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Abstract. Recent advances in statistical approaches called Phylogenetic Comparative 
Methods (PCMs) have provided paleontologists with a powerful set of analytical tools 
for investigating evolutionary tempo and mode in fossil lineages. However, attempts to 
integrate PCMs with fossil data often present workers with practical challenges or 
unfamiliar literature. In this paper, we present guides to the theory behind, and 
application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic 
crinoids, we present example analyses to illustrate common applications of PCMs to 
fossil data, including investigating patterns of correlated trait evolution, and 
macroevolutionary models of morphological change. We emphasize the importance of 
accounting for sources of uncertainty, and discuss how to evaluate model fit and 
adequacy. Finally, we discuss several promising methods for modelling heterogenous 
evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based 
approaches with the fossil record provides a rigorous, quantitative perspective to 
understanding key patterns in the history of life. 

1. Introduction 
A fundamental prediction of biological evolution is that a species will most commonly share 
many characteristics with lineages from which it has recently diverged, and fewer characteristics 
with lineages from which it diverged further in the past. This principle, which results from 
descent with modification, is one of the most basic in biology (Darwin 1859). A reconstruction of 
the relationships between species that is based on similarities and differences in characteristics 
– a phylogenetic hypothesis – can be used as a powerful tool to understand fundamental 
questions about the history of life (Nunn 2011; Baum and Smith 2013; Harmon 2019).  
Phylogenetic comparative methods (PCMs) can be broadly defined as statistical approaches 
that incorporate information about the shared evolutionary history of taxa (i.e. their non-
independence) to identify macroevolutionary patterns, or test hypotheses about how those 
patterns relate to macroevolutionary drivers such as climate or biotic interactions. Until recently, 
there have been largely separate analytical frameworks for phylogenetic inference (inferring 
relationships between taxonomic units using morphological or molecular character data) and 
phylogenetic comparative methods (testing hypotheses about evolution while treating the 
relationships as known). In this paper we only discuss the latter, but other articles in this volume 
focus on a unified methodological framework that integrates the two (Warnock and Wright 2020; 
Wright et al. 2020). Many other types of information, such as biogeographic data (Matzke and 
Wright 2016; Landis 2017), can be used in this modelling framework, and as new models are 
developed the scope of questions that can be addressed will increase. 



There are many reasons (perhaps particularly for paleobiologists) that it might not be feasible, 
or of interest, to use this kind of unified framework, where you must infer phylogenetic 
relationships as a means to answer other macroevolutionary questions. Perhaps you have 
previously estimated a phylogeny but now want to use it to answer new questions, perhaps you 
are interested in combining several smaller phylogenies to generate a supertree, or perhaps 
your specific question is not yet answerable in a Bayesian process-based framework (e.g., 
Warnock and Wright, 2020; Wright et al., 2020). The good news is that trees constructed in 
many different ways can be used in PCMs to make reliable inferences about trait diversification, 
provided that the tree is appropriately scaled to time using the stratigraphic record as an extra 
source of information (Bapst 2014a; Soul and Friedman 2015; Barido-Sottani et al. 2020b). 

Phylogenetic comparative methods have been rapidly proliferating in the past 5-10 years, and 
the kinds of questions they can be used to rigorously answer are now very diverse. Here, we 
review and demonstrate some of the analytical approaches that can be applied when you 
already have a phylogeny in hand. Many of these PCMs are used to model trait change through 
time, and the relationship between that trait change and other variables. Most do not model the 
underlying microevolutionary processes occurring in populations, or the external drivers that 
generate the trait change. Instead, PCMs more commonly use stochastic models to investigate 
the long-term outcome of evolutionary change. Therefore, as is outlined in more detail later on, 
different underlying processes can generate similar patterns that can be equally well explained 
by the same model. Careful interpretation of the results of any analysis is imperative. 

We begin by outlining some fundamental approaches that are conceptually important, and then 
move on to more complex macroevolutionary models. Multiple books have been written on this 
vast topic (see Nunn 2011, Garamszegi 2014 and Harmon 2019, each of which are not focused 
on the fossil record, but which paleontologists might find useful nonetheless), but we hope to 
provide you with a clear digestible explanation of the theory behind a variety of PCMs, along 
with enough information on how to apply them to get started in answering your own questions. A 
reader already well versed in these approaches will find a review of recently published methods, 
and suggestions for their implementation in a paleobiological context, in the last third of the 
paper. A variety of software has been used to implement PCMs, but the majority of those likely 
to be of interest to paleontologists are available in R (e.g. Bapst 2012; Lloyd 2016; Barido-
Sottani et al. 2019). We therefore provide all of our reproducible examples in R. Package names 
and inline code examples are in Courier new font.  

All data used in the examples below are available on GitHub 
(https://github.com/daveyfwright/PCMsForPaleontologists) along with a script to load and format 
the data in the R programming environment so that it can be analyzed immediately, as well as 
the full R script and annotated script and outputs from the example analyses. Although the 
examples in this paper are intended to provide a guide for implementing comparative analyses 
in R, we encourage readers to also follow along directly using the scripts we provide on GitHub. 
The example code in the main manuscript assumes a basic working knowledge of R, including 
loading data, inspecting objects, reading help pages and object assignment. The materials 
online do not make this assumption and provide a detailed step-by-step guide. 

