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Abstract 
Ocean acidification – decreasing oceanic pH resulting from the uptake of excess atmospheric CO2 – has 
the potential to affect marine life in the future. Among the possible consequences, a series of studies on 
coral reef fishes suggested that the direct effects of acidification on fish behaviour may be extreme and 
have broad ecological ramifications. Recent studies documenting a lack of effect of experimental ocean 
acidification on fish behaviour, however, call this prediction into question. Here, we explore the consistency 
and robustness of scientific evidence over the past decade regarding direct effects of ocean acidification 
on fish behaviour by testing for a “decline effect”. Using a meta-analysis, we provide quantitative evidence 
that the research to date on this topic is characterized by a decline effect, where large initial effects have 
all but disappeared over a decade. The decline effect in this field cannot be explained by three likely 
biological explanations, including increasing proportions of studies examining (1) cold-water species, (2) 
non-olfactory associated behaviours, and (3) non-larval life stages. Furthermore, the vast majority of studies 
with large effect sizes in this field tend to be characterized by low sample sizes, yet are published in high 
impact journals and have a disproportionate influence on the field in terms of citations. We contend that 
ocean acidification has a negligible direct impact on fish behaviour, and we advocate for improved 
approaches to minimize the potential for a decline effect in future avenues of research.  
 
 
 
 
Keywords: animal behaviour | bias | carbon dioxide | climate change | global change biology | scientific 
process   
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Introduction 

Publications for new hypotheses or ground-breaking scientific discoveries are often followed by attempts 
to replicate and build upon the initial research. In many instances, however, follow-up studies fail to replicate 
initial effects, and/or report smaller effect sizes.  The tendency for initial scientific findings—which can show 
strong effects with large effect sizes—to lose strength over time is referred to as the ‘decline effect’ [1]. This 
phenomenon was first described in the 1930s, and has since been documented in a range of scientific 
disciplines [1], including ecology and evolution [2,3]. It captures the concept of initial reports with large effect 
sizes that overestimate reality. In such instances, the early, large effect sizes are the key problem, not the 
subsequent decline. The decline effect could therefore equally be referred to as the ‘early inflation effect’. 
Nonetheless, this process can be problematic by delaying accurate scientific understanding of a given 
phenomenon, and can have applied ramifications, for example, to policy making [4]. 

Over the past 15 years, biologists have documented substantial impacts of ocean acidification on marine 
biota [5]. With more than 300 papers published per year from 2006 to 2015, the exponential growth of ocean 
acidification studies represents one of the fastest expanding topics in the marine sciences [6], and 
underscores the perceived risk of ocean acidification to ecosystem resilience. In recent years, however, 
there has been increasing skepticism and uncertainty around the severity of ocean acidification effects on 
marine organisms [6,7]. 

Some of the most striking effects of ocean acidification are those concerning fish behaviour, whereby a 
series of sentinel papers in 2009 and 2010 published in prestigious journals reported large effects of 
laboratory-simulated ocean acidification [8–10]. Since their publication, these papers have remained among 
the most highly cited regarding acidification effects on fish behaviour. The severe negative impacts and 
drastic ecological consequences outlined in those studies were highly publicized in some of the world’s 
most prominent media outlets [11–13] and were used to influence policy through a presentation at the White 
House [14]. Not only were the findings alarming, the extraordinarily clear and strong results left little doubt 
that the effects were real, and a multimillion-dollar international investment of research funding was initiated 
to quantify the broader impacts of ocean acidification on a range of behaviours. In recent years, however, 
an increasing number of papers have reported a lack of ocean acidification effects on fish behaviour, calling 
into question the reliability of initial reports.  

Here, we present a striking example of the decline effect in ecology over the past decade in research on 
the impact of ocean acidification on fish behaviour. We find that initial effects of acidification on fish 
behaviour have all but disappeared over the past five years, and present evidence that common biases 
influence reported effect sizes in this field. Ways to mitigate these biases and reduce the time it takes to 
reach a “true” effect size, broadly applicable to any scientific field, are discussed. 

