
1 
 

An Optical Scattering Based Cost-Effective Approach Towards 1 
Quantitative Assessment Of Turbidity And Particle Size Estimation In Drinking Water 2 

Using Image Analysis 3 
 4 

 5 
 6 

 7 

Soumendra Singh 1, Animesh Halder 1,2, Amrita Banerjee 1, Md. Nur Hasan3, Arpan Bera3, 8 

Oindrila Sinha4, Sanjay K. Ghosh5, Amitabha Mitra5 and Samir Kumar Pal 1,3 * 9 

 10 
 11 
 12 
 13 
 14 
 15 
 16 

1Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, 17 

Sector-III, Salt Lake, Kolkata:700 106, India 18 
 19 

2University of Calcutta, Department of Applied Optics and Photonics, JD-2, Sector-III, Salt 20 
Lake, Kolkata: 700 106, India 21 

 22 
3Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National 23 

Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata:700 106, India 24 
 25 

4Department of Life Sciences, Presidency University, 86/1, College Street road, Calcutta 26 
University, Kolkata 700073 27 

 28 
5Center for Astroparticle Physics and Space Science, Bose Institute, Sector-III, Salt Lake, 29 

Kolkata: 700091, India, 30 
 31 

 32 
 33 

 34 
 35 

 36 
 37 

 38 
 39 

*Samir Kumar Pal, Email: skpal@bose.res.in  40 
   41 

42 

mailto:skpal@bose.res.in


2 
 

ABSTRACT 43 
 44 

Contaminated water consumption primarily for drinking purposes is the cause of 45 

approximately 502,000 global deaths every year mostly in economically challenging countries 46 

indicating the need for a cheap, easy to use a yet robust and scientifically proven method for 47 

determination of water quality. In this work, we have characterized the water quality utilizing 48 

the principles of optical scattering by the suspended particulate matter using a low-cost 49 

wireless-enabled camera. The images grabbed by the camera on an optically lit cast screen on 50 

a red and a blue dot were allowed to arrive through a “model scattering medium". An estimate 51 

of the amount of light reaching the detector camera essentially provide Optical Density of the 52 

medium. Edge blurring of the captured images reveals information of the suspended 53 

particulates (sizes) in the medium. The individual pixel information was analyzed and the 'edge 54 

blurring' phenomenon was shown on an RGB intensity curve. The average diameter of the 55 

dominant suspended particles presents in the model scattering medium is also estimated from 56 

the fitting parameters and compared with that from commercially available Dynamic Light 57 

Scattering (DLS) instrument. The system is effective in measuring bacterial growth and the 58 

acquired data have been compared with that of the growth curve obtained from the gold 59 

standard method. Limit of Detection (LOD) of the set-up was found to be 48 ppm. The 60 

extremely cost-effective nature of the set-up, the innovative method of analysis, and easy 61 

availability of components would expectedly make water quality assessment very easy and user 62 

friendly.  63 

 64 
1. INTRODUCTION 65 

 66 

Increasing environmental pollution is a matter of grave concern in modern society(Wang, 67 

Webber, Finlayson, & Barnett, 2008). Pollution extends from air, sound, and water 68 

(Burningham & Thrush, 2004; Gorman, 2001). Among these, water pollution has shown a 69 

significant increase with the growing population index particularly in Low and Middle-Income 70 

Countries (LMIC) (Suk et al., 2016; Thomas, Wickramasinghe, Mendis, Roberts, & Foster, 71 

2015). A worldwide minimum of 2 billion people consumes water for drinking, contaminated 72 

with fecal matter (Kimani-Murage & Ngindu, 2007). Contaminated water is the root cause of 73 

deadly diseases such as diarrhea, cholera, dysentery as well as typhoid, and its consumption 74 

results in 502,000 diarrheal deaths annually (Dwight, Fernandez, Baker, Semenza, & Olson, 75 
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2005; Kimani-Murage & Ngindu, 2007). These data indicate the urgent need for quantitative 76 

assessment of water quality including lakes(Li et al., 2007) and bigger water bodies with online 77 

determination of results indicating the readiness of consumption of available drinking water. 78 

Water quality is determined by its chemical, physical, and biological content (Lawson, 2011; 79 

Ramalho, Cunha, Teixeira, & Gibbs, 2001; Sadeghi, Mohammadian, Nourani, Peyda, & 80 

Eslami, 2007). The assessment is mainly a manual process and conventionally it is done by the 81 

collection of water samples and using chemical and other methods of analysis (Farré & Barceló, 82 

