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Abstract 
 

Ocean acidification – decreasing oceanic pH resulting from the uptake of excess atmospheric CO2 – 

has the potential to affect marine life in the future. Among the possible consequences, a series of 

studies on coral reef fishes suggested that the direct effects of acidification on fish behaviour may be 

extreme and have broad ecological ramifications. Recent studies documenting a lack of effect of 

experimental ocean acidification on fish behaviour, however, call this prediction into question. 

Indeed, the phenomenon of decreasing effect sizes over time is not uncommon and is typically 

referred to as the “decline effect”. Here, we explore the consistency and robustness of scientific 

evidence over the past decade regarding direct effects of ocean acidification on fish behaviour. Using 

a systematic review and meta-analysis of 91 studies empirically testing effects of ocean aicidifcation 

on fish behaviour, we provide quantitative evidence that the research to date on this topic is 

characterized by the decline effect, where large effects in initial studies have all but disappeared in 

subsequent studies over a decade. The decline effect in this field cannot be explained by three likely 

biological explanations, including increasing proportions of studies examining (1) cold-water species, 

(2) non-olfactory associated behaviours, and (3) non-larval life stages. Furthermore, the vast majority 

of studies with large effect sizes in this field tend to be characterized by low sample sizes, yet are 

published in high impact journals and have a disproportionate influence on the field in terms of 

citations. We contend that ocean acidification has a negligible direct impact on fish behaviour, and 

we advocate for improved approaches to minimize the potential for a decline effect in future avenues 

of research. 
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Introduction 

Publications presenting new hypotheses or ground-breaking scientific discoveries are often followed by attempts to 

replicate and build upon the initial research. In many instances, however, follow-up studies fail to replicate initial effects, 

and/or report smaller effect sizes.  The tendency for initial scientific findings—which can show strong effects with large 

effect sizes—to lose strength over time is referred to as the ‘decline effect’ [1]. This phenomenon was first described in 

the 1930s, and has since been documented in a range of scientific disciplines [1], including ecology and evolution [2,3]. 

It captures the concept of initial reports with large effect sizes that overestimate reality. In such instances, the early, 

large effect sizes are the key problem, not the subsequent decline. The decline effect could therefore equally be referred 

to as the ‘early inflation effect’. Nonetheless, this process can be problematic by delaying accurate scientific 

understanding of a given phenomenon, and can have applied ramifications, for example, to policy making [4]. 

Over the past 15 years, biologists have documented substantial impacts of ocean acidification on marine biota [5]. With 

more than 300 papers published per year from 2006 to 2015, the exponential growth of ocean acidification studies 

represents one of the fastest expanding topics in the marine sciences [6], and underscores the perceived risk of ocean 

acidification to ecosystem resilience. In recent years, however, there has been increasing skepticism and uncertainty 

around the severity of ocean acidification effects on marine organisms [6,7]. 

Some of the most striking effects of ocean acidification are those concerning fish behaviour, whereby a series of sentinel 

papers in 2009 and 2010 published in prestigious journals reported large effects of laboratory-simulated ocean 

acidification [8–10]. Since their publication, these papers have remained among the most highly cited regarding 

acidification effects on fish behaviour. The severe negative impacts and drastic ecological consequences outlined in 

those studies were highly publicized in some of the world’s most prominent media outlets [11–13] and were used to 

influence policy through a presentation at the White House [14]. Not only were the findings alarming, the extraordinarily 

clear and strong results left little doubt that the effects were real, and a multimillion-dollar international investment of 

research funding was initiated to quantify the broader impacts of ocean acidification on a range of behaviours. In recent 

years, however, an increasing number of papers have reported a lack of ocean acidification effects on fish behaviour, 

calling into question the reliability of initial reports.  

Here, we present a striking example of the decline effect over the past decade in research on the impact of ocean 

acidification on fish behaviour. We find that initial effects of acidification on fish behaviour have all but disappeared over 

the past five years, and present evidence that common biases influence reported effect sizes in this field. Ways to 

mitigate these biases and reduce the time it takes to reach a “true” effect size, broadly applicable to any scientific field, 

are discussed. 

 

Results and Discussion 

Declining effects 

Based on a systematic literature review and meta-analysis (n = 91 studies), we found evidence for a decline effect in 

ocean acidification studies on fish behaviour (Fig 1a, b). Generally, effect size magnitudes (absolute lnRR) in this field 

have decreased by an order of magnitude over the past decade, from mean effect size magnitudes >5 in 2009-2010 to 

effect size magnitudes <0.5 after 2015 (Fig. 1a, b; Table S1). Mean effect size magnitude  was disproportionately large 

in early studies, hovered at moderate effect sizes from 2012–2014, and has all but disappeared in recent years (Fig. 1a, 

b).  
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Fig. 1. The decline effect in ocean acidification research on fish behaviour. (a) Trend in raw effect sizes (lnRR) for 

each experiment in our dataset plotted as a function of year of publication (online) and colour-coded according to study. 