 

2. Getting Started - Data and Phylogeny 
Functions in R that can be used to manipulate phylogeny or apply phylogenetic comparative 
approaches make use of trees that are in ‘phylo’ format, originally implemented in the ape 
package (Paradis et al. 2004). In this section, we outline features of this format, and some 
important things to remember when preparing paleontological data for an analysis in R (see also 



Bapst 2014b). The dataset we use here is for fossil crinoids (Eucladida, Echinodermata), a 
morphologically diverse clade of marine invertebrates with a well-sampled fossil record. Our use 
of this dataset is primarily intended to demonstrate the different tree-based analytical tools that 
can be applied, rather than to glean specific inferences about crinoid macroevolution and we 
caution readers our results should be viewed in this light.  

Key packages in R that contain implementations of PCMs that are commonly applied to fossil 
data, are ape (standard format and processing for phylogenies in R, [Paradis et al. 2004]), nlme 
(fitting Gaussian models e.g. least squares regression, [Pinheiro et al. 2019]), geiger (versatile 
package that performs and plots many PCMs, [Harmon et al. 2008; Pennell et al. 2014]), 
phytools (additional plotting and simulation functions, [Revell 2012]) and OUwie 
(heterogeneous macroevolutionary model fitting e.g. Brownian Motion or Early Burst, [Beaulieu 
and O’Meara 2016]). There are many others, so it is valuable to spend time exploring the 
different tools that might be best suited to answering a particular question. Once a user has 
gained familiarity with the above key packages, a very extensive list of all the packages that can 
be used for phylogenetic approaches in R can be found at this website: https://cran.r-
project.org/web/views/Phylogenetics.html.  

2.1 Phylogeny 
For most of the example analyses we use a single phylogeny of eucladid crinoids that has 
branch lengths that represent time in millions of years (Figure 1, called tree in our scripts). It is 
the maximum clade credibility tree (MCCT), inferred using a model of morphological character 
evolution combined with a process-based model of diversification that allows inference of 
ancestor-descendant relationships (this method is distinct from ancestral state reconstruction, 
see section 4.2; Wright 2017a). The MCCT is the tree in the posterior distribution having the 
largest product of clade frequencies (i.e., probabilities), which represents a point estimate of 
phylogeny in a Bayesian context. Our emphasis on a single tree is for illustrative purposes only; 
in reality analyses should always be applied to a set of possible phylogenies to assess how 
robust results are to variation in tree topology and branch lengths (see section 6). The set of 
possible phylogenies (often referred to as a tree set) could be a set of most parsimonious trees, 
a random sample from a Bayesian posterior distribution, or repeats of stochastic timescaling of 
a composite topology (Bapst 2014a), etc. The number of trees to include in the set depends on 
how variable results are across different trees; if results are highly variable a larger set will be 
needed to characterize the possible outcomes of the analysis and how common they are. 100, 
500 or 1000 are common set sizes in the published literature. The phylogenies used for analysis 
should have branch lengths that are scaled to time (best practice would be to use a birth-death-
sampling approach [Stadler 2010; Gavryushkina et al. 2014; Heath et al. 2014; Wright 2017; 
Stadler et al. 2018], but if that is not possible see Hedman 2010, Bapst 2014b, Halliday and 
Goswami 2016 or Lloyd 2016 for options and considerations when choosing an a posteriori 
timescaling approach). 

A tree in phylo format has branches that are called ‘edges’, and branching points that are 
called ‘nodes’. For time-scaled phylogenies, the branch (or edge) is a graphical representation 
of the amount of time since the lineage leading to one taxon diverged from its sister lineage, so 
the length of terminal branches do not represent the amount of time the actual species or genus 
at the tip was extant, only the time since divergence. Each node has a number assigned to it, 
beginning with the tips. This format is for both ultrametric (branches all end at the same time; 
usually trees of all living taxa) and non-ultrametric trees (branches end at different times; usually 
trees that include extinct taxa).  

 



Figure 1. Phylogenetic tree comprising 82 species belonging to the Eucladida (Crinoidea, 
Echinodermata). Tree topology and branch lengths correspond to the Maximum Clade 
Credibility Tree (MCCT) based on a Bayesian tip dating analysis of morphological character 
data presented in Wright (2017a). Branch lengths are scaled to absolute time in units of millions 
of years. The MCCT is called tree in our scripts and represents a point estimate of phylogeny. 
Where possible, we recommend testing macroevolutionary inferences across a distribution of 
trees rather than a point estimate, and our emphasis on the MCCT is for illustrative purposes 
only (see section 2.1 and 6). 

 

A phylo tree in R has four components; 1) a matrix that identifies how the branches connect, 
by listing their start and end node numbers, 2) a vector of tip labels (user defined, usually taxon 
names), 3) a vector of branch lengths and 4) an integer number that is the number of internal 
nodes. For trees that include only extinct taxa, the root age of the tree can be set using 
tree$root.time <- X, where X is the numerical age (usually reported in units Ma for 
paleontological datasets). A root age is required by some analyses, and facilitates good 
visualization when plotting a tree. If there is no root age assigned most functions will assume 
the youngest tip ends at the present day, without it the tree is in relative time, rather than 
absolute.  