2003). The processes are complex, suitable only for a trained person (Tebbutt, 1997). 83 

Moreover, they are time-consuming and offline (Lenat, 1988). With the advent and 84 

development of sensor-based systems, substantial research has been carried out to automate 85 

and real-time monitor the water quality and Internet of Things (IoT) enable devices are in 86 

demand for immediate intimation of human action needed anywhere (O'Flynn et al., 2007). 87 

Such sensor-based systems mainly focus on the total dissolved solvents (TDS) and pH 88 

properties of water and few such sensors have been made commercially available also. While 89 

online sensors ensure immediate data availability and trigger the need for urgent action, their 90 

calibration, reliability, and water-induced stains become an important concern (Lambrou, 91 

Anastasiou, Panayiotou, & Polycarpou, 2014). Some alternate experimental methods were also 92 

tried by researchers like using the bioscreen microbiological growth analyser (Johnston, 1998) 93 

and underwater imaging systems(Ouyang et al., 2013; Selmo et al., 2017). 94 

 Various methods of probing water quality have been tried and researched by various 95 

scientists (Association & Association, 1989). The contemporary research in this direction 96 

includes the measurement of ocean watercolor and estimation of its effect on marine biology 97 

(Barale, 1991; Shujing & Zhihua, 2001). RGB analysis has been used to determine the salinity 98 

index of water by using the ration of R to B and B to G was used to determine the chlorophyll 99 

content of water (Goddijn & White, 2006). Airborne digital image photography has also been 100 
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used to map water pollution and overcome the problem of cloud cover scenes (Kallio et al., 101 

2001). Recently, computer vision and artificial intelligence have witnessed their application in 102 

the measurement of water turbidity and related parameters (Zion, 2012). Various methods of 103 

estimation of coliforms in drinking water have been tried as a measure to estimate water 104 

quality(Rompré, Servais, Baudart, De-Roubin, & Laurent, 2002).  In our present study, we 105 

have used image analysis of a Red and a Blue dots on an optically lit cast screen across a model 106 

turbid medium to estimate the optical density (turbidity) and computational analysis of the 107 

captured image-edge blurring phenomena to conclude on the diameter of dominant suspended 108 

particulate matter in the turbid colloidal solution. We have also explored the possibility of using 109 

a submersible camera to acquire data for long term data acquisition of a natural water body. 110 

Data acquired remotely has been analyzed in our indigenously developed software for online 111 

monitoring. The proposed set-up finally produces real-time data of particle size estimation and 112 

fitness of consumption of contaminated water samples with sub-micron suspended particulate 113 

matter, which are difficult to assess via visual inspection. The developed set-up efficiently 114 

estimates the presence of suspended particulate matter including micro-organism to a level of 115 

48 ppm (and hence defines the LOD of the system) which is well below the WHO level of 300 116 

ppm in drinking water (Organization, 2003).  Water samples with coarser particles will be 117 

easier to identify and screen for consumption visually have not been included in this study. 118 

2. MATERIALS AND METHODS 119 

2.1. Cast Screen 120 

An optically backlit cast screen was used to draw the Red and Blue dots. The 220 VAC LED 121 

lamp was purchased from Philips and was fitted with an optical diffuser to block the direct 122 

beam saturating the receiver (camera). The dots of 1 cm diameter were printed from a calibrated 123 

true color printer (HP 2280). The wavelengths corresponding to individual colors were 124 

determined from the reverse calculation of RGB value with wavelength correlation. The 125 
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submersible camera (QAWACHH) was purchased online. “Y-camera” app was used to acquire 126 

live images on a laptop or smartphone. Quartz cuvette was held in between as a sample holder 127 

ensuring a clear field of view of the cast screen through the sample. 128 

2.2. Preparation of Samples  129 

The same quality milk samples were prepared at various concentrations starting from 1μL to 130 