Data are fit with a Loess curve with 95% confidence bounds. (b) Mean effect size magnitude (absolute lnRR magnitude 

± upper and lower confidence bounds) for each year of publication (online) in our dataset. Mean effect size magnitudes 

and confidence bounds were estimated using Bayesian simulations and a folded normal distribution. Note: colours are 

aesthetic in nature and follow a gradient according to year of publication. Source data for each figure panel can be 

found in Supplementary File 14. 

 

 

The large effect size magnitudes from early studies on acidification and fish behaviour are not present in the majority of 

studies in the last five years (Fig. 1b; Table S1). This decline effect could be explained by a number of factors, including 

biological. For example, cold-water fish in temperate regions experience a higher degree of temporal variability in 

carbonate chemistry parameters over large spatial areas [15]. Therefore, they may be less sensitive to changes in 

seawater CO2 as per the Ocean Variability Hypothesis [16]. As such, if an increasing number of studies on cold-water 

species over time was responsible for the decline effect, removing cold-water species from the dataset (i.e., only including 

warm-water species) should result in the decline effect trend disappearing. This was not the case, as the decline effect 

persisted when only warm-water species were considered (Fig. 2a). In the same vein, the strongest ocean acidification 

effects on fish behaviour have undoubtedly been reported for chemical cue (herein ‘olfactory’) responses, and an 

increasing number of studies on non-olfactory behaviours could explain the decline effect. If this was true, removing non-

olfactory behaviours from the dataset should negate the decline effect trend. Again, this was not the case (Fig. 2b). Finally, 

early studies of ocean acidification and fish behaviour used larval fish, which are typically considered to be more sensitive 

to environmental perturbations than juveniles and adults. If a greater proportion of studies used less sensitive life stages 

through time, then removing those life stages and focusing exclusively on larvae should abolish the decline effect. Once 

again, this was not the case (Fig. 2c). These analyses show that ocean acidification studies on fish behaviour exhibit a 

decline effect that is not explainable by three biological processes commonly considered important drivers of acidification 

effects (Fig. 2a-c; Table S1). 
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Fig 2. The decline effect cannot be explained by three commonly-considered biological drivers of acidification 

effects. Mean effect size magnitude (absolute lnRR ± upper and lower confidence bounds) as a function of time for 

datasets that only included experiments with (a) warm-water species, (b) olfactory-associated behaviours, and (c) larval 

life stages. Mean effect size magnitudes and confidence bounds were estimated using Bayesian simulations and a 

folded normal distribution. Note: colours are aesthetic in nature and follow a gradient according to year of publication. 

Source data for each figure panel can be found in Supplementary File 14. 

 

 

While we were able to test and exclude three biological factors, there are other potential factors that could drive the decline 

which are not readily testable from our database. For example, while we were able to partially test for the influence of 

background CO2 variability by comparing cold- and warm-water species, most studies do not report the actual background 

CO2 levels that the experimental animals (and their ancestors) have historically experienced. As such, we are unable to 

account for the historic CO2 acclimation conditions of animals used in experiments. The impact of this with respect to the 

observed decline effect could stem from an increasing proportion of studies using captive bred fish from recirculating 

aquarium systems with high CO2 levels, as compared to fish from wild populations experiencing natural CO2 levels. This 

is an unlikely explanation for the decline effect, however, given that the earliest studies conducted in 2009–2010 reporting 

high effect sizes were conducted with both captive-bred and wild-caught fish [7–9, 13]. Furthermore, recent replication 

attempts of those initial studies using wild-caught fish have failed to replicate the large effect sizes [7]. Nonetheless, we 

recommend that future studies provide better background CO2 information for the fish used in their experiments, and use 

best practices for measuring and reporting carbonate chemistry [15]. 

 

Biased behaviour in a maturing field? 

It is clear that the ocean acidification field, and indeed science in general, is prone to many biases including methodological 

and publication biases [6]. The key thing to note is that if science was operating properly from the onset, and early effects 

of ocean acidification on fish behaviour were true, the relationships presented in Figs. 1 and 2 would be flat lines showing 

consistent effect sizes over time. It is also evident that the decline effect discovered herein is not explainable by three 
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likely biological culprits (outlined above). Thus, the data presented here provide a textbook example of a new and 

emerging “hot topic” field likely being prone to biases. Below, we underscore and assess the roles of three potential 

biases: (1) methodological biases, (2) selective publication bias, and (3) citation bias. We then explore the potential 

influence of authors/investigators in driving the decline effect. 

