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Abstract 
 
Ocean acidification – deceasing oceanic pH resulting from the uptake of excess atmospheric CO2 
– is expected to affect marine life in the future. Among the possible consequences, a series of 
studies on coral reef fishes suggested that the direct effects of acidification on fish behaviour will 
be the most catastrophic. Recent studies documenting a lack of effect of experimental ocean 
acidification on fish behaviour, however, call this dire prediction into question. Here, we critically 
assess the past decade of ocean acidification research regarding direct effects on fish behaviour. 
Using a meta-analysis, we provide quantitative evidence that the research to date on this topic is 
strongly characterized by a phenomenon known as the “decline effect”, where large effects have 
all but disappeared over a decade. The decline effect in this field cannot be explained biologically, 
but is strongly associated with well-known biases to which the process of science is generally 
prone. We contend that ocean acidification does not have as much of a direct impact on fish 
behaviour as previously thought, and we advocate for improved approaches to minimize the 
potential for a decline effect in future avenues of research.  
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Introduction 

Ground-breaking scientific discoveries are often followed by attempts to replicate and build upon 

the research. In many instances, however, follow-up studies fail to replicate initial effects. Indeed, 

this inability to replicate initial results is characteristic of many scientific fields and has fuelled the 

so-called ‘reproducibility crisis’ in science (Baker 2016). 

The tendency for initial scientific findings—which can show outstanding effects—to lose strength 

over time is referred to as the ‘decline effect’ (Schooler 2011). This phenomenon was first 

described in the 1930s, and has since been described in a range of scientific disciplines (Schooler 

2011). It captures the concept of inflated initial reports that overestimate reality; the real magnitude 

of an effect is only revealed once follow-up studies accumulate. In such instances, the early 
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inflation of effect sizes is the key problem, not the subsequent decline; the ‘decline effect’ could 

therefore equally be referred to as the ‘early inflation effect’. 

Here, we present the most striking example of the decline effect in ecology using research on ocean 

acidification and fish behaviour—a growing field that has underscored profound and concerning 

effects on ecosystem resilience. We provide evidence that initial effects of acidification on fish 

behaviour appear drastically overestimated, and present quantitative evidence for the biases 

causing the decline effect over the past decade. Ways to mitigate the issues, applicable to any 

scientific field, are proposed.  

Fishy effects  

Over the past 15 years, biologists have documented substantial negative effects of ocean 

acidification on marine biota (Kroeker et al. 2010). With more than 300 papers published per year 

from 2006 to 2015, the exponential growth of studies in this field is unprecedented in the marine 

sciences (4). In recent years, however, there has been increasing skepticism and uncertainty around 

the severity of ocean acidification effects on marine organisms (Browman 2016; Clark et al. 2020). 

Some of the most profound reports are those concerning fish behaviour, whereby a series of 

sentinel papers in 2009 and 2010 published in prestigious journals reported outstanding effects of 

laboratory-simulated ocean acidification (Munday et al. 2009, 2010; Dixson et al. 2010). The 

severe negative impacts and drastic ecological consequences outlined in those studies were highly 

publicized in some of the world’s most prominent media outlets (Yong 2009; Bllack 2011; Dixson 

2017) and through a presentation at the White House (Roberts 2015), perhaps partly due to the 

charismatic nature of the species studied (clownfish, sensu Finding Nemo). Not only were the 

findings alarming, the extraordinarily clear and strong results left little doubt that the effects were 
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real, and a multimillion-dollar investment of research funding was initiated to quantify the impact. 

In recent years, however, an increasing number of papers have reported a lack of ocean 

acidification effects on fish behaviour, calling into question the universality and reliability of initial 

effects (Fig. 1a). To shed light on this phenomenon of global relevance, we investigated whether 

or not the presence of a decline effect existed in ocean acidification studies concerning fish 

behaviour (see Supplementary File 1 for methods). 

Based on a systematic literature review (n = 95 studies), we found clear evidence for a decline 

effect in ocean acidification studies on fish behaviour. Strong effects of ocean acidification, as 

concluded by the authors of the studies, have decreased dramatically over time (Fig. 1a, b). 

