function of time with cold-water species (a) and baseline behaviours (i.e., no stimulus or cue) (b) 

removed. Data are presented as weighted means and 95% confidence intervals. 
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Biased behaviour in a maturing field? 81 

It is clear that the ocean acidification field, and indeed science in general, is prone to many biases 82 

including methodological and publication biases (Browman 2016). The key thing to note is that if 83 

science concerning ocean acidification and fish behaviour was operating properly and early effects 84 

were true, the relationships presented in Figs. 1 and 2, would be flat lines. It also appears that the 85 

decline effect discovered herein for this field is not explainable by two likely biological culprits. 86 

Thus, the data presented here provide one of the strongest examples to date of a new and emerging 87 

field being prone to biases. Below, we underscore and quantitatively assess the roles of two 88 

potential biases: methodological bias (low sample sizes) and publication bias (selective 89 

publishing).  90 

Methodological biases. Methodological approaches for individual studies, and biases therein, can 91 

contribute to the early inflation of effects. Such biases can come in the form of experimental 92 

protocols, the chosen experimental design and sample size, and the analytical/statistical approach 93 

employed. Experimenter biases can also contribute to inflated effects. 94 

Experimental designs and protocols can introduce unwanted biases during the experiment whether 95 

or not the researchers realise it. For example, experiments with small sample sizes are more prone 96 

to statistical errors (i.e., Type I and Type II error) and studies with larger sample sizes should be 97 

trusted more than those with smaller sample sizes (Columb & Atkinson 2016). Studies with small 98 

sample sizes are also more susceptible to statistical malpractices such as p-hacking and selective 99 

exclusion of data that do not conform to a pre-determined experimental outcome, contributing to 100 

inflated effects (Head et al. 2015). In our analysis, we found that almost all of the studies with the 101 

largest effect size magnitudes had sample sizes below 30 fish. Indeed, 96% of the studies with a 102 
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mean effect size magnitude above one had a sample size below 30 (Fig. 3a) and, when binned, 103 

only sample size bins below 30 had a mean effect size magnitude significantly greater than 0 (Fig. 104 

3b). Encouragingly, however, we also found that sample sizes of studies have generally increased 105 

over time (Fig 3c,d), suggesting that the observed decline effect can at least partly be explained by 106 

increasing statistical power. This highlights the self-correcting nature of science and is indicative 107 

of maturation in this field.  108 

 

Fig. 3. Extreme effects may be false positives due to low sample size, and the decline effect is at least 

partially explained by increasing statistical power over time. (a) Mean effect size magnitude (absolute 

lnRR) as a function of mean sample size. Each point represents a single study. The vertical dashed line 

represents the arbitrary threshold after which extreme effects are not observed (n = 30). (b) Mean effect size 

magnitude (absolute lnRR) as a function of sample size bins. Asterisks denote mean effect size magnitudes that 

are significantly different from 0 (interpret with caution, as effect size magnitudes are overestimates of true 

effect size). (c) Mean study sample size ( standard error) as a function of publication year. (d) The proportion 

of studies with a sample size above 30, after which extreme effects are not typically observed. 



 7 

 

Experimenter/observation bias during data collection is known to seriously skew results in 109 

behavioural research (Marsh & Hanlon 2007). Indeed, it appears that clear statements of blinded 110 

observation or other means of reducing experimenter bias have only become prevalent in recent 111 

years. Moreover, the persistence of inflated effects beyond initial studies can be perpetuated by 112 

confirmation bias, as follow-up studies attempt to confirm initial inflated effects and capitalise on 113 

the receptivity of high-profile journals to new (apparent) phenomena (Duarte et al. 2015).  114 