An important first step prior to analysis is to plot the tree (Revell et al. 2018). In our eucladid 
example some taxa were inferred to be ancestral to others in the tree (Fig 1, and see section 
4.2 for clarification on what this means). In R, a phylo object displays these sampled ancestors 



as sister to their descendants, but with zero-length branches, i.e. no inferred change between 
the node and tip for the ancestral taxon. For many PCMs, zero-length branches are 
mathematically intractable (the reasons relate to division by zero issues). Adding a very short 
length to each zero-length branch resolves this problem. If you are concerned about the 
possibility of this introducing a bias in your own analysis, you could also drop these tips from the 
tree and compare the results using each tree. Note that in the Eucladida dataset there are many 
inferred sampled ancestors, so dropping these tips may represent high information loss. 
Whether or not this is the case for different datasets will depend on the group under 
investigation. Node labels are required by some PCM packages (e.g. OUwie) so it is best 
practice  to assign them using a vector the same length as the number of nodes (as long as you 
check that the R function you are using doesn’t use them for anything you aren’t expecting, for 
example OUwie uses them to define ancestral macroevolutionary regimes, see section 9.1) This 
can be done using tree$node.label <- rep(1, Nnode(tree)), which gives all nodes 
the label ‘1’. 

A very useful basic function to inspect and manipulate phylogenies in R is vcv. When applied to 
a time-scaled tree this function outputs the phylogenetic variance covariance matrix (VCV 
matrix) of that tree. The VCV matrix is an intuitive numeric representation of the tree, and is  
used in the inner workings of many R functions implementing PCMs. Models of continuous trait 
change (like Brownian motion, see section 4 onwards) differ from one another with respect to 
how the variance and covariance of the trait is expected to change through time, and the VCV 
matrix is the basis for the statistical expectation under different models. Elements on the 
diagonal of the matrix give the variance. When a tree has branch lengths scaled to time (as 
paleontological trees usually do) then these values give the root to tip distance for each taxon 
on the tree (i.e. duration). The functions max(diag(vcv(tree))) will output the maximum 
root to tip distance, i.e. the duration of the whole tree. The off-diagonal elements give the 
covariance, which is the amount of shared variance between pairs of taxa, i.e. the length of their 
shared evolutionary history. Figure 2 shows a small example tree and its associated VCV 
matrix. 

2.2 Trait data 
In our example analyses we use a variety of PCMs to explore patterns in two continuous traits 
measured for each species in the Eucladida tree. These are Shape (calyx shape; the natural log 
of the length/width ratio of the calyx) and Density (filtration fan density; the natural log of the 
approximate number of proximal feeding appendages an individual of the species has). We also 
briefly demonstrate analysis of a discrete trait Complexity (calyx complexity; the number of 
plates interrupting the posterior interray). We store all the traits in an object called alltraits 
for ease of use in R. Some analyses implemented in R require that the tree and data have 
exactly the same taxa, for these we use a tree (called prunedTree in code examples) in which 
taxa not present in the trait data have been removed from the tree. We use an estimated 
standard error of 0.03 for Shape and 0.12 for Density, based on an average across species 
for which there is more than one specimen.  

3. Phylogenetic non-independence 
Felsenstein (1985) was the first to outline the problem of the non-independence of species trait 
data, and an algorithm to account for that problem, which he called phylogenetic independent 
contrasts (PIC). The most common evolutionary question that this problem (and proposed 
solution) are applied to involves the relationship between two traits. The extreme case of the  



 

Figure 2. (a) Hypothetical phylogeny with branch lengths scaled to absolute time. (b) Variance-
covariance matrix that describes the tree. The values along the diagonal of the matrix represent 
the amount of time from the root to each tip in the tree, which correspond to their expected 
variance in a Brownian motion model. In contrast, the off-diagonal values represent the shared 
amount of evolutionary history for pairs of tips, which corresponds to their evolutionary 
covariance. Note that the diagonal values in the matrix represent terminal branches whereas the 
off-diagonal values represent internal branches. 



problem of non-independence of species data is shown in the original paper (Felsenstein 1985, 
fig.1), and a related example is provided in Figure 3 based on Nunn and Barton (2001). An early 
divergence within a clade leads to two groups of taxa that have quite different values for 
morphological traits between those two groups, and more similar trait values within each group, 
for both of the traits under investigation. When a linear regression model or correlation test is 
used, this will result in a strong relationship being inferred, but effectively a line is being fit to two 
points – the two groups within the clade, and no such strong relationship in fact exists. The early 
split means that species in the two parts of the tree have been evolving separately from one 
another for a long time, and so have had a long time to accumulate differences between them; 
species in the same part of the tree are more similar to each other because of their recent 
common ancestor and long shared evolutionary history. Regression analysis assumes that 
individual data points are statistically independent from one another; this assumption is violated 
by species data because of the shared evolutionary history. 

 

Figure 3. How species non-independence may influence trait correlations and how phylogenetic 
independent contrasts address the issue. (a) Raw values for two traits (X and Y) plotted 
alongside the underlying phylogenetic relationships among species. Two subclades are 
identified and labeled by open and filled circles, corresponding to species with smaller (open) 
vs. larger (filled) trait values. The dotted line represents a best fit linear model using OLS 
regression. (b) Phylogenetic independent contrasts estimated as the standardized difference 
between species trait values for each internal node in the tree.  Note that the y-intercept goes 
through the origin and the difference in slope. The contrast with the largest absolute value (gray 
circle) represents the evolutionary shift in trait values between the two subclades. Adapted from 
Nunn and Barton (2001). 