Methodological biases. Methodological approaches for individual studies, and biases therein, can contribute to the 

early inflation of effects. Such biases can come in the form of experimental protocols, the chosen experimental design 

and sample size, and the analytical/statistical approach employed. Experimenter biases can also contribute to inflated 

effects. 

 

 
Fig. 3. Studies with large effect sizes tend to have low samples sizes.  Mean effect size magnitude (absolute lnRR) 

for each study as a function of the mean sample size of that study (i.e., sample size per experimental treatment). Note 

that mean effect size for a given study is a weighted effect size magnitude, but is simply computed as the mean of 

individual observations for a given study. Vertical red dashed line denotes a sample size of 30, while the horizontal red 

dashed line represents a lnRR magnitude of 1. Source data for each figure panel can be found in Supplementary File 

14. 

 

 

 

Experimental designs and protocols can introduce unwanted biases during the experiment whether or not the researchers 

realise it. For example, experiments with small sample sizes are more prone to statistical errors (i.e., Type I and Type II 

error) and studies with larger sample sizes should be trusted more than those with smaller sample sizes [18]. While we 

did not directly test it in our analysis, studies with small sample sizes are also more susceptible to statistical malpractices 

such as p-hacking and selective exclusion of data that do not conform to a pre-determined experimental outcome, which 
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can contribute to inflated effects [19]. In our analysis, we found that almost all of the studies with the largest effect size 

magnitudes had mean sample sizes (per experimental treatment) below 30 fish. Indeed, 87% of the studies (13 of 15 

studies) with a mean effect size magnitude >1.0 had a mean sample size below 30 fish (Fig. 3). Likewise, the number of 

studies reporting an effect size magnitude >0.5 sharply decreased after the mean sample size exceeded 30 fish (Fig. 3). 

Sample size is of course not the only attribute that describes the quality of a study, but the effects detected here certainly 

suggest that studies with n < 30 fish per treatment may yield spurious effects and should be weighted accordingly. 

Experimenter/observation bias during data collection is known to seriously skew results in behavioural research [20]. For 

example, non-blinded observations are common in life sciences, but are known to result in higher reported effect sizes 

and more significant p-values than blinded observations [21]. Most publications assessing ocean acidification effects on 

fish behaviour, including the initial studies reporting large effect sizes, do not include statements of blinding for behavioural 

observations. Furthermore, given that statements of blinding can be misleading [22], there has been a call for video 

evidence in animal behaviour research [23]. Moreover, the persistence of inflated effects beyond initial studies can be 

perpetuated by confirmation bias, as follow-up studies attempt to confirm initial inflated effects and capitalise on the 

receptivity of high-profile journals to new (apparent) phenomena [24]. While our analysis does not empirically demonstrate 

that experimenter bias contributed to the decline effect, it is possible that conscious and unconscious experimenter biases 

may have contributed to large effect sizes in this field.  

Publication and citation bias. Another prominent explanation for the decline effect is selective publication bias, 

as results showing strong effects are often published more readily, and in higher-impact journals, than studies showing 

weak or null results. Indeed, publication bias has been suggested as perhaps the most parsimonious explanation for the 

decline effect in ecology and evolution, as studies showing no effect can be difficult to publish [2]. This can be attributed 

to authors selectively publishing impressive results in prestigious journals (and not publishing less exciting results), and 

also to journals—particularly high impact journals—selectively publishing strong effects. This biased publishing can result 

in the proliferation of studies reporting strong effects, even though they may not be true [25], and can fuel citation bias 

[26]. Indeed, a recent analysis suggested that field studies in global change biology suffer from publication bias, which 

has fuelled the proliferation of underpowered studies reporting overestimated effect sizes [27]. To determine if studies 

testing for effects of ocean acidification on fish behaviour exhibited signs of publication bias and citation bias, we assessed 

relationships between effect size magnitude, journal impact factor, and Google Scholar citations (Fig. 4). Examining 

average citations per year and the total number of citations since 2020, four papers stood above the rest: the initial three 

studies in this field [8–10] and the sentinel paper proposing GABAA neurotransmitter interference as the physiological 

mechanism for observed behavioural effects [28] (Fig. 4a,b). While it is difficult to quantify whether authors selectively 

published only their strongest effects early in this field, we were able to quantify effect size magnitudes as a function of 

journal impact factor. We found that the most striking effects of ocean acidification on fish behaviour have been published 

in journals with high impact factors (Fig. 4c). In addition, these studies have had a stronger influence (i.e., higher citation 

frequency) on this field to date than lower impact studies with weaker effect sizes (Fig. 4d,e). Similar results have been 

reported in other areas of ecology and evolution, perhaps most notably in studies regarding terrestrial plant responses to 

high CO2 [29].  