Publication biases. Another prominent explanation for the decline effect is publication bias, as 115 

results showing strong effects are often published more readily, and in higher-impact journals, than 116 

studies showing weak or null results. Publication bias can be attributed to authors selectively 117 

publishing impressive results in prestigious journals (and not publishing less exciting results), and 118 

also to journals–particularly high impact journals–selectively publishing strong effects. This 119 

biased publishing can result in the proliferation of studies reporting drastic effects, even though 120 

they may not be true (Ioannidis 2005). While it is difficult to quantify whether authors selectively 121 

publish only their strongest effects, we were able to quantify mean effect size magnitudes as a 122 

function of journal impact factor. We found that the most striking effects of ocean acidification on 123 

fish behaviour have been published in journals with very high impact factors (Fig. 4a). In addition, 124 

the average impact factor of journals publishing ocean acidification research on fish behaviour has 125 

generally decreased over time (Fig. 4b). Intriguingly, a temporary increase in mean effect size 126 

magnitude in 2014 was accompanied by a temporary increase in the average journal impact factor 127 

(compare Fig. 1b and Fig. 4b), providing strong evidence that high impact journals selectively 128 

publish studies reporting extreme effects. This is a troubling finding because it means that studies 129 

reporting extreme effects of ocean acidification on fish behaviour will be highly cited within this 130 
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field even though those findings are likely to be false positives (as evidenced in our sample size 131 

analysis above). Consequently, the one-two punch of low sample sizes and the preference of 132 

journals to publish extreme effects has led to a likely incorrect interpretation that ocean 133 

acidification will catastrophically impair fish behaviour and thus have wide ranging ecological 134 

consequences. 135 

 

Fig. 4. Strong effects are restricted to high impact journals, and the average impact factor of journals 

publishing ocean acidification research on fish behaviour has declined over time. (a) Mean effect size 

magnitude (absolute lnRR,  95% CI) as a function of journal impact factor bin. (b) Mean journal impact 

factor ( standard error) as a function of publication year. Note the increase in impact factor for 2014 in (b), 

which is associated with a concurrent increase in mean effect size magniotude in the same year (see Fig. 1c). 

 

 

 

Being on our best behaviour 136 

Our results provide strong evidence that the dramatic reports of ocean acidification affecting fish 137 

behaviour were likely due to methodological limitations and biases in early studies (e.g., low 138 
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sample sizes, experimenter biases). Furthermore, the proliferation and persistence of this idea has 139 

been aided by publication bias, driven by the selective publication of outstanding effects by authors 140 

and journals. As such, we call on journals, journal editors, peer-reviewers, and researchers to take 141 

steps to proactively address this issue, not only in the ocean acidification field, but also more 142 

broadly across scientific disciplines. To this end, we strongly argue that future ocean acidification 143 

studies on fish behaviour must employ a sample size greater than 30 fish per treatment in order to 144 

be considered reliable. It is the combined responsibility of researchers, journal editors, and peer-145 

reviewers to ensure that submitted manuscripts abide by this guideline. To achieve this, authors 146 

should report exact sample sizes clearly in the text of manuscripts; however, from our analysis, 147 

34% of studies did not do this adequately (see raw data in Supplementary File 2). 148 

Journals, researchers, editors, and reviewers can take additional steps to ensure that only unbiased 149 

empirical results are obtained and published. First and foremost, we suggest that journals adopt 150 

the practice of pre-registration to ensure that all negative results are published in a timely manner. 151 

This practice would minimize publication bias and reduce the risk of early, flawed studies being 152 

disproportionatly influential in a given field (Gonzales & Cunningham 2015). Researchers should 153 

also seek, develop, and adhere to best practice guidelines for experimental setups (Jutfelt et al. 154 

2017) to minimize the potential for experimental artefacts to influence results. Properly blinded 155 

observations and the use of technologies such as automated tracking  (Dell et al. 2014) and 156 

biosensors (Clements & Comeau 2019) can also reduce observer bias and increase trust in reported 157 

findings (Traniello & Bakker 2015). When automated methods are not possible, video recordings 158 

of experiments from start to finish can greatly increase transparency (Clark 2017). Editors and the 159 

selected peer reviewers should closely consider and evaluate the relevance and rigor of 160 

methodological approaches, which can help increase accuracy and repeatability (Hofseth 2018). 161 
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When selecting peer-reviewers for manuscripts, editors should also be aware that researchers 162 