Phylogenetic independent contrasts (PIC) analysis is an intuitive approach to this problem. It 
takes the average trait value of sister clades and weights this by the amount of time since their 
most recent common ancestor (i.e. the amount of time they have been evolving separately). 
Most researchers now use phylogenetic generalized least squares (PGLS) instead of PIC 
because it is a more flexible likelihood-based model framework (PIC can be shown to be a 
special case of PGLS, see Garland and Ives 2000; Blomberg et al. 2012). After a non-
phylogenetic ordinary least squares (OLS) regression is performed on species data, there will 
be phylogenetic signal that dictates how far each datapoint is from the regression line (its 
residual), we say therefore that there is phylogenetic structure in the residuals of the regression. 
PGLS incorporates information from the phylogeny into the regression model to adjust the 
regression line so that the residuals are normally distributed, rather than structured, rendering 
the analysis statistically valid. 

Fitting both an ordinary least squares and phylogenetic generalized least squares regression 
line can be done with the same R function gls. Generalized least squares regression is a 
standard approach to regression that can be used when the data points are not independent 
from one another. When this is the case the residuals of a standard regression will have 
structure that is caused by the relationship between the data points. Generalized least squares 
regression is very flexible framework that allows you to supply correlation structure for the 
residuals of the regression that can be derived from any potential source of non-independence. 
For example, here we are using phylogeny so we supply the phylogenetic variance covariance 
matrix to define the expected structure in the residuals, but because some traits are known to 
vary systematically across space (e.g. Wagner and Marcot, 2013), a matrix of expected spatial 
covariance could also be used. 

There has been repeated discussion in the literature about whether researchers should or 
should not ‘correct for phylogeny’ in a particular analysis by using approaches like phylogenetic 
independent contrasts (Felsenstein 1985; Harvey et al. 1995; Rohlf 2006; Westoby et al. 2016) 
and a concern about ‘overcorrecting’. The original formulation and explanatory figure for PIC 
has led to this terminology, which in turn may have led to some misunderstandings. Although it 
is true that without considering phylogeny a comparative analysis of two species variables might 
be statistically invalid, it might be helpful to think of PIC (and PGLS) as incorporating the 
additional useful information that phylogeny provides, into the estimation of the relationships 
between traits, rather than as a correction. 

In the context of analyses like regression or ANOVA that can be used to understand trait 
correlations and adaptation, if there is phylogenetic signal in the residuals from a model fit, then 
the resulting relationship derived is statistically invalid because the assumption of independent 
datapoints has been violated. Phylogenetic signal in any of the individual traits under 
investigation does not necessarily mean the residuals of the regression will have phylogenetic 
structure, or vice versa. Revell (2010) provides a thorough explanation of this issue. If in doubt, 
rather than using the function corBrownian shown in example analysis 1, you can use 
corPagel to define the correlation structure, this will jointly estimate lambda, which is a 
measure of the phylogenetic signal in the residuals. As lambda gets closer to 0 the estimated 
coefficients in PGLS will converge on those estimated using OLS. Think about what that means 
in terms of model assumptions between OLS and PGLS. Just because “non-phylogenetic” 
methods like OLS do not incorporate information about evolutionary relationships does not 
mean they do not make assumptions about evolutionary change. In fact, the biological 
assumptions underlying OLS for comparative analyses are mathematically and conceptually 
equivalent to using a phylogeny, but assuming that it is a star phylogeny (i.e. all branches 
simultaneously diverge from a single node). Thus, both OLS and PGLS are based on models. It 



is important to keep in mind that all models are wrong, but some are more wrong than others. 
We advocate for using model goodness of fit tests like the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC), or where possible going further and investigating model 
adequacy (see section 7). 

 

Example Analysis 1 – Regression 

Required packages: nlme; ape 

To load our example data, download it from github.com/daveyfwright/PCMsForPaleontologists 
and then follow the instructions in the file ‘Data_loading_script.R’. To follow along use the script 
in the file ‘full_script_PaleoPCM.R’, or to see output without following along see the file ‘example 
analyses.pdf’. We include some of the output in the first two example analyses. 

Is calyx shape correlated with fan density? To answer this, we could calculate the Pearson 
correlation co-efficient, or perform an OLS regression. 

Always plot the data, in this case Shape and Density from the dataframe allTraits: 

plot(allTraits$Shape, allTraits$Density,  
     pch = 19, main = "",  
     xlab = "Calyx shape ln(L/W)",  
     ylab = "Fan density" 
     )  

The standard test of correlation between two continuous variables is the Pearson correlation 
coefficient: 

cor.test(allTraits$Shape, allTraits$Density) 

Run this line of code and you should get the following output, which indicates shape and fan 
density are negatively correlated with p=0.02. 
 
data:  allTraits$Shape and allTraits$Density 
t = -2.4878, df = 63, p-value = 0.01551 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.50606523 -0.05952433 
sample estimates: 
       cor  
-0.2990814 

 

The standard regression is ordinary least squares: 

ols <- gls(Density ~ Shape,  
           data = allTraits, method = "ML") 