40 μL in 1 mL of whole raw milk. The purchased sample was maintained at the highest purity 131 

level to the best of knowledge. The standard pipetting apparatus (Accupipet) was used to 132 

extract the exact amount of solution under test. 133 

2.3. Camera Characterization 134 

Computer vision mainly suffers from the problem of auto-brightness and auto saturation of 135 

pixels (Hu, Gallo, Pulli, & Sun, 2013). This leads to unequal referencing of data under various 136 

ambient light conditions. However, the choice of camera was made to be able to manually 137 

adjust the focus and exposure. Moreover, important considerations were taken to ensure 138 

submerged condition water protection for electronics and camera optics. To tackle this 139 

problem, a mobile endoscope camera enabled with in-built wireless LAN was used to capture 140 

images and transfer to a distant computer or mobile in real-time.    141 

2.4. Development of low-cost instrument and Its Working Principle 142 

The working principle of this device is primarily based on the scattering and absorption of light 143 

by suspended particulate matters in a colloidal solution. Fig. 1 shows the schematic diagram of 144 

the experimental arrangement. A backlit screen (diffusor) has been used as a cast screen. Two 145 

colors Red and Blue have been utilized as a marker of distinctly apart wavelength with no 146 

overlap of the spectrum. Light from the screen travels to the wireless camera after interacting 147 

with the sample in the cuvette. The camera has been strategically placed keeping in mind the 148 

view angle to cover both dots which are kept ensuring equal illumination behind both. The 149 

camera can be kept submerged under real-life situations and is enabled with wireless LAN to 150 
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ensure remote monitoring of the sample. Light traveling from the screen will suffer absorption 151 

by the sample guided by Beer-Lambert's law. However, light traveling at the edge of the sample 152 

will suffer multiple reflections and will result in blurring of the edges as depicted conceptually 153 

in Fig. 2(a). The indigenously developed machine-computer interface will acquire live images 154 

and will do a pixel analysis of the entire image frame to quickly calculate the amount of light 155 

absorbed as well as particle size estimation of the dominant component. Fig. 2(b) shows the 156 

pattern of fade experienced by the edge of the image as one moves away from the center of the 157 

circle.   158 

2.5. Interfacing Software Design 159 

A LabVIEW based program is designed to acquire and process data from the instrument via a 160 

USB port. A Microsoft-Windows based on-board computer is used to run the developed 161 

software in real-time to acquire data. The interface is made to be simple and intuitive, thus, no 162 

requirement of any additional training to operate the software. The software identifies the 163 

attached camera and grabs video frames. It then does frame by frame pixel RGB analysis and 164 

extracts the Red and Blue information from the similar color dots respectively. The software 165 

also plots the value in real-time and tries to identify the edge and performs an online fitting of 166 

a sigmoidal function. The derived values are a marker of various parameters of the suspended 167 

particulate matter.  168 

 2.6. Bacterial Growth curve experiment 169 

The bactericidal activity is performed using MRSA (methicillin-resistant staphylococcus 170 

aureus) bacteria cells. The cells are cultured in a Luria Broth (LB) medium under an incubator 171 

shaker at 37 °C for 24 h. The optical density of freshly grown overnight culture is fixed to 0.1 172 

in LB medium initially. The culture is then put in a cuvette and incubated at 37°C with shaking 173 

for 9 h. The absorbance is taken at every hour interval and plotted against time with baseline 174 

correction. The minimum detectable concentration of MRSA was determined using the onset 175 
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of the growth curve. To estimate the limit of detection (LOD) of the suspended micro-organism 176 

(MRSA), we have converted the concentration of the micro-organism in the media from 177 

CFU/ml to ppm unit.  178 

2.7. Crystal Violet (CV) Staining Assay 179 
 180 

 The freshly diluted culture of MRSA is spread over a biofilm and kept in an incubator at 37°C 181 

for 24 h. Then, 1% of CV solution is spread over biofilm and incubated for 3 h. After washing 182 

with water, the biofilm is exposed under a microscope (Leica digital inverted microscopes 183 

DMI8). 184 

3. RESULT AND DISCUSSION 185 

The acquired video is analyzed frame by frame. Individual frames were performed a raster scan 186 

for pixel RGB information. Fig. 3(a) shows the intensity plot of Red value (from RGB analysis) 187 

obtained from Red-colored dot. Similar results were obtained from the blue dot after extraction 188 

of blue value (from the RGB analysis) as evident from Fig. 3(b). The curves were fitted with a 189 

sigmoidal function. The fitting parameters obtained were found to be markers of absorption 190 

and scattering parameters of the sample under test. The fitted equation was, 191 

𝒚 = 𝑨𝟐 +
(𝑨𝟏 − 𝑨𝟐)

(𝟏 + 𝒆(
(𝒙−𝒙𝟎)

𝒅𝒙
⁄ ))

 
(i) 