publishing initial strong effects may be biased in their reviews (i.e., selectively accepting 163 

manuscripts that support their earlier publications) and ensure a diverse body of reviewers for any 164 

given manuscript. 165 

Finally, being critical and sceptical of early findings with large effects can help avoid many of the 166 

real-world problems associated with inflated effects. Interestingly, a recent study showed that 167 

experienced scientists are highly accurate at predicting which studies will stand up to independent 168 

replication versus those that will not (Camerer et al. 2018), lending support to the idea that if 169 

something seems too good to be true then it probably is. The earlier that scepticism is applied, the 170 

less impact inflated results may have on the scientific process and the public perception of 171 

scientists. Ultimately, independent replication should be established before new results are to be 172 

fully trusted. 173 

Final remarks 174 

Does ocean acidification affect the biology of marine animals? In many instances, most probably 175 

yes. Our data demonstrate, however, that more than a decade of ocean acidification research on 176 

fish behaviour is strongly characterized by the decline effect. In a broader sense, our data reveal 177 

that the decline effect is real and warrants exploration with respect to other biological and 178 

ecological phenomena and a wider array of scientific disciplines. The early exaggeration of effects 179 

can have real impacts on the process of science; following the steps outlined here can help to 180 

mitigate those impacts, sooner get to a real understanding of a phenomenon, and progress towards 181 

increased reproducibility. 182 
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Materials and methods 183 

Literature search  184 

Peer-reviewed articles assessing the effects of ocean acidification on fish behaviour were searched 185 

for in Scopus and Google Scholar by J. Clements. up until March 23, 2019 using two primary 186 

keyword strings: ‘ocean acidification fish behavio(u)r’ and ‘elevated co2 fish behavio(u)r’. The 187 

abstract of each article was then screened for relevance and inclusion criteria. Articles were 188 

included in the database if they quantitatively assessed the effect of elevated pCO2 (i.e., ocean 189 

acidification) on a behavioural trait of a marine fish; we excluded papers that measured the effect 190 

of elevated pCO2 on freshwater fishes and invertebrates. The reference lists of each included article 191 

were then screened for additional papers that may have been missed using the online search, which 192 

were subsequently added to the database. Once the database was established by J. Clements, it was 193 

cross-checked by J. Sundin. and any additional relevant papers were added. Final checks were 194 

conducted by both J. Clements and J. Sundin. This approach resulted in a total of 95 peer-reviewed 195 

articles assessing the effect of ocean acidification on fish behaviour, comprising the most 196 

comprehensive database for this field to date.  197 

Data collection 198 

We collected both qualitative and quantitative data from each study. All raw data (both qualitative 199 

and quantitative) can be found in Supplementary File 2. 200 

Qualitative data collection 201 

From each of the 95 articles, we collected general bibliographic data, including authors, 202 

publication year, title, journal, and journal impact factor. For publication year, we recorded the 203 
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year that the article was published online as well as the year that the article was included in an 204 

issue. Journal impact factor was recorded for the year of publication as well as the most current 205 

year (2017); papers published in 2018 and 2019 were assigned to the impact factor for 2017 since 206 

2018 and 2019 data on impact factor were unavailable at the time of analysis. Impact factors were 207 

obtained from InCites Journal Citation Reports® (Clarivate Analytics). 208 

 We also recorded other qualitative attributes for each study, including the species and life 209 

stage studied, and the behavioural metric(s) measured. Finally, we qualitatively scored the strength 210 

of the overall effect that ocean acidification had on behaviour for each study, based on the authors 211 

conclusions and the reported results. Strength was scored as either ‘Strong Effect’, ‘Weak Effect’, 212 

or ‘No Effect’. A study was categorized as having a ‘Strong Effect’ when ocean acidification 213 

affected all or a majority of behaviours assessed in the study, and if the authors concluded a 214 

unanimous effect of acidification. In contrast, a study was categorized as having ‘No Effect’ of 215 

acidification when none of the behaviours assessed were affected by acidification, and the authors 216 

concluded that acidification did not affect behaviour. A study was categorized as showing a ‘Weak 217 