Furthermore, we found that the mean effect size magnitude (absolute [unsigned] lnRR) was 

disproportionately large in early studies and has all but disappeared over time (Fig. 1c).  

 

Fig. 1. The decline effect in ocean acidification research on fish behaviour. (a) Number of papers testing 
for effects of ocean acidification on fish behaviour over the past 11 years reporting strong effects (red) , weak 

effects (yellow), and no effects (blue). (b) Proportion of articles concluding a strong effect as a function of 
time (publication year). (c) Mean effect size magnitude (absolute lnRR) as a function of time (publication 

year). For (c), error bars denote 95% confidence intervals and the dashed line indicates an effect size of 0. Note 
that using mean effect size magnitude results in an over-estimate of the ‘true’ effect size (see Supplementary 

File 1 for further details). 
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Outstandingly large effect size magnitudes from early studies on acidification and fish behaviour 

are not present in the majority of studies in the last five years, and the magnitudes of effect sizes 

have been statistically similar to zero in four of the past five years (Fig. 1c). Furthermore, the 

decline effect persisted when we accounted for two potential biological explanations: an increasing 

number of studies on (potentially) less-sensitive cold-water species, and an increasing number of 

studies measuring baseline behaviours (i.e., not behaviours in response to a cue) (Fig. 2; see 

Supplementary File 1 for methods). Together, these findings show that ocean acidification studies 

on fish behaviour are strongly characterized by the decline effect, perhaps to the most extreme 

level found in the biological literature to date. 

 

Fig 2. The decline effect cannot be explained by increasing number of studies on cold-water species, nor 
an increasing number of studies on baseline behaviours, over time. Mean effect size magnitude (absolute 
lnRR) as a function of time with cold-water species (a) and baseline behaviours (i.e., no stimulus or cue) (b) 

removed. Data are presented as weighted means and 95% confidence intervals. 
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Biased behaviour in a maturing field? 

It is clear that the ocean acidification field, and indeed science in general, is prone to many biases 

including methodological and publication biases (Browman 2016). The key thing to note is that if 

science concerning ocean acidification and fish behaviour was operating properly and early effects 

were true, the relationships presented in Figs. 1 and 2, would be flat lines. It also appears that the 

decline effect discovered herein for this field is not explainable by two likely biological culprits. 

Thus, the data presented here provide one of the strongest examples to date of a new and emerging 

field being prone to biases. Below, we underscore and quantitatively assess the roles of two 

potential biases: methodological bias (low sample sizes) and publication bias (selective 

publishing).  

Methodological biases. Methodological approaches for individual studies, and biases therein, can 

contribute to the early inflation of effects. Such biases can come in the form of experimental 

protocols, the chosen experimental design and sample size, and the analytical/statistical approach 

employed. Experimenter biases can also contribute to inflated effects. 

Experimental designs and protocols can introduce unwanted biases during the experiment whether 

or not the researchers realise it. For example, experiments with small sample sizes are more prone 

to statistical errors (i.e., Type I and Type II error) and studies with larger sample sizes should be 

trusted more than those with smaller sample sizes (Columb & Atkinson 2016). Studies with small 

sample sizes are also more susceptible to statistical malpractices such as p-hacking and selective 

exclusion of data that do not conform to a pre-determined experimental outcome, contributing to 

inflated effects (Head et al. 2015). In our analysis, we found that almost all of the studies with the 

largest effect size magnitudes had sample sizes below 30 fish. Indeed, 96% of the studies with a 
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mean effect size magnitude above one had a sample size below 30 (Fig. 3a) and, when binned, 

only sample size bins below 30 had a mean effect size magnitude significantly greater than 0 (Fig. 

3b). Encouragingly, however, we also found that sample sizes of studies have generally increased 

over time (Fig 3c,d), suggesting that the observed decline effect can at least partly be explained by 

increasing statistical power. This highlights the self-correcting nature of science and is indicative 

of maturation in this field.  