Together, our results suggest that large effect sizes among studies assessing acidification impacts on fish behaviour 

generally have low sample size, but tend to be published in high impact journals and are cited more. Consequently, the 

one-two punch of low sample sizes and the preference to publish large effects has seemingly led to an incorrect 

interpretation that ocean acidification will result in broad impacts on fish behaviour and thus have wide-ranging ecological 

consequences – an interpretation that persists in studies published today (Table S2). 
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Fig. 4. Strong effects are published in high impact journals, and these studies are cited more than small effect 

studies in lower impact journals. (a-b) Google Scholar citation metrics as of September 10, 2021 for each of the 

studies included in our meta-analysis, including average citations per year (a) and total citations since 2020 (b). The 

initial three studies spearheading this field are denoted by the grey background, and the red dashed line represents the 

lowest citation metric among those three studies. Studies are ordered chronologically along the x-axis, and colour-coded 

by year published online. (c) Mean effect size magnitude for each individual study as a function of journal impact factor 

(at time of online publication). (d) The number of citations per year for each study as a function of journal impact factor 

(at time of online publication) (e) The number of citations per year for each study as a function of mean effect size 

magnitude for that study. Note that, for panels (a) and (c), mean effect size for a given study is not a weighted effect 

size magnitude, but is simply computed as the mean of individual observations for a given study. Data are fit with linear 

curves and 95% confidence bounds, and points are colour-coded by study; the size of data points represents the 

relative mean sample size of the study. Source data for each figure panel can be found in Supplementary File 14. 
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Investigator effects. It is important to note that the early studies published in 2009-2010 [8–10], and some 

subsequent papers from the same authors, have recently been questioned for their scientific validity [30]. Indeed, these 

early studies have a large influence on the observed decline effect in our analysis. At the request of the editors, we thus 

explored the potential for investigator effects, as such effects have been reported to drive decline effects for the field of 

ecology and evolution in the past (e.g., fluctuating asymmetry [31]). When all papers authored or co-authored by at least 

one of the lead investigators of those early studies were removed from the dataset (n = 41 studies, 45%), the decline 

effect was no longer apparent from 2012–2019 (Fig. 5). While conclusions regarding the potential roles of invalid data 

await further investigation [30], our results do suggest that investigator or lab group effects have contributed to the decline 

effect reported here. We suggest that future studies documenting the presence or absence of decline effects – and indeed 

meta-analyses in general – should carefully consider and evaluate whether investigator effects may be at play in a given 

field of study. 

 

 
 

Fig. 5. The decline effect in ocean acidification research on fish behaviour excluding studies authored (or co-

authored) by lead investigators of initial studies. (a) Trend in raw effect sizes (lnRR) for each experiment in our 

dataset excluding all studies authored (or co-authored) by lead investigators of the three initial studies [8–10] plotted as 

a function of year of publication (online) and colour-coded according to study. Data are fit with a Loess curve with 95% 

confidence bounds. (b) Mean effect size magnitude (absolute lnRR magnitude ± upper and lower confidence bounds) 

for each year of publication (online) in our dataset excluding all studies authored (or co-authored) by lead investigators 

of the three initial studies. Mean effect size magnitudes and confidence bounds were estimated using Bayesian 

simulations and a folded normal distribution. Note: colours in (b) are aesthetic in nature and follow a gradient according 

to year of publication. Also note that data begin in 2012 since all publications prior to 2012 included initial lead 

investigators in the author list. Vertical axes are scaled to enable direct comparison with Fig. 1. Source data for each 

figure panel can be found in Supplementary File 14. 
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Being on our best behaviour 

Our results suggest that large effects of ocean acidification on fish behaviour were at least in part due to methodological 

factors in early studies (e.g., low sample sizes). Furthermore, the proliferation and persistence of this idea has likely been 

aided by the selective publication of large effect sizes by authors and journals, particularly at the onset of this field, and 

the continued high frequency of citations for those papers. It is important to note, however, that low sample size and 

selective publication cannot fully explain the strong decline effect detected here, and other biases and processes may be 

at play [7,30]. Nonetheless, we call on journals, journal editors, peer-reviewers, and researchers to take steps to 

proactively address the issues of low sample size and selective publication, not only in the ocean acidification field, but 

also more broadly across scientific disciplines.  