Effect’ if a minority of behaviours were affected by ocean acidification and the authors concluded 218 

that acidification had some, but weak, effects on behaviour. 219 

Quantitative data collection 220 

Alongside qualitative data, we also collected quantitative data from each study with the exception 221 

of five studies that were excluded due to unreported data, or other issues with data reporting and/or 222 

the nature of the data reported (i.e., if effect sizes could not be calculated from the type of data 223 

reported; see Supplementary File 2). For applicable studies, we collected the mean, sample size, 224 

and variance associated with control and ocean acidification treatments. We considered all ocean 225 

acidification treatments in our analysis; however, we only included data for independent effects of 226 
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ocean acidification, and discarded acidification effects when they interacted with other variables 227 

explored in a given study (temperature, salinity, pollution, noise, gabazine, etc.).  228 

 Where possible, precise means and variance were collected from published tables or 229 

published raw data; otherwise, means and variance were estimated from published graphs using 230 

ImageJ 1.x (Schneider et al. 2012). Sample sizes were obtained from tables or the text, or were 231 

back-calculated using degrees of freedom reported in the statistical results. We also recorded the 232 

type of variance reported and, where possible, used that to calculate standard deviation, which was 233 

necessary for effect size calculations. These data were not obtainable from two papers, due to 234 

either the nature of the data (i.e., no variance associated with the response variable measured, or 235 

directional response variables measured in degrees; the latter due to computational issues arising 236 

from such metrics) (Maneja et al, 2012; Devine et al. 2013; Poulton et al. 2017) or from the paper 237 

reporting an effect of ocean acidification but not adequately providing the means and/or variance 238 

in neither the paper or supplementary material (Schunter et al. 2016, 2018). Where means and 239 

variance were measurable but observed to be zero, we estimated both as 0.0001 in order to 240 

calculate effect size (Munday et al. 2009, 2010; Dixson et al. 2010; Lönnstedt et al. 2013; Munday 241 

et al. 2013, 2014; Bender et al. 2015; Pimentel et al. 2016; Rodriguez-Dominguez et all. 2018). 242 

 The data were used to generate effect sizes and their variance estimates for each 243 

observation. The effect size of choice was natural logarithmic transformed response ratio, lnRR, 244 

which is calculated as: 245 

𝑙𝑛𝑅𝑅 =  𝑙𝑛 (
X̅𝐸

X̅𝐶

) 246 

 247 

where X̅E and X̅C are the average measured response in the experimental and control treatments, 248 

respectively. This effect size metric is commonly used in ocean acidification research (Harvey et 249 
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al. 2013; Kroeker et al. 2013; Brown et al. 2018; Clements & Darrow 2018) and is appropriate for 250 

both continuous and ratio-type (i.e., proportions and percentages) response variable data that are 251 

commonly used in behavioural studies (Hintze 2007; Pustejovsky 2018). Effect size variance was 252 

calculated as: 253 

 254 

𝑣 =  
(𝑆𝐸)2

𝑛𝐸X̅𝐸
2 +

(𝑆𝐶)2

𝑛𝐶X̅𝐶
2  255 

where S and n are the standard deviation and sample size, respectively, for a given experimental 256 

treatment (denoted by the subscripts C [control] and E [experimental, i.e., elevated pCO2]); X̅E and 257 

X̅C are defined as above. We chose lnRR because it is appropriate for both continuous and ratio-258 

type response variable data (i.e., proportions and percentages, which were abundant in our dataset) 259 

that are commonly used in behavioural studies (Hintze 2007; Pustejovsky 2018) (while other effect 260 

sizes incorporating variance into their calculations are not due to different variance structures of 261 

proportion and percentage data). Using lnRR does have drawbacks, however. Mainly, lnRR cannot 262 

be calculated when a response variable has a positive value for one treatment group and a negative 263 

value for the other. As such, we excluded measures of relative lateralization from our analysis, as 264 

well as any index metrics that spanned positive and negative values. For response variables that 265 