 

Fig. 3. Extreme effects may be false positives due to low sample size, and the decline effect is at least 
partially explained by increasing statistical power over time. (a) Mean effect size magnitude (absolute 

lnRR) as a function of mean sample size. Each point represents a single study. The vertical dashed line 
represents the arbitrary threshold after which extreme effects are not observed (n = 30). (b) Mean effect size 

magnitude (absolute lnRR) as a function of sample size bins. Asterisks denote mean effect size magnitudes that 
are significantly different from 0 (interpret with caution, as effect size magnitudes are overestimates of true 

effect size). (c) Mean study sample size (± standard error) as a function of publication year. (d) The proportion 
of studies with a sample size above 30, after which extreme effects are not typically observed. 
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Experimenter/observation bias during data collection is known to seriously skew results in 

behavioural research (Marsh & Hanlon 2007). Indeed, it appears that clear statements of blinded 

observation or other means of reducing experimenter bias have only become prevalent in recent 

years. Moreover, the persistence of inflated effects beyond initial studies can be perpetuated by 

confirmation bias, as follow-up studies attempt to confirm initial inflated effects and capitalise on 

the receptivity of high-profile journals to new (apparent) phenomena (Duarte et al. 2015).  

Publication biases. Another prominent explanation for the decline effect is publication bias, as 

results showing strong effects are often published more readily, and in higher-impact journals, than 

studies showing weak or null results. Publication bias can be attributed to authors selectively 

publishing impressive results in prestigious journals (and not publishing less exciting results), and 

also to journals–particularly high impact journals–selectively publishing strong effects. This 

biased publishing can result in the proliferation of studies reporting drastic effects, even though 

they may not be true (Ioannidis 2005). While it is difficult to quantify whether authors selectively 

publish only their strongest effects, we were able to quantify mean effect size magnitudes as a 

function of journal impact factor. We found that the most striking effects of ocean acidification on 

fish behaviour have been published in journals with very high impact factors (Fig. 4a). In addition, 

the average impact factor of journals publishing ocean acidification research on fish behaviour has 

generally decreased over time (Fig. 4b). Intriguingly, a temporary increase in mean effect size 

magnitude in 2014 was accompanied by a temporary increase in the average journal impact factor 

(compare Fig. 1b and Fig. 4b), providing strong evidence that high impact journals selectively 

publish studies reporting extreme effects. This is a troubling finding because it means that studies 

reporting extreme effects of ocean acidification on fish behaviour will be highly cited within this 
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field even though those findings are likely to be false positives (as evidenced in our sample size 

analysis above). Consequently, the one-two punch of low sample sizes and the preference of 

journals to publish extreme effects has led to a likely incorrect interpretation that ocean 

acidification will catastrophically impair fish behaviour and thus have wide ranging ecological 

consequences. 

 

Fig. 4. Strong effects are restricted to high impact journals, and the average impact factor of journals 
publishing ocean acidification research on fish behaviour has declined over time. (a) Mean effect size 
magnitude (absolute lnRR, ± 95% CI) as a function of journal impact factor bin. (b) Mean journal impact 

factor (± standard error) as a function of publication year. Note the increase in impact factor for 2014 in (b), 
which is associated with a concurrent increase in mean effect size magniotude in the same year (see Fig. 1c). 

 
 

 
Being on our best behaviour 

Our results provide strong evidence that the dramatic reports of ocean acidification affecting fish 

behaviour were likely due to methodological limitations and biases in early studies (e.g., low 
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sample sizes, experimenter biases). Furthermore, the proliferation and persistence of this idea has 

been aided by publication bias, driven by the selective publication of outstanding effects by authors 

and journals. As such, we call on journals, journal editors, peer-reviewers, and researchers to take 

steps to proactively address this issue, not only in the ocean acidification field, but also more 

broadly across scientific disciplines. To this end, we strongly argue that future ocean acidification 

studies on fish behaviour must employ a sample size greater than 30 fish per treatment in order to 

be considered reliable. It is the combined responsibility of researchers, journal editors, and peer-

reviewers to ensure that submitted manuscripts abide by this guideline. To achieve this, authors 

should report exact sample sizes clearly in the text of manuscripts; however, from our analysis, 

34% of studies did not do this adequately (see raw data in Supplementary File 2). 