 

Results and Discussion 

Declining effects 

Based on a systematic literature review and meta-analysis (n = 91 studies), we found evidence for a decline 
effect in ocean acidification studies on fish behaviour (Fig 1a, b). Generally, effect sizes in this field have 
decreased by an order of magnitude over the past decade, from mean effect size magnitudes >5 in 2009-
2010 to effect size magnitudes <0.5 after 2015 (Fig. 1a, b; Table S1). Mean effect size magnitude (absolute 
lnRR) was disproportionately large in early studies, hovered at moderate effect sizes from 2012–2014 and 
has all but disappeared in recent years (Fig. 1a, b).  
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Fig. 1. The decline effect in ocean acidification research on fish behaviour. (a) Trend in raw effect sizes (lnRR) for each 
experiment in our dataset plotted as a function of year of publication (online) and colour-coded according to study. Data are fit with a 
Loess curve with 95% confidence bounds. (b) Mean effect size magnitude (absolute lnRR magnitude ± upper and lower confidence 

bounds) for each year of publication (online) in our dataset. Mean effect size magnitudes and confidence bounds were estimated 
using Bayesian simulations and a folded normal distribution. Note: colours are aesthetic in nature and follow a gradient according to 

year of publication. 

 
 
 
The large effect size magnitudes from early studies on acidification and fish behaviour are not present in 
the majority of studies in the last five years (Fig. 1b; Table S1). This decline effect could be explained by a 
number of factors, including biological. For example, cold-water fish in temperate regions experience a 
higher degree of temporal variability in carbonate chemistry parameters over large spatial areas [15]. 
Therefore, they may be less sensitive to changes in seawater CO2 as per the Ocean Variability Hypothesis 
[16]. As such, if an increasing number of studies on cold-water species over time was responsible for the 
decline effect, removing cold-water species from the dataset (i.e., only including warm-water species) 
should result in the decline effect trend disappearing. This was not the case, as the decline effect persisted 
when only warm-water species were considered (Fig. 2a). In the same vein, the strongest ocean 
acidification effects on fish behaviour have undoubtedly been reported for chemical cue (herein ‘olfactory’) 
responses, and increasing numbers of studies on non-olfactory behaviours could explain the decline effect. 
If this was true, removing non-olfactory behaviours from the dataset should negate the decline effect trend. 
Again, this was not the case (Fig. 2b). Finally, early studies of ocean acidification and fish behaviour used 
larval fish, which are typically considered to be more sensitive to environmental perturbations than juveniles 
and adults. If a greater proportion of studies used less sensitive life stages through time, then removing 
those life stages and focusing exclusively on larvae should abolish the decline effect. Once again, this was 
not the case (Fig. 2c). These analyses show that ocean acidification studies on fish behaviour exhibit a 
decline effect that is not explainable by three biological processes commonly considered important drivers 
of acidification effects (Fig. 2a-c; Table S1). 
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Fig 2. The decline effect cannot be explained by three commonly-considered biological drivers of acidification effects. 
Mean effect size magnitude (absolute lnRR ± upper and lower confidence bounds) as a function of time for datasets that only 

included experiments with (a) warm-water species, (b) olfactory-associated behaviours, and (c) larval life stages. Mean effect size 
magnitudes and confidence bounds were estimated using Bayesian simulations and a folded normal distribution. Note: colours are 

aesthetic in nature and follow a gradient according to year of publication. 

 

While we were able to test and exclude three biological factors, there are other potential factors that could 
drive the decline which are not readily testable from our database. For example, while we were able to 
partially test for the influence of background CO2 variability by comparing cold- and warm-water species, 
most studies do not report the actual background CO2 levels that the experimental animals (and their 
ancestors) have historically experienced. As such, we are unable to account for the historic CO2 acclimation 
conditions of animals used in experiments. The impact of this with respect to the observed decline effect 
could stem from an increasing proportion of studies using captive bred fish from recirculating aquarium 
systems with high CO2 levels, as compared to fish from wild populations experiencing natural CO2 levels. 
This is an unlikely explanation for the decline effect, however, given that the earliest studies conducted in 
2009–2010 reporting high effect sizes were conducted with both captive-bred and wild-caught fish [7–9, 
13]. Furthermore, recent replication attempts of those initial studies using wild-caught fish have failed to 
replicate the large effect sizes [7]. Nonetheless, we recommend that future studies provide better 
background CO2 information for the fish used in their experiments, and use best practices for measuring 
and reporting carbonate chemistry [15]. 