To this end, we strongly argue that future ocean acidification studies on fish behaviour should employ a sample size 

greater than 30 fish per treatment in order to be considered reliable. It is the combined responsibility of researchers, 

journal editors, and peer-reviewers to ensure that submitted manuscripts abide by this guideline. To achieve this, authors 

should report exact sample sizes clearly in the text of manuscripts; however, from our analysis, 34% of studies did not do 

this adequately (see raw data in Supplementary File 3). In addition, for other fields, we suggest that studies with higher 

sample sizes be published alongside, if not very soon after, an original novel finding to ensure that such a finding is robust. 

Ideally, researchers would conduct pilot studies with varying sample sizes to determine an adequate sample size threshold 

and conduct appropriate pre-study power analyses; however, time and financial constraints can make this difficult. While 

adequate sample sizes will vary across topics and fields, ensuring studies with large sample sizes are published early 

alongside those with smaller sample sizes can strive toward reducing the amount of time it takes to truly understand a 

phenomenon.     

Journals, researchers, editors, and reviewers can take additional steps to limit biases in published research. First and 

foremost, we suggest that journals adopt the practice of registered reports to ensure that studies not detecting an effect 

are published in a timely manner. Herein, journals should provide authors with the ability to submit proposed 

methodologies and have them formally peer reviewed prior to studies even being conducted. If methodologies are deemed 

sound (or revised to be so) and “accepted” by reviewers, journals should commit to publishing the results regardless of 

their outcome. Although registered reports may not be sufficient to avoid the influence of some issues such as poor data, 

they may reduce the risk of inflated results driving decline effects – and prolonged incorrect understanding – for other 

phenomena in the future. While not a silver-bullet solution, this practice could help to reduce selective publication bias 

and the risk of early, flawed studies being disproportionately influential in a given field [32]. Researchers should also seek, 

develop, and adhere to best practice guidelines for experimental setups [33] to minimize the potential for experimental 

artefacts to influence results. Properly blinded observations [21] and the use of technologies such as automated tracking 

[34] and biosensors [35] can also reduce observer bias and increase trust in reported findings [36]. When automated 

methods are not possible, video recordings of experiments from start to finish can greatly increase transparency [23]. 

Editors and the selected peer reviewers should closely consider and evaluate the relevance and rigor of methodological 

approaches, which can help increase accuracy and repeatability [37]. When selecting peer-reviewers for manuscripts, 

editors should also be aware that researchers publishing initial strong effects may be biased in their reviews (i.e., 

selectively accepting manuscripts that support their earlier publications) and ensure a diverse body of reviewers for any 

given manuscript. While we do not empirically demonstrate this bias in our analyses, it is important to recognize and 

mitigate the potential for it to prolong inaccurate scientific findings. 

Finally, being critical and skeptical of early findings with large effects can help avoid many of the real-world problems 

associated with inflated effects. Interestingly, a recent study showed that experienced scientists are highly accurate at 

predicting which studies will stand up to independent replication versus those that will not [38], lending support to the idea 

that if something seems too good to be true then it probably is. Nonetheless, the citation analysis provided herein suggests 

that researchers have been slow to adopt studies reporting negative and null results for this field, as the early studies with 

large effect sizes remain the most highly cited among all articles in our dataset. The earlier that a healthy skepticism is 

applied, the less impact inflated results may have on the scientific process and the public perception of scientists. 

Ultimately, independent replication should be established before new results are to be trusted and promoted broadly. 
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Final remarks 

Our results demonstrate that more than a decade of ocean acidification research on fish behaviour is characterized by 

the decline effect. While the field has seemingly settled in a good place with respect to realistic effect sizes, it has taken 

10 years to get there. Furthermore, studies continue to cite early studies with unreasonable effect sizes to promote that 

acidification is predicted to broadly impact fish behaviour and ecology (e.g., Table S2), suggesting that a shift in mindset 

is still needed for many in this field. In a broader sense, our data reveal that the decline effect warrants exploration with 

respect to other biological and ecological phenomena and a wider array of scientific disciplines, particularly pertaining to 

global change effects. The early exaggeration of effects can have real impacts on the process of science and the people 

who do it [39]; following the steps outlined here can help to mitigate those impacts, sooner get to a real understanding of 

a phenomenon, and progress towards increased reproducibility. 