Journals, researchers, editors, and reviewers can take additional steps to ensure that only unbiased 

empirical results are obtained and published. First and foremost, we suggest that journals adopt 

the practice of pre-registration to ensure that all negative results are published in a timely manner. 

This practice would minimize publication bias and reduce the risk of early, flawed studies being 

disproportionatly influential in a given field (Gonzales & Cunningham 2015). Researchers should 

also seek, develop, and adhere to best practice guidelines for experimental setups (Jutfelt et al. 

2017) to minimize the potential for experimental artefacts to influence results. Properly blinded 

observations and the use of technologies such as automated tracking (Dell et al. 2014) and 

biosensors (Clements & Comeau 2019) can also reduce observer bias and increase trust in reported 

findings (Traniello & Bakker 2015). When automated methods are not possible, video recordings 

of experiments from start to finish can greatly increase transparency (Clark 2017). Editors and the 

selected peer reviewers should closely consider and evaluate the relevance and rigor of 

methodological approaches, which can help increase accuracy and repeatability (Hofseth 2018). 
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When selecting peer-reviewers for manuscripts, editors should also be aware that researchers 

publishing initial strong effects may be biased in their reviews (i.e., selectively accepting 

manuscripts that support their earlier publications) and ensure a diverse body of reviewers for any 

given manuscript. 

Finally, being critical and sceptical of early findings with large effects can help avoid many of the 

real-world problems associated with inflated effects. Interestingly, a recent study showed that 

experienced scientists are highly accurate at predicting which studies will stand up to independent 

replication versus those that will not (Camerer et al. 2018), lending support to the idea that if 

something seems too good to be true then it probably is. The earlier that scepticism is applied, the 

less impact inflated results may have on the scientific process and the public perception of 

scientists. Ultimately, independent replication should be established before new results are to be 

fully trusted. 

Final remarks 

Does ocean acidification affect the biology of marine animals? In many instances, most probably 

yes. Our data demonstrate, however, that more than a decade of ocean acidification research on 

fish behaviour is strongly characterized by the decline effect. In a broader sense, our data reveal 

that the decline effect is real and warrants exploration with respect to other biological and 

ecological phenomena and a wider array of scientific disciplines. The early exaggeration of effects 

can have real impacts on the process of science; following the steps outlined here can help to 

mitigate those impacts, sooner get to a real understanding of a phenomenon, and progress towards 

increased reproducibility. 
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Materials and methods 

Literature search  

Peer-reviewed articles assessing the effects of ocean acidification on fish behaviour were searched 

for in Scopus and Google Scholar by J. Clements. up until March 23, 2019 using two primary 

keyword strings: ‘ocean acidification fish behavio(u)r’ and ‘elevated co2 fish behavio(u)r’. The 

abstract of each article was then screened for relevance and inclusion criteria. Articles were 

included in the database if they quantitatively assessed the effect of elevated pCO2 (i.e., ocean 

acidification) on a behavioural trait of a marine fish; we excluded papers that measured the effect 

of elevated pCO2 on freshwater fishes and invertebrates. The reference lists of each included article 

were then screened for additional papers that may have been missed using the online search, which 

were subsequently added to the database. Once the database was established by J. Clements, it was 

cross-checked by J. Sundin. and any additional relevant papers were added. Final checks were 

conducted by both J. Clements and J. Sundin. This approach resulted in a total of 95 peer-reviewed 

articles assessing the effect of ocean acidification on fish behaviour, comprising the most 

comprehensive database for this field to date.  

Data collection 

We collected both qualitative and quantitative data from each study. All raw data (both qualitative 

and quantitative) can be found in Supplementary File 2. 

Qualitative data collection 

From each of the 95 articles, we collected general bibliographic data, including authors, 

publication year, title, journal, and journal impact factor. For publication year, we recorded the 
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year that the article was published online as well as the year that the article was included in an 

issue. Journal impact factor was recorded for the year of publication as well as the most current 

year (2017); papers published in 2018 and 2019 were assigned to the impact factor for 2017 since 

2018 and 2019 data on impact factor were unavailable at the time of analysis. Impact factors were 

obtained from InCites Journal Citation Reports® (Clarivate Analytics). 