Biased behaviour in a maturing field? 

It is clear that the ocean acidification field, and indeed science in general, is prone to many biases including 
methodological and publication biases [6]. The key thing to note is that if science was operating properly 
from the onset, and early effects of ocean acidification on fish behaviour were true, the relationships 
presented in Figs. 1 and 2 would be flat lines showing consistent effect sizes over time. It is also evident 
that the decline effect discovered herein is not explainable by three likely biological culprits (outlined above). 
Thus, the data presented here provide a textbook example of a new and emerging “hot topic” field likely 
being prone to biases. Below, we underscore and assess the roles of three potential biases: (1) 
methodological biases (low samples size), (2) selective publication bias, and (3) citation bias.  

Methodological biases. Methodological approaches for individual studies, and biases therein, can 
contribute to the early inflation of effects. Such biases can come in the form of experimental protocols, the 
chosen experimental design and sample size, and the analytical/statistical approach employed. 
Experimenter biases can also contribute to inflated effects. 

Experimental designs and protocols can introduce unwanted biases during the experiment whether or not 
the researchers realise it. For example, experiments with small sample sizes are more prone to statistical 
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errors (i.e., Type I and Type II error) and studies with larger sample sizes should be trusted more than those 
with smaller sample sizes [18]. While we did not directly test it in our analysis, studies with small sample 
sizes are also more susceptible to statistical malpractices such as p-hacking and selective exclusion of 
data that do not conform to a pre-determined experimental outcome, contributing to inflated effects [19]. In 
our analysis, we found that almost all of the studies with the largest effect size magnitudes had mean 
sample sizes (per experimental treatment) below 30 fish. Indeed, 87% of the studies (13 of 15 studies) with 
a mean effect size magnitude >1.0 had a mean sample size below 30 fish (Fig. 3). Likewise, the number of 
studies reporting an effect size magnitude >0.5 sharply decreased after a mean sample size exceeding 30 
fish (Fig. 3).  Sample size is of course not the only attribute that describes the quality of a study, but the 
effects detected here certainly suggest that studies with n < 30 fish per treatment may yield spurious effects 
and should be weighted accordingly.  
 

 

 
Fig. 3. Studies with large effect sizes tend to have low samples sizes.  Mean effect size magnitude (absolute lnRR) for each 

study as a function of the mean sample size of that study (i.e., sample size per experimental treatment). Note that mean effect size 
for a given study is a weighted effect size magnitude, but is simply computed as the mean of individual observations for a given 

study. Vertical red dashed line denotes a sample size of 30, while the horizontal red dashed line represents a lnRR magnitude of 1. 

 
 