Look at the output 

summary(ols) 



Generalized least squares fit by maximum likelihood 
  Model: Density ~ Shape  
  Data: allTraits  
       AIC     BIC    logLik 
  175.9948 182.518 -84.99741 
 
Coefficients: 
                Value Std.Error   t-value p-value 
(Intercept)  3.561713 0.2087974 17.058224  0.0000 
Shape       -0.683057 0.2745674 -2.487756  0.0155 
 
 
An ordinary least squares regression gives a slope of -0.68 

Perform phylogenetic generalized least squares regression to see if there is a difference 

tip.heights <- diag(vcv(phy=prunedTree)) 
cor.BM <- corBrownian(phy=prunedTree) 
pgls <- gls(Density ~ Shape,  
            correlation = cor.BM,  
            weights = varFixed(~tip.heights),  
            data = allTraits,  
            method = "ML" 
            ) 

Note that this model uses two additional arguments that were not needed for OLS. 1) 
correlation, which defines the expected structure in the residuals, in this case based on the 
phylogeny and a Brownian motion model of evolution (explained in the next section), calculated 
using the function corBrownian. 2) weights, which is a modification to account for the 
different root to tip distances in our non-ultrametric tree - important for paleontologists. 
Phylogenies that have extinct taxa in them and are scaled to time are referred to as ‘non-
ultrametric’ because the tips end at different times. This is in contrast to ‘ultrametric’ trees where 
all the tips end simultaneously at the present day, as is the case with trees of extant taxa.  

Now that we have fit both OLS and PGLS we can compare them using the Akaike Information 
Criterion (AIC) to see which is a better model for the data. Akaike Information Criterion values 
can be used to evaluate the statistical fit of two or more candidate models, where the “best fit” 
model is defined by having the minimum AIC score. To minimize overfitting, AIC provides a 
compromise between a model’s goodness of fit to the data (i.e., the likelihood) and its 
“complexity” (i.e., number of parameters). For example, when there is low or no phylogenetic 
signal in the residuals of the regression, OLS would likely be preferred because it has fewer 
parameters. We can check the AIC scores of our data using the output of the gls function that 
we stored earlier in the objects ols and pgls.  

summary(ols)$AIC 
[1] 175.9948 
 
summary(pgls)$AIC 
[1] 212.8831 
 
OLS has a lower AIC score, and we can therefore interpret our results as suggesting that OLS 
is a better model for the data. This in turn indicates that the phylogeny (assuming a Brownian 



motion model of evolution; see next section) does not explain much of the structure of the 
residuals of the regression. For further explanation, see the end of section 3. It is useful to 
report both the OLS and PGLS regressions and AIC scores in a publication to allow readers to 
see the relative model fit. 

It is possible to execute PGLS assuming a different model of evolution on the phylogeny, rather 
than Brownian motion. Such alternative models are discussed in the next section. 

 

4. Tempo and mode - Brownian motion and more 
Explicitly modelling morphological character change provides a framework with which we can 
quantitatively test hypotheses about macroevolution. Through models, we can link evolutionary 
histories of groups to different biotic or abiotic factors, and link patterns in morphological 
evolution to concepts like convergence, constraint, evolutionary radiations and the adaptive 
landscape. In this section we will explore the basic models that form the foundation of many 
phylogenetic comparative methods. The underlying principle here is to use mathematical 
models that describe how we expect a trait to change along lineages in a phylogeny, if evolution 
is operating in a particular way. The process of ‘model fitting’ is essentially comparing the real 
data that we have for a trait at the tips of the phylogeny, and adjusting the parameter values 
within the model (like the rate of evolution) to get the closest match possible between our real 
data and the expected possible trait values. Usually we are testing to find which model out of a 
set of candidate models is the one that is the best fit for our data (although see model adequacy 
in section 7).  

4.1 Brownian motion 
Brownian motion (BM, sometimes known as a ‘random walk’ model of evolution) is a model that 
can be used to describe the expected variance of a trait along branches of a phylogeny through 
time. It is called a random walk because the direction and amount of change in each time step is 
independent of the direction and amount of change in the previous time step. The average 
amount of change expected in each time step (the step rate, referred to by the model parameter 
sigma 𝜎) is constant over time, so the trait variance across the tips of the phylogeny increases 
linearly over time. The simplest Brownian motion model assumes no inherent directionality of 
trait change (i.e. in each time step the trait value is equally likely to increase or decrease, so the 
expected net change is zero). In addition to the step rate 𝜎, another component of the model is 
the phylogenetic trait mean (referred to by the model parameter theta θ), which is the estimated 
trait value for the ancestral node of the phylogeny.  