 We also recorded other qualitative attributes for each study, including the species and life 

stage studied, and the behavioural metric(s) measured. Finally, we qualitatively scored the strength 

of the overall effect that ocean acidification had on behaviour for each study, based on the authors 

conclusions and the reported results. Strength was scored as either ‘Strong Effect’, ‘Weak Effect’, 

or ‘No Effect’. A study was categorized as having a ‘Strong Effect’ when ocean acidification 

affected all or a majority of behaviours assessed in the study, and if the authors concluded a 

unanimous effect of acidification. In contrast, a study was categorized as having ‘No Effect’ of 

acidification when none of the behaviours assessed were affected by acidification, and the authors 

concluded that acidification did not affect behaviour. A study was categorized as showing a ‘Weak 

Effect’ if a minority of behaviours were affected by ocean acidification and the authors concluded 

that acidification had some, but weak, effects on behaviour. 

Quantitative data collection 

Alongside qualitative data, we also collected quantitative data from each study with the exception 

of five studies that were excluded due to unreported data, or other issues with data reporting and/or 

the nature of the data reported (i.e., if effect sizes could not be calculated from the type of data 

reported; see Supplementary File 2). For applicable studies, we collected the mean, sample size, 

and variance associated with control and ocean acidification treatments. We considered all ocean 

acidification treatments in our analysis; however, we only included data for independent effects of 
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ocean acidification, and discarded acidification effects when they interacted with other variables 

explored in a given study (temperature, salinity, pollution, noise, gabazine, etc.).  

 Where possible, precise means and variance were collected from published tables or 

published raw data; otherwise, means and variance were estimated from published graphs using 

ImageJ 1.x (Schneider et al. 2012). Sample sizes were obtained from tables or the text, or were 

back-calculated using degrees of freedom reported in the statistical results. We also recorded the 

type of variance reported and, where possible, used that to calculate standard deviation, which was 

necessary for effect size calculations. These data were not obtainable from two papers, due to 

either the nature of the data (i.e., no variance associated with the response variable measured, or 

directional response variables measured in degrees; the latter due to computational issues arising 

from such metrics) (Maneja et al, 2012; Devine et al. 2013; Poulton et al. 2017) or from the paper 

reporting an effect of ocean acidification but not adequately providing the means and/or variance 

in neither the paper or supplementary material (Schunter et al. 2016, 2018). Where means and 

variance were measurable but observed to be zero, we estimated both as 0.0001 in order to 

calculate effect size (Munday et al. 2009, 2010; Dixson et al. 2010; Lönnstedt et al. 2013; Munday 

et al. 2013, 2014; Bender et al. 2015; Pimentel et al. 2016; Rodriguez-Dominguez et all. 2018). 

 The data were used to generate effect sizes and their variance estimates for each 

observation. The effect size of choice was natural logarithmic transformed response ratio, lnRR, 

which is calculated as: 

𝑙𝑛𝑅𝑅 = 	𝑙𝑛 &
X(!
X( "
) 

 

where X̅E and X̅C are the average measured response in the experimental and control treatments, 

respectively. This effect size metric is commonly used in ocean acidification research (Harvey et 
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al. 2013; Kroeker et al. 2013; Brown et al. 2018; Clements & Darrow 2018) and is appropriate for 

both continuous and ratio-type (i.e., proportions and percentages) response variable data that are 

commonly used in behavioural studies (Hintze 2007; Pustejovsky 2018). Effect size variance was 

calculated as: 

 

𝑣 = 	
(𝑆!)#

𝑛!X(!
# +

(𝑆")#

𝑛"X( "
#  

where S and n are the standard deviation and sample size, respectively, for a given experimental 

treatment (denoted by the subscripts C [control] and E [experimental, i.e., elevated pCO2]); X̅E and 