 

Materials and methods 

Literature search  

A systematic literature search was conducted according to PRISMA guidelines [40]; a completed PRISMA checklist can 

be found in Supplementary File 15 and a flowchart is provided below (Fig. 6). Peer-reviewed articles assessing the effects 

of ocean acidification on fish behaviour were searched for through Scopus and Google Scholar by J. Clements up until 

December 21, 2018 using two primary keyword strings: ‘ocean acidification fish behavio(u)r’ and ‘elevated co2 fish 

behavio(u)r’. The search was conducted using the free software “Publish or Perish” [41] selecting a time period spanning 

2009 – 2018 and the maximum number of results that the software allows (1,000 results), ignoring citations and patents. 

The keyword search resulted in a total of 4,411 results, with 2,508 papers remaining for initial screening after duplicates 

were removed (Fig. 6, Table S3). The titles and abstracts of each article were then screened for initial relevance and 

inclusion criteria. Articles were included in the database if they included statements of quantitatively assessing the effect 

of elevated CO2 (i.e., ocean acidification) on a behavioural trait of a marine fish; we excluded review articles and papers 

that measured the effect of elevated CO2 on freshwater fishes and invertebrates. This initial screening resulted in a total 

of 93 papers being retained from the database search for further evaluation. Five papers were subsequently excluded 

from the meta-analysis due to a lack of appropriate data for estimating effect size (i.e., variance and/or sample sizes were 

not a part of the behavioural metric, or specific behavioural data were not presented), resulting in a total of 88 papers. A 

cited reference search of the 93 articles was subsequently conducted on March 23, 2019 (just prior to conducting the data 

analysis) by searching the reference lists and lists of citing articles (on the article’s webpage), selecting articles with 

relevant titles, and evaluating them for includion according to the criteria above. Three additional relevant papers were 

added from the cited reference search for a total of 91 papers included in the meta-analysis. While we did not solicit a call 

for grey literature, which can be important for meta-analyses [3], such literature online would have been captured in the 

Google Scholar search; however, no relevant grey literature was uncovered in this search. Final checks of the 91 papers 

were conducted by both J. Clements and J. Sundin. Results of the literature search are provided in Fig. 6 below. Further 

details can be found in Table S3, and full search results for each step can be found in Supplementary File 2. 

Data collection 

We collected both qualitative and quantitative data from each study. All raw data (both qualitative and quantitative) can 

be found in Supplementary File 3.  

Qualitative data collection. From each of the 91 articles, we collected general bibliographic data, including authors, 

publication year, title, journal, and journal impact factor. For publication year, we recorded the year that the article was 

published online as well as the year that the article was included in an issue. Journal impact factor was recorded for the 

year of publication as well as the most current year (2017); papers published in 2018 and 2019 were assigned to the 
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impact factor for 2017 since 2018 and 2019 data on impact factor were unavailable at the time of analysis. Impact factors 

were obtained from InCites Journal Citation Reports (Clarivate Analytics). We also recorded other qualitative attributes 

for each study, including the species and life stage studied, and the behavioural metric(s) measured. 

 

 

Fig. 6. PRISMA flow diagram. Values represent the numbers of records found and retained at each stage of the 

literature search. Papers were considered “relevant” if they included an empirical test of ocean acidification on the 

behaviour of a marine fish. Off-topic papers and topical review papers were excluded, as were topical papers on 

freshwater species and invertebrates. Relevant studies were deemed “ineligible” if they did not contain data from which 

effect sizes could be calculated (this included data that did not have an associated sample size or variance, or relevant 

papers that did not report the behavioural data). Details of relevance and exclusion are in Supplementary File 2. 
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Quantitative data collection. Alongside qualitative data, we also collected quantitative data from each of the 91 

studies included in the meta-analysis. We collected the mean, sample size, and variance associated with control and 

ocean acidification treatments. We considered all ocean acidification treatments in our analysis; however, we only included 

data for independent main effects of ocean acidification, and interactive effects of acidification with other factors 

(temperature, salinity, pollution, noise, gabazine, etc.) were ignored.  

Where possible, precise means and variance were collected from published tables or published raw data; otherwise, 

means and variance were estimated from published graphs using ImageJ 1.x [42]. Sample sizes were obtained from 

tables or the text, or were back-calculated using degrees of freedom reported in the statistical results. We also recorded 

the type of variance reported and, where possible, used that to calculate standard deviation, which was necessary for 

effect size calculations. Again, these data were not obtainable from five papers, due to either the nature of the data (i.e., 

no variance associated with the response variable measured, or directional response variables measured in degrees; the 

latter due to computational issues arising from such metrics) [43–45] or from the paper reporting an effect of ocean 

acidification but not adequately providing the means and/or variance in neither the paper or supplementary material   

[46,47]. Where means and variance were measurable but observed to be zero, we estimated both as 0.0001 in order to 

calculate effect size [8–10,17,48–52]. The data were used to generate effect sizes and variance estimates for each 

observation. All data were initially collected by J. Clements and cross checked by co-authors for accuracy prior to 

analyses.  