Trait values of lineages wander around the phylogenetic mean through time. Under BM, the 
longer a branch’s duration on the tree, the greater the possible divergence in trait change from 
the original value. However, since the direction of change under BM is equally likely to increase 
or decrease the trait value, the most probable value at any time is still the starting value. The 
range of possible trait values that a lineage could have can be visualized as an expanding cone 
through time, for BM the cone expands linearly and the center of the cone isn’t expected to 
move through time (See figure 3.1 in Harmon 2019). When thinking about a whole clade, this 
pattern of change along lineages leads to a strong expectation – normally distributed trait values 
at the tips, with the standard deviation of that distribution dependent on the rate of evolution (the 
BM step rate 𝜎). All else being equal, the morphological disparity of a clade will increase as a 
cone through time under BM (see figure 1 in Wesley-Hunt 2005; Erwin 2007).  The less time 



that has elapsed since two branches split from a common ancestral branch, the more similar 
they are expected to be, because there has been less time for them to accumulate individual 
change and difference between them. We emphasize that the name ‘random walk’, which is 
commonly used for this model, could cause confusion. On macroevolutionary timescales 
Brownian motion is unlikely to be random in the sense that it would result entirely from genetic 
drift (the true ‘random’ microevolutionary process). Instead, the change over time is most likely 
as a result of the combination of microevolutionary forces, including selection, acting on the trait 
along with other mechanisms (e.g. drift, mutation, migration, etc., see (Hansen and Martins 
1996). Importantly, the strength or direction of selection on a lineage might fluctuate over time 
as a result of different causes, for example adaptation to a stochastically varying environment, 
resulting in trait values increasing sometimes and decreasing other times, and therefore 
producing a statistically random pattern. Many underlying microevolutionary mechanisms are 
consistent with the macroevolutionary model for BM.  

Despite the many-to-one mapping between microevolutionary processes and macroevolutionary 
outcomes, BM is almost always used in macroevolutionary model fitting because it can be 
thought of as a neutral model for trait evolution over long timescales. Moreover, because the 
equations underlying more complex models of trait evolution (e.g., Early Burst, Ornstein-
Uhlenbeck, see section 4.2) often reduce to BM when their additional parameters approach 
zero, it is used as a kind of null model. It is often a useful starting point to compare the actual 
pattern of trait evolution to the simple Brownian motion expectation. If the best fit model is 
Brownian motion then no additional events or mechanisms (like a change in the rate of 
evolution, or long-term constraints on trait change) are required to explain the pattern of 
macroevolution over time across the whole phylogeny. For other helpful explanations of 
Brownian motion on phylogenies see Nunn (2011) or Harmon (2019). See also figures and 
equations in Butler and King (2004) for a clear in-depth explanation of this and other models. 

4.2 Ancestral state reconstruction 
A commonly used analysis in paleobiological studies is ancestral state reconstruction, for both 
continuous and discrete traits. This approach is a way of averaging trait values at tips, to make 
an estimate of what the trait value at a particular node might have been. Generally these 
estimates are very imprecise, and this large uncertainty around estimates means that as a 
standalone approach, especially for continuous traits, it is unlikely to provide many useful 
insights. To visualize this imprecision from one candidate ancestral value reconstruction 
approach, see the function plotTraitgram in paleotree. Furthermore, these approaches 
rely strongly on using a model of evolution to make the estimates; usually BM is assumed. It is 
possible to use other models (for example OU, see next section), by weighting the average 
values according to the expectations of the model, but rarely are the adequacy of those models 
for the data assessed in advance. If the model assumed is not in fact a very good model for the 
data, then the ancestral state estimates will also not be accurate. For discrete traits the situation 
is a little better because possible states are constrained (see section 8 for more detail). It is 
especially problematic to perform ancestral state reconstruction using a phylogeny of living taxa; 
without fossils; directional trait change through time, or heterogeneity in tempo and mode across 
lineages will be missed. This will lead to inaccurate estimates of ancestral values (Finarelli and 
Flynn 2006).  

In other parts of this manuscript, we refer to estimating ‘sampled ancestors’; this is unrelated to 
ancestral state reconstruction. Sampled ancestors are actual fossil specimens from which we 
can take measurements, and through probablistic methods it is possible to estimate which of 
these is likely to be from a lineage whose descendants are also represented by at least one 
other actual fossil specimen in the dataset (Bapst 2013b, 2013a; Bapst and Hopkins 2017; 



Gavryushkina et al. 2017; Wright and Toom 2017). This is important because it is likely that 
many paleontological datasets contain at least one ancestor-descendant pair (Foote 1996), and 
ignoring this can distort the phylogenetic topology, branch lengths, and the outcome of 
downstream analyses (Bapst 2014a; Soul and Friedman 2017). Sampled ancestors provide an 
actual trait value at a particular point in time along a lineage. In contrast, reconstructed ancestral 
states provide an imprecise estimate of a trait value for a hypothetical unsampled population 
from which two sister lineages descended. 

Example Analysis 2 – Fitting a Brownian motion model 

Required packages: phytools; geiger 

A useful starting point in any phylogenetic investigation of morphology is to visualize the tree 
and trait plotted as a traitgram in ‘phylomorphospace’. This means that the y-axis (see Figure 4) 
is meaningful, rather than when we usually plot trees where the branching order and position of 
the tips through time are important, but the position of the tips across the width of the tree is 
arbitrary. This can be done using the function phenogram from the package	phytools. 
Traitgram and phenogram are words that are used interchangeably in the literature (Ackerly 
2009). Positions of the tips on the y-axis are the measured trait values for taxa, the positions of 
the nodes are estimated assuming Brownian motion and therefore should not be considered 
rigorous estimates of ancestral trait values, at this stage they are just for visualization (see 
subsection 4.2, Ancestral State Reconstruction). The function requires that the tree and trait 
have matching taxa and the trait vector has names corresponding to the tree tip labels (i.e. 
taxon names).  