X̅C are defined as above. We chose lnRR because it is appropriate for both continuous and ratio-

type response variable data (i.e., proportions and percentages, which were abundant in our dataset) 

that are commonly used in behavioural studies (Hintze 2007; Pustejovsky 2018) (while other effect 

sizes incorporating variance into their calculations are not due to different variance structures of 

proportion and percentage data). Using lnRR does have drawbacks, however. Mainly, lnRR cannot 

be calculated when a response variable has a positive value for one treatment group and a negative 

value for the other. As such, we excluded measures of relative lateralization from our analysis, as 

well as any index metrics that spanned positive and negative values. For response variables that 

were reported as a ‘change in’ behaviour from a specific baseline (and could therefore have both 

positive and negative values), we only included instances in which the response variable values 

for the control treatment and elevated CO2 treatment were both of the same directionality (i.e., 

both positive or both negative changes). For all such instances, the rationale for omissions and/or 

inclusion are provided in the ‘Notes’ column in Supplementary File 2. 

Individual effect sizes and their associated variance were obtained for each included 

measurement from each study using the metafor package (Veichbauer 2010) in R v. 3.5.1 (R Core 
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Team 2018). Once calculated, the individual effect sizes were transformed to the absolute value 

due to the inherent difficulty in assigning a functional direction to a change in behaviour, as many 

behavioural changes can be characterized by both positive and negative functional trade-offs. For 

example, increased activity under elevated pCO2 can make prey fish more difficult for predators 

to capture, but can also make prey more noticeable to predators. Therefore, rather than prescribing 

arbitrary functional directionality to altered behaviour, we simply elected to use absolute value 

(i.e., unsigned value) of lnRR to test for the decline effect (hereafter ‘absolute effect size’). It is 

important to note that such a transformation only provides a measure of effect size magnitude. 

Thus, the absolute effect size overestimates, and is therefore a conservative estimate of, the true 

effect size, but can still be used to test for declining effect size magnitudes over time (and can thus 

be used to test for the decline effect). Although this can complicate true population-level inferences 

(Paulus et al. 2013), the use of absolute effect size values is informative for understanding the 

strength of effects ignoring directionality (Garamszegi et al. 2006). 

Meta-analysis 

Testing for the decline effect 

To assess whether or not ocean acidification research on fish behaviour is characterized by the 

decline effect, we used two analytical approaches. First, we assessed the relationship between the 

proportion of articles reporting a ‘Strong Effect’ (see definition above) of acidification on fish 

behaviour over time (time = publication year; defined as the year in which a given article was first 

published online and made available to the scientific community). For this approach, the decline 

effect would be evidenced by a negative relationship between ‘Strong Effect’ proportion and time. 
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 Second, we assessed the relationship between mean absolute lnRR as a function of time 

(publication year as defined above). For this analysis, mean effect sizes for each year (2009–2019) 

and their associated variance were derived from weighted random effects models in metafor, which 

give a higher weighting to studies with higher sample sizes and lower variance (Hedges & Olkin 

1985) (see individual effect size variance formula above). We accounted for non-independence 

associated with multiple data points from a single study by using three-level meta-analytical 

models (Nakagawaa et al. 2015; Noble et al, 2017) to calculate mean effect sizes, including 

‘measure nested within study’ as a random variable. Like the first analytical approach, the decline 

effect would be evidenced by a negative relationship between mean absolute lnRR and time. A 

handful of individual effect sizes (n = 13 of 785) were omitted from weighted mean effect size 

computations due to outstandingly large variance estimates, which preclude metafor from 

calculating mean effect sizes for a category of interest; individual effects sizes with a variance 

estimate >10 were excluded and all such instances are highlighted in the ‘Notes’ column of 

Supplementary File 2.  