Experimenter/observation bias during data collection is known to seriously skew results in behavioural 
research [20]. For example, non-blinded observations are common in life sciences, but are known to result 
in higher reported effect sizes and more significant p-values than blinded observations [21]. Most 
publications assessing ocean acidification effects on fish behaviour, including the initial three studies 
reporting large effect sizes, do not include statements of blinding for behavioural observations. Furthermore, 
given that statements of blinding can be misleading [22], there has been a call for video evidence in animal 
behaviour research [23]. Moreover, the persistence of inflated effects beyond initial studies can be 
perpetuated by confirmation bias, as follow-up studies attempt to confirm initial inflated effects and 
capitalise on the receptivity of high-profile journals to new (apparent) phenomena [24]. While our analysis 
does not empirically demonstrate that experimenter bias contributed to the decline effect, it is possible that 
conscious and unconscious experimenter biases may have contributed to large effect sizes in this field.  
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Publication and citation bias. Another prominent explanation for the decline effect is selective publication 
bias, as results showing strong effects are often published more readily, and in higher-impact journals, than 
studies showing weak or null results. Indeed, publication bias has been suggested as perhaps the most 
parsimonious explanation for the decline effect in ecology and evolution, as studies showing no effect can 
be difficult to publish [2]. This can be attributed to authors selectively publishing impressive results in 
prestigious journals (and not publishing less exciting results), and also to journals—particularly high impact 
journals—selectively publishing strong effects. This biased publishing can result in the proliferation of 
studies reporting strong effects, even though they may not be true [25], and can fuel citation bias [26]. To 
determine if studies testing for effects of ocean acidification on fish behaviour exhibited signs of publication 
bias and citation bias, we assessed relationships between effect size magnitude, journal impact factor, and 
Google Scholar citations (Fig. 4). Examining average citations per year and the total number of citations 
since 2020, four papers stood above the rest: the initial three studies in this field [8–10] and the sentinel 
paper proposing GABAA neurotransmitter interference as the physiological mechanism for observed 
behavioural effects [27] (Fig. 4a,b). While it is difficult to quantify whether authors selectively published only 
their strongest effects early in this field, we were able to quantify effect size magnitudes as a function of 
journal impact factor. We found that the most striking effects of ocean acidification on fish behaviour have 
been published in journals with high impact factors (Fig. 4c). In addition, these studies have had a stronger 
influence (i.e., higher citation frequency) on this field to date than lower impact studies with weaker effect 
sizes (Fig. 4b,c). Similar results have been reported in other areas of ecology and evolution, perhaps most 
notably in studies regarding terrestrial plant responses to high CO2 [28].  

Together, our results suggest that large effect sizes among studies assessing acidification impacts on fish 
behaviour generally have low sample size, but tend to be published in high impact journals and are cited 
more [26]. Consequently, the one-two punch of low sample sizes and the preference of high impact journals 
to publish large effects has seemingly led to an incorrect interpretation that ocean acidification will result in 
broad impacts on fish behaviour and thus have wide-ranging ecological consequences – an interpretation 
that persists in studies published today (Table S2). 

Being on our best behaviour 

Our results suggest that large effects of ocean acidification on fish behaviour were at least in part due to 
methodological factors in early studies (e.g., low sample sizes). Furthermore, the proliferation and 
persistence of this idea has likely been aided by the selective publication of large effect sizes by authors 
and journals, particularly at the onset of this field, and the continued high frequency of citations for those 
papers. It is important to note, however, that low sample size and selective publication cannot fully explain 
the strong decline effect detected here, and other biases and processes may be at play [7,29]. Nonetheless, 
we call on journals, journal editors, peer-reviewers, and researchers to take steps to proactively address 
the issues of low sample size and selective publication, not only in the ocean acidification field, but also 
more broadly across scientific disciplines.  

To this end, we strongly argue that future ocean acidification studies on fish behaviour should employ a 
sample size greater than 30 fish per treatment in order to be considered reliable. It is the combined 
responsibility of researchers, journal editors, and peer-reviewers to ensure that submitted manuscripts 
abide by this guideline. To achieve this, authors should report exact sample sizes clearly in the text of 
manuscripts; however, from our analysis, 34% of studies did not do this adequately (see raw data in 
Supplementary File 2). In addition, for other fields, we suggest that studies with higher sample sizes be 
published alongside, if not very soon after, an original novel finding to ensure that such a finding is robust. 
Ideally, researchers would conduct pilot studies with varying sample sizes to determine an adequate sample 
size threshold; however, time and financial constraints can make this difficult. While adequate sample sizes 
will vary across topics and fields, ensuring studies with large sample sizes are published early alongside 
those with smaller sample sizes can strive toward reducing the amount of time it takes to truly understand 
a phenomenon.     
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Fig. 4. Strong effects are published in high impact journals, and these studies are cited more than small effect studies in 
lower impact journals. (a-b) Google Scholar citation metrics as of September 10, 2021 for each of the studies included in our 