Traitgram of Density  
phenogram(prunedTree, Density, ftype = "off") 
The argument ftype controls how the taxon names are displayed. 

Traitgram of Shape 
phenogram(tree, Shape, ftype = "off") 

Now we will fit Brownian motion models to both of the continuous traits using the function	
fitContinuous from the geiger package. 

densityBM <- fitContinuous(phy = prunedTree,  
                           dat = Density,  
                           model = "BM",  
                           meserr = 0.12) 
shapeBM <- fitContinuous(phy = tree,  
                         dat = Shape,  
                         model = "BM",  
                         meserr = 0.03) 

We can then look at the outputs densityBM and shapeBM, which show all the estimated 
parameter values like the step rate (the output ‘sigsq’) and the phylogenetic mean (the output 
‘z0’). 

densityBM 

GEIGER-fitted comparative model of continuous data 
 fitted ‘BM’ model parameters: 



 sigsq = 0.012168 
 z0 = 3.701690 
 
 model summary: 
 log-likelihood = -66.448830 
 AIC = 136.897659 
 AICc = 137.091208 
 free parameters = 2 
 
shapeBM 
 
GEIGER-fitted comparative model of continuous data 
 fitted ‘BM’ model parameters: 
 sigsq = 0.003723 
 z0 = -0.206883 
 
 model summary: 
 log-likelihood = -33.232143 
 AIC = 70.464285 
 AICc = 70.616184 
 free parameters = 2 
 
 

 
Figure 4. Phenograms, or traitgrams, help visualize patterns of trait evolution by projecting a 
phylogenetic tree into ‘trait space’ (y-axis) and time (x-axis). The upper and lower diagrams 
were constructed using a model of Brownian motion to project the eucladid MCCT into the trait 
space of filtration fan density (upper) and calyx shape (lower), respectively.   



4.3 Beyond Brownian motion 
It is reasonable to think that a simple Brownian motion model of evolution might not be an 
adequate description of patterns of morphological variation over millions of years. As 
paleontologists we can think of many examples when patterns in the fossil record suggest 
periods of constraint, or rapid increases in morphological disparity. Fortunately there is a 
straightforward framework that extends the Brownian motion model and can be used to model 
these kinds of patterns. The most commonly implemented alternative model is one that can be 
used to describe stabilizing selection - the Ornstein-Uhlenbeck model (Hansen 1997; Butler and 
King 2004; Hunt and Carrano 2010; Hunt 2012a). This model includes three parameters. The 
first two are the step rate and the trait optimum identical to a Brownian motion model, but there 
is an additional parameter - alpha 𝛼. There is still a random walk component of trait change 
(included within the step rate) but each change is biased towards getting closer to an optimum 
trait value, and the strength of that bias or attraction towards the trait optimum is 𝛼. This is 
sometimes referred to as the elastic band parameter, because the further a trait value is from 
the optimum, the higher the strength of attraction to the optimum will be. The parameter 𝛼 can 
be converted to phylogenetic half-life which might be more straightforward to interpret. It is the 
time taken for a trait to evolve halfway to the new optimum and is calculated using ln(2)/	𝛼. The 
original application of OU in evolutionary biology was to paleontological data, highlighting the 
historic importance of paleobiology in establishing quantitative approaches to understanding 
macroevolution. It was applied to try to understand whether there had been an adaptive 
optimum in the evolution of tooth crown height in extinct equids (Lande 1976). 

When modelling evolutionary change in a single trait along a lineage, the trait optimum might 
really represent an optimum value of high fitness for the organism (Hunt and Carrano 2010; 
Hunt 2012b). Although this model was originally developed to describe stabilizing selection, 
when we are fitting an OU model to the evolution of a whole clade, the trait ‘optimum’ likely 
represents some long-term average of trait optima that have varied through time. A useful 
metaphor for this could be a peak on a macroevolutionary landscape (see e.g. Boucher et al. 
2018). The simple version of OU described here is sometimes referred to as a ‘single peak’ 
model, but further methods for modelling more complex macroevolutionary landscapes and/or 
shifts between peaks are available (discussed in section 9.1). It is also possible to include an 
extra parameter which is the starting value for the trait at the root of the tree, which may be 
different to the trait optimum.  

Brownian motion is a special case of the OU model where 𝛼=0. Unlike for BM, for OU if 𝛼≠0, the 
variance does not increase linearly with time. After a particular time (related to 𝛼) the variance 
remains the same (see also figure 1 in Slater 2013). Traits evolving under OU are therefore less 
tightly linked to the structure of the phylogeny than traits evolving under BM. in other words they 
will have less phylogenetic signal, and on average each tip value observed will be less similar to 
its nearest relatives than it would be expected to be if evolving under BM. An additional 
observation about OU is that if you have two sister tips A and B, if the durations of the terminal 
branches leading to them are different (as for non-ultrametric trees), then the covariance of A 
with B will not be the same as the covariance of B with A, because covariance declines (i.e. 
phylogenetic signal is lost) with time since divergence. 