Meta-analysis  

Testing for the decline effect 

To assess whether or not a decline effect was evident in ocean acidification research on fish behaviour, we used two 

approaches: (1) visualizing the trend of effect size magnitudes for all experiments in the dataset over time; and (2) 

computing weighted mean effect size magnitudes for each year in our dataset and assessing the trend in mean effect size 

magnitudes over time. 

Visualizing the decline effect using raw effect size magnitudes. First, we computed the effect size 

magnitude for each individual observation in our dataset and simply visualized the trend in these effect sizes over time 

(i.e., Fig. 2a). The effect size of choice was natural logarithmic transformed response ratio, lnRR, which is calculated as: 

𝑙𝑛𝑅𝑅 =  𝑙𝑛 (
X̅𝐸

X̅𝐶
) 

 

where X̅E and X̅C are the average measured response in the experimental and control treatments, respectively. We chose 

lnRR because it is commonly used in ocean acidification research [53–56] and is appropriate for both continuous and 

ratio-type response variable data (i.e., proportions and percentages, which were abundant in our dataset) that are 

commonly used in behavioural studies [57,58]. Using lnRR does have drawbacks, however. Mainly, lnRR cannot be 

calculated when a response variable has a positive value for one treatment group and a negative value for the other. As 

such, we excluded measures of relative behavioural lateralization (a measure of left-right turning preference) from our 

analysis, as well as any index metrics that spanned positive and negative values. For response variables that were 

reported as a ‘change in’ behaviour from a specific baseline (and could therefore have both positive and negative values), 

we only included instances in which the response variable values for the control treatment and elevated CO2 treatment 

were both of the same directionality (i.e., both positive or both negative changes). For all such instances, the rationale for 

omissions and/or inclusion are provided in the ‘Notes’ column in Supplementary File 3. 

Once calculated, the individual effect sizes were transformed to the absolute value due to the inherent difficulty in 

assigning a functional direction to a change in behaviour, as many behavioural changes can be characterized by both 

positive and negative functional trade-offs. For example, increased activity under elevated pCO2 could make prey fish 
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more difficult for predators to capture, but could also make prey more noticeable to predators. Therefore, rather than 

prescribing arbitrary functional directionality to altered behaviour, we simply elected to use absolute value (i.e., unsigned 

value) of lnRR to visualize the decline effect. It is important to note that such a transformation only provides a measure of 

effect size magnitude. Thus, the absolute effect size overestimates, and is therefore a conservative estimate of, the true 

effect size, but can still be used to test for declining effect size magnitudes over time (and can thus be used to test for the 

decline effect). Although this can complicate true population-level inferences [59], the use of absolute effect size values 

is informative for understanding the strength of effects ignoring directionality [60]. 

Assessing weighted mean effect size magnitudes by year. Although useful for visualizing a trend in effect 

sizes over time, the first approach above is not analytically rigorous. Properly analyzing trends in effect sizes should 

including a weighted component whereby individual effect sizes are weighted according to their precision (i.e., 

measurements with a larger sample size and lower variance should be given more weight than those with a lower sample 

size and higher variance) [61]. As such, we computed weighted mean effect size magnitudes (and their associated 

uncertainty; i.e., upper and lower confidence bounds) for each year represented in our dataset, and assessed the trend 

in these effect sizes over time. 

Weighted mean effect size magnitudes (lnRR) and their confidence bounds were computed using the “transform-then-

analyze” approach as suggested by [62], with R code adapted from [63] to avoid biased estimates of effect size magnitude. 

Briefly, this method estimates the mean effect size for each level of a moderator of interest (i.e., each year in our dataset) 

by assuming a normal distribution and subsequently transforming the mean effect size using a folded normal distribution 

to estimate a mean effect size magnitude. Uncertainty around the mean effect size magnitude was estimated in a Bayesian 

fashion using the MCMCglmm() function from the MCMCglmm package [64], applying the entire posterior distribution of 

mean estimated to the folded normal distribution as per [63]. Annotated R code, raw data files for the analysis, and source 

data for each figure panel are provided in the supplementary material for reproducibility (Supplementary files 4–14).  