meta-analysis, including average citations per year (a) and total citations since 2020 (b). The initial three studes spearheading this 
field are denoted by the grey background, and the red dashed line represents the lowest citation metric among those three studies. 
Studies are ordered chronologically along the x-axis, and colour-coded by year published online. (c) Mean effect size magnitude for 

each individual study as a function of journal impact factor (at time of online publication). (d) The number of citations per year for 
each study as a function of journal impact factor (at time of online publication) (e) The number of citations per year for each study as 
a function of mean effect size magnitude for that study. Note that, for panels (a) and (c), mean effect size for a given study is not a 
weighted effect size magnitude, but is simply computed as the mean of individual observations for a given study. Data are fit with 
linear curves and 95% confidence bounds, and points are colour-coded by study; the size of data points represents the relative 

mean sample size of the study. 

 

Journals, researchers, editors, and reviewers can take additional steps to limit biases in published research. 
First and foremost, we suggest that journals adopt the practice of registered reports to ensure that studies 
not detecting an effect are published in a timely manner. Herein, journals should provide authors with the 
ability to submit proposed methodologies and have them formally peer reviewed prior to studies even being 
conducted. If methodologies are deemed sound (or revised to be so) and “accepted” by reviewers, journals 
should commit to publishing the results regardless of their outcome. While not a silver-bullet solution, this 
practice could help to minimize selective publication bias and reduce the risk of early, flawed studies being 



 7 

disproportionately influential in a given field [30]. Researchers should also seek, develop, and adhere to 
best practice guidelines for experimental setups [31] to minimize the potential for experimental artefacts to 
influence results. Properly blinded observations [21] and the use of technologies such as automated 
tracking [32] and biosensors [33] can also reduce observer bias and increase trust in reported findings [34]. 
When automated methods are not possible, video recordings of experiments from start to finish can greatly 
increase transparency [23]. Editors and the selected peer reviewers should closely consider and evaluate 
the relevance and rigor of methodological approaches, which can help increase accuracy and repeatability 
[35]. When selecting peer-reviewers for manuscripts, editors should also be aware that researchers 
publishing initial strong effects may be biased in their reviews (i.e., selectively accepting manuscripts that 
support their earlier publications) and ensure a diverse body of reviewers for any given manuscript. While 
we do not empirically demonstrate this bias in our analyses, it is important to recognize and mitigate the 
potential for it to prolong inaccurate scientific findings. 

Finally, being critical and skeptical of early findings with large effects can help avoid many of the real-world 
problems associated with inflated effects. Interestingly, a recent study showed that experienced scientists 
are highly accurate at predicting which studies will stand up to independent replication versus those that 
will not [36], lending support to the idea that if something seems too good to be true then it probably is. The 
earlier that septicism is applied, the less impact inflated results may have on the scientific process and the 
public perception of scientists. Ultimately, independent replication should be established before new results 
are to be trusted. 

Final remarks 

Our results demonstrate that more than a decade of ocean acidification research on fish behaviour is 
characterized by the decline effect. While the field has seemingly settled in a good place with respect to 
realistic effect sizes, it has taken 10 years to get there. Furthermore, studies continue to cite early studies 
with unreasonable effect sizes to promote that acidification is predicted to broadly impact fish behaviour 
and ecology (e.g., Table S2), suggesting that a shift in mindset is still needed for many in this field. In a 
broader sense, our data reveal that the decline effect warrants exploration with respect to other biological 
and ecological phenomena and a wider array of scientific disciplines, particularly pertaining to global change 
effects. The early exaggeration of effects can have real impacts on the process of science and the people 
who do it [37]; following the steps outlined here can help to mitigate those impacts, sooner get to a real 
understanding of a phenomenon, and progress towards increased reproducibility. 