The value of X0 obtained from the fitting function from individual curves is plotted against 192 

concentration for light red n blue dots as shown in Fig. 4(a & b) respectively. The parameter is 193 

found to be indicative of the broadening of the edges due to Rayleigh scattering of optical 194 

signals by the suspended particulate matter. The pixel profile plot is expected to show a shift 195 

of intensities towards the negative X-axis to represent the broadening to the colored dot on the 196 

left edge. This was confirmed by plotting X0 profile with concentration as shown in Fig. 3 (a & 197 

b). The curve clearly shows the linearly decreasing profile with increasing concentration 198 

suggesting a significant broadening of edges which is a signature of number and size 199 
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distribution of colloidal substance present in an optically turbid solution. Hence, the broadening 200 

of edges becomes the signature of the number of scattering materials present in the colloidal 201 

suspension.  202 

The diameter of particles in colloidal suspension can be estimated from the following well 203 

known Rayleigh scattering equation (ii). The intensity I of light scattered by anyone of the 204 

small spheres of diameter d and refractive index n from a beam of unpolarized light of 205 

wavelength λ and intensity I0 is given by 206 

𝑰 = 𝑰𝟎

𝟏 + 𝐜𝐨𝐬𝟐 𝜽

𝟐𝑹𝟐
(
𝟐𝝅

𝝀
)𝟒)(

𝒏𝟐 − 𝟏

𝒏𝟐 + 𝟏
)𝟐(

𝒅

𝟐
)𝟔 

(ii) 

where R is the distance to the particle and θ is the scattering angle. 207 

Our experimental set-up dictates the use of two distinct wavelengths which was derived by 208 

conversion of RGB parameters to respective colors and further to specific wavelengths. The 209 

derived wavelengths were found to be λ = 700 nm for red color and λ=450 nm for blue color.  210 

The above equation (ii) can be re-written as the following: 211 

𝒅𝟔 =
𝟏

(𝟏 + 𝒄𝒐𝒔𝟐𝜭)(
𝒎𝟐−𝟏

𝒎𝟐+𝟐
)𝟐

𝟖 𝑹𝟐𝝀𝟒

𝝅𝟒

𝑰

𝑰𝟎
 

(iii) 

Therefore, 212 

𝒅𝟔 = 𝑲 
𝑰

𝑰𝟎
 

(iv) 

Where K is the constant and is governed by the equation  213 

𝑲 =
𝟏

(𝟏 + 𝒄𝒐𝒔𝟐𝜭)(
𝒎𝟐−𝟏

𝒎𝟐+𝟐
)𝟐

𝟖 𝑹𝟐𝝀𝟒

𝝅𝟒
 

(v) 

After calculation using the above-mentioned values of parameters we get,  214 

K=2.589 X 10-30 for blue (considering λBlue= 450nm, R=4mm and (1+cos2θ) =1.99952) and 215 

K = 1.516 X 10-29 for red (considering λRed= 700nm, R=4mm and (1+cos2θ) =1.99956) 216 
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6 log d = log k + log
𝑰

𝑰𝟎
 (vi) 

6 log d = log k – log 
𝑰𝟎

𝑰
 (vii) 

The term log 
𝐼0

𝐼
 is the signature of Beer Lambert's law which is synonymous to the parameter 217 

A2-A1 of our fitting function. From equation (vii) we have calculated out for 450 nm 218 

wavelength as 252 nm and for 700 nm wavelength to be 730 nm which is in very close 219 

approximation with the standard DLS data as shown in Fig. 5. indicating the variation of the 220 

diameter size of the dominant scatterer present in the sample with increasing concentration. It 221 

was found that the diameter estimated using our set-up was in close agreement with the results 222 

from the DLS using the gold standard instrument. 223 

The fitting parameter (A2-A1) represents the extinction coefficient of the light. The amount of 224 

light traveling from the screen to the camera suffers absorption and scattering from the sample 225 

media. The difference of pixel information from normal spots to colored dotted spots represents 226 

the amount of light lost during forwarding travel towards the camera. The two dots represent 227 

two dominant wavelengths and carry spectroscopic information relating to the colloidal 228 

sample. (A2-A1) is an indicative parameter towards the Optical Density of the sample governed 229 

by Beer lambert’s law as shown in Fig. 6 (a & b). The choice of milk as a simulation of turbid 230 

water samples was found to be appropriate as we found a substantial similarity between particle 231 

size estimation from DLS instrument using the refractive index of various particles found in 232 

real-world water samples e.g. silica with the same. Fig. 7 shows the comparison of number 233 

concentration data obtained via DLS instrument using the refractive index of silica and milk 234 

respectively. Using our set-up, the effective diameters were found to be 6.8 µm using blue dot 235 

whereas using the red dot we arrived at the diameter of 10.9. Once again better approximation 236 