were reported as a ‘change in’ behaviour from a specific baseline (and could therefore have both 266 

positive and negative values), we only included instances in which the response variable values 267 

for the control treatment and elevated CO2 treatment were both of the same directionality (i.e., 268 

both positive or both negative changes). For all such instances, the rationale for omissions and/or 269 

inclusion are provided in the ‘Notes’ column in Supplementary File 2. 270 

Individual effect sizes and their associated variance were obtained for each included 271 

measurement from each study using the metafor package (Veichbauer 2010) in R v. 3.5.1 (R Core 272 
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Team 2018). Once calculated, the individual effect sizes were transformed to the absolute value 273 

due to the inherent difficulty in assigning a functional direction to a change in behaviour, as many 274 

behavioural changes can be characterized by both positive and negative functional trade-offs. For 275 

example, increased activity under elevated pCO2 can make prey fish more difficult for predators 276 

to capture, but can also make prey more noticeable to predators. Therefore, rather than prescribing 277 

arbitrary functional directionality to altered behaviour, we simply elected to use absolute value 278 

(i.e., unsigned value) of lnRR to test for the decline effect (hereafter ‘absolute effect size’). It is 279 

important to note that such a transformation only provides a measure of effect size magnitude. 280 

Thus, the absolute effect size overestimates, and is therefore a conservative estimate of, the true 281 

effect size, but can still be used to test for declining effect size magnitudes over time (and can thus 282 

be used to test for the decline effect). Although this can complicate true population-level inferences 283 

(Paulus et al. 2013), the use of absolute effect size values is informative for understanding the 284 

strength of effects ignoring directionality (Garamszegi et al. 2006). 285 

Meta-analysis 286 

Testing for the decline effect 287 

To assess whether or not ocean acidification research on fish behaviour is characterized by the 288 

decline effect, we used two analytical approaches. First, we assessed the relationship between the 289 

proportion of articles reporting a ‘Strong Effect’ (see definition above) of acidification on fish 290 

behaviour over time (time = publication year; defined as the year in which a given article was first 291 

published online and made available to the scientific community). For this approach, the decline 292 

effect would be evidenced by a negative relationship between ‘Strong Effect’ proportion and time. 293 



 16 

 Second, we assessed the relationship between mean absolute lnRR as a function of time 294 

(publication year as defined above). For this analysis, mean effect sizes for each year (2009–2019) 295 

and their associated variance were derived from weighted random effects models in metafor, which 296 

give a higher weighting to studies with higher sample sizes and lower variance (Hedges & Olkin 297 

1985) (see individual effect size variance formula above). We accounted for non-independence 298 

associated with multiple data points from a single study by using three-level meta-analytical 299 

models (Nakagawaa et al. 2015; Noble et al, 2017) to calculate mean effect sizes, including 300 

‘measure nested within study’ as a random variable. Like the first analytical approach, the decline 301 

effect would be evidenced by a negative relationship between mean absolute lnRR and time. A 302 

handful of individual effect sizes (n = 13 of 785) were omitted from weighted mean effect size 303 

computations due to outstandingly large variance estimates, which preclude metafor from 304 

calculating mean effect sizes for a category of interest; individual effects sizes with a variance 305 

estimate >10 were excluded and all such instances are highlighted in the ‘Notes’ column of 306 

Supplementary File 2.  307 

Explaining the decline effect 308 

Since a decline effect was detected in our analysis, we explored two potential explanatory factors 309 

that might drive the observed effect: 1. Biological explanations including climatic region and the 310 

presence/absence of cues or stimuli; 2. studies with small sample sizes exhibiting larger effects 311 

than those with larger sample sizes, and 3. publication bias due to high impact journals publishing 312 

large effects. 313 
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Biological explanations 314 