 

Materials and methods 

Literature search  

Peer-reviewed articles assessing the effects of ocean acidification on fish behaviour were searched for 
through Scopus and Google Scholar by J. Clements up until December 21, 2018 using two primary keyword 
strings: ‘ocean acidification fish behavio(u)r’ and ‘elevated co2 fish behavio(u)r’. The search was conducted 
using the free software “Publish or Perish” [38] selecting a time period spanning 2009 – 2018 and the 
maximum number of results that the software allows (1,000 results), ignoring citations and patents. The 
keyword search resulted in a total of 4,411 results, with 2,508 papers remaining for initial screening after 
duplicates were removed (Fig. 5, Table S3). The titles and abstracts of each article were then screened for 
initial relevance and inclusion criteria. Articles were included in the database if they included statements of 
quantitatively assessing the effect of elevated CO2 (i.e., ocean acidification) on a behavioural trait of a 
marine fish; we excluded review articles and papers that measured the effect of elevated CO2 on freshwater 
fishes and invertebrates. This initial screening resulted in a total of 93 papers being retained from the 
database search for further evaluation. Five papers were subsequently excluded from the meta-analysis 
due to a lack of appropriate data for estimating effect size (i.e., variance and/or sample sizes were not a 
part of the behavioural metric, or specific behavioural data were not presented), resulting in a total of 88 
papers. A cited reference search of the 93 articles was subsequently conducted on March 23, 2019 (just 
prior to conducting the data analysis) by searching the reference lists and lists of citing articles (on the 
article’s webpage) and three additional relevant papers were added, for a total of 91 papers included in the 
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meta-analysis. While we did not solicit a call for grey literature, which can be important for meta-analyses 
[3], such literature online would have been captured in the Google Scholar search; however, no relevant 
grey literature was uncovered in this search. Final checks of the 91 papers were conducted by both J. 
Clements and J. Sundin. Results of the literature search are provided in Fig. 5 below. Further details can 
be found in Table S3, and full search results for each step can be found in Supplementary File 2. 

 

Fig. 5. PRISMA flow diagram. Values represent the numbers of records found and retained at each 
stage of the literature search. Papers were considered “relevant” if they included an empirical test of 

ocean acidification on the behaviour of a marine fish. Off-topic papers and topical review papers were 
excluded, as were topical papers on freshwater species and invertebrates. Relevant studies were 

deemed “ineligible” if they did not contain data from which effect sizes could be calculated (this included 
data that did not have an associated sample size or variance, or relevant papers that did not report the 

behavioural data). Details of relevance and exclusion can be found in Supplementary File 2. 



 9 

Data collection 

We collected both qualitative and quantitative data from each study. All raw data (both qualitative and 
quantitative) can be found in Supplementary File 3.  

Qualitative data collection. From each of the 91 articles, we collected general bibliographic data, including 
authors, publication year, title, journal, and journal impact factor. For publication year, we recorded the year 
that the article was published online as well as the year that the article was included in an issue. Journal 
impact factor was recorded for the year of publication as well as the most current year (2017); papers 
published in 2018 and 2019 were assigned to the impact factor for 2017 since 2018 and 2019 data on 
impact factor were unavailable at the time of analysis. Impact factors were obtained from InCites Journal 
Citation Reports® (Clarivate Analytics). We also recorded other qualitative attributes for each study, 
including the species and life stage studied, and the behavioural metric(s) measured. 

Quantitative data collection. Alongside qualitative data, we also collected quantitative data from each 
study with the exception of the five studies that were excluded due to unreported data, or other issues with 
data reporting and/or the nature of the data reported (i.e., if effect sizes could not be calculated from the 
type of data reported; see Supplementary File 2). For applicable studies, we collected the mean, sample 
size, and variance associated with control and ocean acidification treatments. We considered all ocean 
acidification treatments in our analysis; however, we only included data for independent main effects of 
ocean acidification, and interactive effects of acidification with other factors (temperature, salinity, pollution, 
noise, gabazine, etc.) were ignored.  

Where possible, precise means and variance were collected from published tables or published raw data; 
otherwise, means and variance were estimated from published graphs using ImageJ 1.x [39]. Sample sizes 
were obtained from tables or the text, or were back-calculated using degrees of freedom reported in the 
statistical results. We also recorded the type of variance reported and, where possible, used that to 
calculate standard deviation, which was necessary for effect size calculations. Again, these data were not 
obtainable from five papers, due to either the nature of the data (i.e., no variance associated with the 
response variable measured, or directional response variables measured in degrees; the latter due to 
computational issues arising from such metrics) [40–42] or from the paper reporting an effect of ocean 
acidification but not adequately providing the means and/or variance in neither the paper or supplementary 
material  [43,44]. Where means and variance were measurable but observed to be zero, we estimated both 
as 0.0001 in order to calculate effect size [8–10,17,45–49]. The data were used to generate effect sizes 
and variance estimates for each observation.  