 

Assessing biological explanations for the decline effect  

Since a decline effect was detected in our analysis, we explored three biological factors that might explain the observed 

decline effect: 1. climate (cold-water vs. warm-water species); 2. behaviour type (olfactory vs. non-olfactory behaviours); 

and 3. life stage (larvae vs. juveniles and adults).  

Because early studies were focused on warm-water fish from tropical coral reefs, the observed decline effect could 

potentially be driven by an increasing number of studies on less sensitive cold-water species over time. Cold-water fish in 

temperate regions experience a higher degree of temporal variability in carbonate chemistry parameters over large spatial 

areas [15]. Therefore, they may be less sensitive to changes in seawater CO2 as per the Ocean Variability Hypothesis 

[16]. If an increasing number of studies on cold-water species over time was responsible for the decline effect, removing 

cold-water species from the dataset (i.e., only including warm-water species) should result in the decline effect trend 

disappearing. In the same vein, the strongest effects of ocean acidification on fish behaviour have undoubtedly been 

reported for olfactory responses, and an increasing number of studies on non-olfactory behaviours could explain the 

decline effect. If this was true, removing non-olfactory behaviours from the dataset should negate the decline effect trend, 

so we therefore tested for the influence of non-olfactory behaviours by removing them from the dataset and re-running 

the analysis. Finally, larvae are typically considered to be more sensitive to acidification than juveniles and adults, and 

removing less sensitive life stages from the dataset would remove the decline effect trend if this explanation was 

responsible for the decline (i.e., if studies using less sensitive life stages had increased proportionally over time). 

Therefore, to test whether or not the decline effect was due to these three biological factors, re-ran analysis the analysis 

described in Assessing weighted mean effect size magnitudes by year above on three separate datasets; one with cold 

water species removed, one with non-olfactory responses removed, and one with juvenile and adult life stages removed.  
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Assessing evidence for selective publication bias, citation bias, methodological bias, and investigator 

effects  

Alongside testing for the decline effect, we also wanted to determine whether publication bias and/or methodological bias 

may have contributed to the large effect sizes reported in this field, and whether there was any evidence for citation bias. 

In new and emerging topics, large effect sizes can be driven by authors and high-impact journals selectively publishing 

novel and ground-breaking results with large effect sizes [65]. If selective publication bias was evident among studies 

testing for effects of ocean acidification on fish behaviour, there would be a positive relationship between effect size 

magnitude and journal impact factor sensu [29]. Thus, to determine if selective publication bias could be present in this 

field, we visually assessed the relationship between the journal impact factor (for the year of online publication) and the 

mean effect size magnitude for each study. It is important to note here that we did not compute weighted mean effect size 

magnitudes for each study, but simply computed the mean of the raw effect size magnitudes as calculated in the section 

Visualizing the decline effect using raw effect size magnitudes above.  

To check for citation bias, we visually assessed the relationship between impact factor and the number of citations per 

year (according to Google Scholar on September 10, 2021) for each study, as well as the relationship between mean 

effect size magnitude and citations per year. We chose to use Google Scholar for citation data because it has been shown 

to be more comprehensive than other sources (e.g., Web of Science, Journal Citation Reports, and Scopus), as Google 

Scholar not only captures the vast majority of citations documented by these other sources, but tends to capture more 

citations that are missed by those sources [66,67]. If citation bias was present in this field, citations per year would be 

positively correlated with mean effect size magnitude. Furthermore, if selective publication bias was influencing citation 

bias, a positive relationship between impact factor and citations per year would be present.  

To assess if low sample sizes could contribute to large effect sizes (i.e., higher probability of Type 1 error), we plotted 

mean effect size magnitude for each study against the mean sample size of that study. If low sample size was influencing 

effect sizes among studies in this field, large effect sizes would cluster near the lower end of the sample size spectrum.  

Finally, because the validity of data presented in the early studies of this field have recently been questioned [30] and 

investigator bias has been reported to drive decline effects in ecology and evolution in the past [31], we were asked by 

the editors to test for investigator (or lab group) effects by re-running the analysis on a dataset with all papers authored 

or co-authored by the lead investigators of those initial papers (i.e., P. Munday and/or D. Dixson) removed. Herein, we 

once again visualized all raw effect sizes plotted against time (i.e., see Visualizing the decline effect using raw effect size 

magnitudes), and also computed weighted mean effect size magnitudes for each year (i.e., see Assessing weighted mean 

effect size magnitudes by year). The potential for investigator effects influencing the decline effect would be apparent if 

the decline effect was not evident in the dataset excluding these authors. 
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