Explaining the decline effect 

Since a decline effect was detected in our analysis, we explored two potential explanatory factors 

that might drive the observed effect: 1. Biological explanations including climatic region and the 

presence/absence of cues or stimuli; 2. studies with small sample sizes exhibiting larger effects 

than those with larger sample sizes, and 3. publication bias due to high impact journals publishing 

large effects. 
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Biological explanations 

If observed, the decline effect could potentially be driven by two biological characteristics of the 

studies included in the analysis. First, an increasing number of studies on temperate and/or cold-

water species could explain the decline effect if the number of such studies have increased over 

time and if temperate species are tolerant to ocean acidification (while tropical and subtropical 

species in the early studies are sensitive). Second, the decline effect could be explained by an 

increasing number of studies measuring baseline behaviours in the absence of a behavioural 

stimulus, if baseline behaviours are not altered by acidification but behaviours requiring a stimulus 

or cue are (which are characteristic of early studies). To account for the ‘climate region’ 

explanation, we simply excluded temperate and cold-water species from the dataset and tested 

whether or not the decline effect persisted for subtropical and tropical species only. Climate region 

was obtained from Fishbase (Froese & Pauly 2019) for each species; if a species was not found in 

FishBase then the climate region was obtained directly from the article. Similarly, to account for 

the ‘no stimulus’ explanation, we determined whether or not each experiment in each article 

included a stimulus, removed those that did not contain a stimulus from the dataset, and tested 

whether or not the decline effect persisted when only behaviours in the presence of a stimulus were 

included. If the decline effect persisted when cold-water species and experiments without a 

stimulus were removed, this would indicate that the decline effect could not be explained by these 

two biological variables.  

Sample size 

Correlations between sampling effort and effect size can be indicative of observer bias15. Herein, 

if large effects are only observed when sample sizes are low, it is probable that the observed large 
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effects may be false positives (i.e., are driven by Type I Error). Thus, if observer bias was driving 

a decline effect, we would predict two things: 1. the strongest effects being observed when sample 

sizes are low; and 2. a positive relationship between sample size and time (publication year). For 

1., we assessed the relationship between the mean effect size for each study and the average sample 

size for that study. Average sample size was calculated as the average of all sample sizes across 

treatments and was used because individual studies often had varied sample sizes between 

experiments or treatments. Additionally, for 1., we calculated weighted mean effect sizes (absolute 

lnRR as above) for sample size bins (0-9.99, 10-19.99, 20-29.99, … 70-79.99, 80+) to determine 

which categories of sample size had mean effect sizes statistically different from 0 (see the 

Statistical analysis section below). For 2., we calculated the average sample size for each 

publication year and assessed the relationship between average sample size and time. In addition, 

if 1. was true from the data, we calculated the proportion of articles having a sample size above an 

observed threshold of sample size whereby extreme and significant effects no longer occurred. We 

then assessed the relationship between publication year and the proportion of articles at or above 

that threshold. 

Publication bias driven by larger effects in high-impact journals 

In new and emerging fields, the early inflation of effect sizes can be driven by publication bias 

resulting from the tendency for high-impact journals to publish novel and ground-breaking results 

showing strong and seemingly undisputable effects (Sterne et al. 2001). If this were true for our 

analysis, two things would be evident: 1. Higher impact journals would have higher mean effect 

sizes; and 2. there would be a negative relationship between mean impact factor and time 

(publication year). We therefore explored both of these relationships to provide evidence for or 

against the idea that the decline effect could be driven by publication bias due to initial large effects 
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in high-impact journals. For 1., we derived mean lnRR (mean of study-specific averages, as above) 

for each of 11 impact factor bins: 0–0.99, 1–1.99, 2–2.99, … , 9–9.99, and 10+, and assessed the 

relationship between effect size and impact factor. For 2., we calculated the average journal impact 

factor for each year and assessed the relationship between impact factor and time; 2017 impact 

factors were used for studies published in 2018 and 2019 because 2018 and 2019 impact factors 

were unavailable at the time of analysis. For both relationships, impact factor was defined as the 

journal impact factor for a given article during the year that it was published online.  

Statistical analysis 

For all categorical analyses using mean effect sizes (absolute lnRR), effect sizes were deemed 

statistically significant from 0 if their 95% CI did not overlap with zero. Note, however, that 

statistical significance needs to be interpreted with caution, as using absolute effect sizes (i.e., 

unsigned, positive effect sizes) results in an overestimate of the true effect size.   
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