Meta-analysis  

Testing for the decline effect. To assess whether or not a decline effect was evident in ocean acidification 
research on fish behaviour, we used two approaches: (1) visualizing the trend of effect size magnitudes for 
all experiments in the dataset over time; and (2) computing weighted mean effect size magnitudes for each 
year in our dataset and assessing the trend in mean effect size magnitudes over time. 

Visualizing the decline effect using raw effect size magnitudes. First, we computed the effect size 
magnitude for each individual observation in our dataset and simply visualized the trend in these effect 
sizes over time (i.e., Fig. 2a). The effect size of choice was natural logarithmic transformed response ratio, 
lnRR, which is calculated as: 

𝑙𝑛𝑅𝑅 =  𝑙𝑛 (
X̅𝐸

X̅𝐶
) 

 
where X̅E and X̅C are the average measured response in the experimental and control treatments, 
respectively. We chose lnRR because it is commonly used in ocean acidification research [50–53] and is 
appropriate for both continuous and ratio-type response variable data (i.e., proportions and percentages, 
which were abundant in our dataset) that are commonly used in behavioural studies [54,55]. Using lnRR 
does have drawbacks, however. Mainly, lnRR cannot be calculated when a response variable has a positive 
value for one treatment group and a negative value for the other. As such, we excluded measures of relative 
behavioural lateralization (a measure of left-right turning preference) from our analysis, as well as any index 
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metrics that spanned positive and negative values. For response variables that were reported as a ‘change 
in’ behaviour from a specific baseline (and could therefore have both positive and negative values), we only 
included instances in which the response variable values for the control treatment and elevated CO2 
treatment were both of the same directionality (i.e., both positive or both negative changes). For all such 
instances, the rationale for omissions and/or inclusion are provided in the ‘Notes’ column in Supplementary 
File 2. 

Once calculated, the individual effect sizes were transformed to the absolute value due to the inherent 
difficulty in assigning a functional direction to a change in behaviour, as many behavioural changes can be 
characterized by both positive and negative functional trade-offs. For example, increased activity under 
elevated pCO2 could make prey fish more difficult for predators to capture, but could also make prey more 
noticeable to predators. Therefore, rather than prescribing arbitrary functional directionality to altered 
behaviour, we simply elected to use absolute value (i.e., unsigned value) of lnRR to visualize the decline 
effect. It is important to note that such a transformation only provides a measure of effect size magnitude. 
Thus, the absolute effect size overestimates, and is therefore a conservative estimate of, the true effect 
size, but can still be used to test for declining effect size magnitudes over time (and can thus be used to 
test for the decline effect). Although this can complicate true population-level inferences [56], the use of 
absolute effect size values is informative for understanding the strength of effects ignoring directionality 
[57]. 

Assessing weighted mean effect size magnitudes by year. Although useful for visualizing a trend in 
effect sizes over time, the first approach above is not analytically rigorous. Properly analyzing trends in 
effect sizes should including a weighted component whereby individual effect sizes are weighted according 
to their precision (i.e., measurements with a larger sample size and lower variance should be given more 
weight than those with a lower sample size and higher variance) [58]. As such, we computed weighted 
mean effect size magnitudes (and their associated uncertainty; i.e., upper and lower confidence bounds) 
for each year represented in our dataset, and assessed the trend in these effect sizes over time. 