If observed, the decline effect could potentially be driven by two biological characteristics of the 315 

studies included in the analysis. First, an increasing number of studies on temperate and/or cold-316 

water species could explain the decline effect if the number of such studies have increased over 317 

time and if temperate species are tolerant to ocean acidification (while tropical and subtropical 318 

species in the early studies are sensitive). Second, the decline effect could be explained by an 319 

increasing number of studies measuring baseline behaviours in the absence of a behavioural 320 

stimulus, if baseline behaviours are not altered by acidification but behaviours requiring a stimulus 321 

or cue are (which are characteristic of early studies). To account for the ‘climate region’ 322 

explanation, we simply excluded temperate and cold-water species from the dataset and tested 323 

whether or not the decline effect persisted for subtropical and tropical species only. Climate region 324 

was obtained from Fishbase (Froese & Pauly 2019) for each species; if a species was not found in 325 

FishBase then the climate region was obtained directly from the article. Similarly, to account for 326 

the ‘no stimulus’ explanation, we determined whether or not each experiment in each article 327 

included a stimulus, removed those that did not contain a stimulus from the dataset, and tested 328 

whether or not the decline effect persisted when only behaviours in the presence of a stimulus were 329 

included. If the decline effect persisted when cold-water species and experiments without a 330 

stimulus were removed, this would indicate that the decline effect could not be explained by these 331 

two biological variables.  332 

Sample size 333 

Correlations between sampling effort and effect size can be indicative of observer bias15. Herein, 334 

if large effects are only observed when sample sizes are low, it is probable that the observed large 335 
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effects may be false positives (i.e., are driven by Type I Error). Thus, if observer bias was driving 336 

a decline effect, we would predict two things: 1. the strongest effects being observed when sample 337 

sizes are low; and 2. a positive relationship between sample size and time (publication year). For 338 

1., we assessed the relationship between the mean effect size for each study and the average sample 339 

size for that study. Average sample size was calculated as the average of all sample sizes across 340 

treatments and was used because individual studies often had varied sample sizes between 341 

experiments or treatments. Additionally, for 1., we calculated weighted mean effect sizes (absolute 342 

lnRR as above) for sample size bins (0-9.99, 10-19.99, 20-29.99, … 70-79.99, 80+) to determine 343 

which categories of sample size had mean effect sizes statistically different from 0 (see the 344 

Statistical analysis section below). For 2., we calculated the average sample size for each 345 

publication year and assessed the relationship between average sample size and time. In addition, 346 

if 1. was true from the data, we calculated the proportion of articles having a sample size above an 347 

observed threshold of sample size whereby extreme and significant effects no longer occurred. We 348 

then assessed the relationship between publication year and the proportion of articles at or above 349 

that threshold. 350 

Publication bias driven by larger effects in high-impact journals 351 

In new and emerging fields, the early inflation of effect sizes can be driven by publication bias 352 

resulting from the tendency for high-impact journals to publish novel and ground-breaking results 353 

showing strong and seemingly undisputable effects (Sterne et al. 2001). If this were true for our 354 

analysis, two things would be evident: 1. Higher impact journals would have higher mean effect 355 

sizes; and 2. there would be a negative relationship between mean impact factor and time 356 

(publication year). We therefore explored both of these relationships to provide evidence for or 357 

against the idea that the decline effect could be driven by publication bias due to initial large effects 358 
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in high-impact journals. For 1., we derived mean lnRR (mean of study-specific averages, as above) 359 

for each of 11 impact factor bins: 0–0.99, 1–1.99, 2–2.99, … , 9–9.99, and 10+, and assessed the 360 

relationship between effect size and impact factor. For 2., we calculated the average journal impact 361 

factor for each year and assessed the relationship between impact factor and time; 2017 impact 362 

factors were used for studies published in 2018 and 2019 because 2018 and 2019 impact factors 363 

were unavailable at the time of analysis. For both relationships, impact factor was defined as the 364 

journal impact factor for a given article during the year that it was published online.  365 

Statistical analysis 366 

For all categorical analyses using mean effect sizes (absolute lnRR), effect sizes were deemed 367 

statistically significant from 0 if their 95% CI did not overlap with zero. Note, however, that 368 

statistical significance needs to be interpreted with caution, as using absolute effect sizes (i.e., 369 

unsigned, positive effect sizes) results in an overestimate of the true effect size.   370 
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