was observed using blue dot depicting the effectiveness of the set-up in a lower range of visible 237 

wavelengths. 238 
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Fig. 8 attributes the standardized growth curve of MRSA. Herein, after the short (of 1h) lag 239 

phase, optical density is exponentially increased up to 8 h (log phase). The measurement of 240 

population growth is also manifested by image processing of red and blue dots. It is found that 241 

the growth curve exhibited by the blue dot showed much higher sensitivity and quick response 242 

to the growth of MRSA. However, it also exhibits quick saturation commensurate with a 243 

standardized growth curve. In contrast, the response obtained from the Red curve is found to 244 

be less responsive compared to the standard growth curve but showed no signs of saturation 245 

with increasing time. It can be concluded that from this strategy, we can get two sensing curves, 246 

one will better sensitivity as well as a response but the lower dynamic range and the other with 247 

a lesser response but with a wider dynamic range. The bacterial growth curve was acquired 248 

using blue and red dot images. The minimum detectable concentration from the blue curve was 249 

found to be 48 ppm and the corresponding red curve was found to be 448 ppm. The LOD for 250 

the gold standard method was found to be 52 ppm. 251 

The average hydrodynamic diameter of MRSA is found to be 1µm from DLS as evident from 252 

Fig 9 (a). As shown in Fg 9 (b) the microscopic image of MRSA designates the cell diameter 253 

is approximately 0.8µm which is in good agreement to our findings 5.6 µm from our developed 254 

technique. It is to be noted the values are sometimes over-estimated due to the accumulation 255 

of multiple molecules as shown in Fig 9 (b).   256 

4. CONCLUSIONS 257 

In this work, we have presented a simple, innovative, and cost-effective technique involving 258 

the analysis of a video captured from a camera and estimate the amount of turbidity and also 259 

suspended particle size. The data have been analyzed using an indigenously developed software 260 

for online analysis of the model turbid medium. The set-up is found to be effective in 261 

calculating the above-mentioned parameters quickly and with a fair amount of accuracy. We 262 

also have investigated the possibility of assessment of bacterial presence in water with a fair 263 
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amount of accuracy. We hope the developed strategy with quick, easy, and precise 264 

determination of water quality with reasonably low LOD of suspended particulate matter (48 265 

ppm) would offer an affordable alternative in a low resource setting for developing countries. 266 

The technology can be further applied to assess air quality and visibility assessment in a foggy 267 

atmosphere. However, more experimentation is required before the same can be established. 268 
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FIGURES AND TABLES 356 

 357 

 358 
Figure. 1: (a) Schematic of the experimental arrangement for measuring optical signals from 359 
backlit cast screen (b) The dots of particular color representing the various segments of visible 360 

spectra 361 

 362 
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 363 
Figure. 2: a) Schematic of the image analysis method. Clearwater image of a dot as seen by a 364 

camera. The pixel intensity plot relative to the pixel position gives a sharp rising edge of a 365 
pulse function. Pixel intensity plot of turbid water and schematic of turbid water image b) 366 

Schematic of the relationship of blurring the edge of acquired images in turbid water 367 



15 
 

 368 
Figure. 3: a) Pixel intensity plot of acquired images of the Red dot in clear and turbid water 369 

and their respective Boltzman fitting (b) Pixel intensity plot of acquired images of the Blue dot 370 

in clear and turbid water and their respective Boltzman fittings (solid lines) 371 
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 372 
Figure 4: a) Plot of fitted center parameter X0 with concentration for red dot b) Plot of fitted 373 

center parameter X0 with concentration for the blue dot 374 
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 375 
Figure. 5: DLS data of the fitting function of a sample colloidal solution (Milk) 376 
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 377 
Figure. 6:. a): Plot of the fitted parameter indicating a difference of initial and final amplitudes 378 

(A2-A1) and its dual linear fitting function for red dot (b) Plot of the fitted parameter indicating 379 
a difference of initial and final amplitudes (A2-A1) and its dual linear fitting function for the 380 

blue dot. 381 



19 
 

 382 

 383 
Figure. 5: Particle size distribution of turbid water samples collected locally and measured 384 

with DLS using refractive index (RI) of silica and milk respectively.  385 
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 406 
Figure. 6: Growth curve as obtained from the standard process in comparison to the developed 407 

strategy.  408 
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 429 
Figure. 7: (a) DLS data of MRSA exhibiting hydrodynamic diameter around 1 micron. (b) 430 

Microscopic image of MRSA confirming the diameter of around 1 micron.. 431 
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