Weighted mean effect size magnitudes (lnRR) and their confidence bounds were computed using the 
“transform-then-analyze” approach as suggested by [59], with R code adapted from [60] to avoid biased 
estimates of effect size magnitude. Briefly, this method estimates the mean effect size for each level of a 
moderator of interest (i.e., each year in our dataset) by assuming a normal distribution and subsequently 
transforming the mean effect size using a folded normal distribution to estimate a mean effect size 
magnitude. Uncertainty around the mean effect size magnitude was estimated in a Bayesian fashion using 
the MCMCglmm() function from the MCMCglmm package [61], applying the entire posterior distribution of 
mean estimated to the folded normal distribution as per [60]. Annotated R code and all raw data files for 
the analysis are provided in the supplementary material for reproducibility (Supplementary files 4–11).  

Assessing biological explanations for the decline effect. Since a decline effect was detected in our 
analysis, we explored three biological factors that might explain the observed decline effect: 1. climate 
(cold-water vs. warm-water species); 2. behaviour type (olfactory vs. non-olfactory behaviours); and 3. life 
stage (larvae vs. juveniles and adults).  

Because early studies were focused on warm-water fish from tropical coral reefs, the observed decline 
effect could potentially be driven by an increasing number of studies on less sensitive cold-water species 
over time. Cold-water fish in temperate regions experience a higher degree of temporal variability in 
carbonate chemistry parameters over large spatial areas [15]. Therefore, they may be less sensitive to 
changes in seawater CO2 as per the Ocean Variability Hypothesis [16]. If an increasing number of studies 
on cold-water species over time was responsible for the decline effect, removing cold-water species from 
the dataset (i.e., only including warm-water species) should result in the decline effect trend disappearing. 
In the same vein, the strongest effects of ocean acidification on fish behaviour have undoubtedly been 
reported for olfactory responses, and an increasing number of studies on non-olfactory behaviours could 
explain the decline effect. If this was true, removing non-olfactory behaviours from the dataset should 
negate the decline effect trend, so we therefore tested for the influence of non-olfactory behaviours by 
removing them from the dataset and re-running the analysis. Finally, larvae are typically considered to be 
more sensitive to acidification than juveniles and adults, and removing less sensitive life stages from the 
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dataset would remove the decline effect trend if this explanation was responsible for the decline (i.e., if 
studies using less sensitive life stages had increased proportionally over time). Therefore, to test whether 
or not the decline effect was due to these three biological factors, re-ran analysis the analysis described in 
“Assessing weighted mean effect sizes by year” above on three separate datasets; one with cold water 
species removed, one with non-olfactory responses removed, and one with juvenile and adult life stages 
removed.  

Assessing evidence for selective publication bias, citation bias, and methodological bias. Alongside 
testing for the decline effect, we also wanted to determine whether publication bias and/or methodological 
bias may have contributed to the large effect sizes reported in this field, and whether there was any 
evidence for citation bias. In new and emerging topics, large effect sizes can be driven by authors and high-
impact journals selectively publishing novel and ground-breaking results with large effect sizes [62]. If 
selective publication bias was evident among studies testing for effects of ocean acidification on fish 
behaviour, there would be a positive relationship between effect size magnitude and journal impact factor 
sensu [28]. Thus, to determine if selective publication bias could be present in this field, we visually 
assessed the relationship between the journal impact factor (for the year of online publication) and the 
mean effect size magnitude for each study. It is important to note here that we did not compute weighted 
mean effect size magnitudes for each study, but simply computed the mean of the raw effect size 
magnitudes as calculated in the section “Visualizing the decline effect using raw effect size 
magnitudes” above. To check for citation bias, we visually assessed the relationship between impact factor 
and the number of citations per year (according to Google Scholar on September 10, 2021) for each study, 
as well as the relationship between mean effect size magnitude and citations per year. If citation bias was 
present in this field, citations per year would be positively correlated with mean effect size magnitude. 
Furthermore, if selective publication bias was influencing citation bias, a positive relationship between 
impact factor and citations per year would be present. Finally, to assess if low sample sizes could contribute 
to large effect sizes (i.e., higher probability of Type 1 error), we plotted mean effect size magnitude for each 
study against the mean sample size of that study. If low sample size was influencing effect sizes among 
studies in this field, large effect sizes would cluster near the lower end of the sample size spectrum.  
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