If thought about further it is possible to see how distinguishing one generating process from 
another might be difficult; a trait evolving under BM that is highly labile and therefore does not 
have strong phylogenetic signal could show a similar trait distribution to the expectation under 
OU, as could a trait evolving under BM fit to a phylogeny that has errors in the relationships 
between taxa (for further explanation see section 5). It is therefore important when fitting OU 
and other more complex models and interpreting the results, to consider whether the quality of 



the input data are adequate to distinguish between these different scenarios. Despite these 
caveats, when extinct taxa are included in phylogenies that have been extensively researched 
to produce well-established phylogenetic relationships, the differences between expectations 
under different models are large enough that it should be possible to interpret model fitting 
results with some confidence (Soul and Friedman 2015). An important advantage of including 
extinct taxa in a phylogeny is that it constrains possible trait change through time in ways that 
make it possible to distinguish between different models with confidence (Ho and Ané 2014b).  

Aside from OU, examples of other models you may have heard of are ‘Early Burst’ or ‘ACDC’ 
(Blomberg et al. 2003; Harmon et al. 2010), these are models where the step rate 𝜎 changes 
exponentially through time. They are usually fit to data to try and understand the nature of 
adaptive radiations, for which theory suggests that you should see a high rate of morphological 
evolution early in the clade’s history, or following a dispersal or extinction event, as 
morphological disparity accumulates through filling of new niches. The high early rate is 
followed by a period of stability characterized by a lower rate of morphological change (Slater 
2013). 

Another example of an alternative model is Brownian motion with a directional trend. This model 
is otherwise identical to Brownian motion except that each step change is consistently biased in 
one direction. This doesn’t mean the change is only in that direction, but that there is a higher 
probability of a change one way than the other. It is not possible to detect evolutionary patterns 
consistent with directional BM with a tree of only living taxa, this model can only be applied to a 
tree that contains fossil data (Slater et al. 2012). 

Example Analysis 3 – Simulation and fitting models of continuous character change 

Required packages: ape; phytools; geiger 

Simulations are a very useful tool to understand the behavior of different models and analyses 
(Barido-Sottani et al. 2020a). We can use simulation to get a better sense of what trait evolution 
on a phylogeny might look like under different macroevolutionary models.  

The function rtree in ape is a very basic tree generation tool that gives non-ultrametric trees 
with a particular number of tips, but doesn’t use a divergence rate. For more sophisticated true 
simulation tools that can be used to generate trees under particular diversification or 
preservation scenarios, look at the packages FossilSim and paleotree. Other modelling 
packages (like OUwie) usually include tools that can be used to simulate characters on a tree 
under the particular models that the package implements. 

Generate a tree with 50 tips 
simtree <- rtree(50) 

Simulate a trait evolving under a Brownian motion model of evolution on that tree and plot it 
using the function bmPlot from phytools 

 
bmsim <- bmPlot(tree = simtree, 	
       type="BM", 	
       anc=0, 	
       sig2=0.01) 



This function allows you to visualize a single character and how it changes through time along 
branches of the tree, in discrete time steps, as the clade diversifies. Try changing the step rate 
using the argument sig2 to see how that affects the trait distribution through time. 

 
Figure 5. A single simulation of the changing values of one trait along the lineages of a 
phylogeny. 

The output of	bmPlot contains all the information needed to make the visualization; the 
simulated trait values at the tips, the tree, and all the trait values at each time step. We can also 
use this information to plot the trait values at the tips in a histogram. This matches the data we 
would have in reality and would be modelling. We would not be able to see the full trait history 
as in the visualization we just made, as we rarely know how a trait value has changed through 
time in all the lineages that make up a clade (although there are many studies of trait change 
through time in single lineages).  



Plot a histogram of the trait values at the tips of the tree 
hist(bmsim$x[1:50],	
     xlab = "Trait values",	
     main = "Simulated values at tips"	
     )	

Other packages can also be used to simulate continuous trait change. The functions below 
simulate tip values for BM and OU using the ape package. Try changing the model parameters 
sigma and alpha (the step rate and constraint parameters). Try making the optimum value 
theta different from the starting trait value at the root. Use phenogram to visualize what effect 
these changes have, and to get a better familiarity with the kinds of patterns that will be best fit 
by the various different models. 

	
BM <- rTraitCont(phy = simtree,	
                 model = "BM",	
                 sigma = 0.1)	
phenogram(tree = simtree,	
          x=BM,	
          ftype = "off")	
 

OU <- rTraitCont(phy = simtree,	
                 model = "OU",	
                 sigma = 0.1,	
                 alpha = 0.1,	
                 theta = 0,	
                 root.value = 0)	
phenogram(tree = simtree,	
          x=OU,	
          ftype = "off") 

Below are scripts that can be used to fit models to real data and understand the output. The 
argument meserr is used to input an estimate of the standard error (see section 5 for further 
explanation). 

First we will fit OU models to each trait using a function from the package geiger: 

densityOU <- fitContinuous(phy = prunedTree, dat = Density, model = 
"OU", meserr = 0.12) 

shapeOU <- fitContinuous(phy = tree, dat = Shape, model = "OU", meserr 
= 0.03) 

Then we will fit an early burst model 

densityEB <- fitContinuous(phy = prunedTree, dat = Density, model = 
"EB", meserr = 0.12) 

shapeEB <- fitContinuous(phy = tree, dat = Shape, model = "EB", meserr 
= 0.03) 



Look at the parameter values for each model fit, are they biologically reasonable? Checking 
parameter estimates is an important step, particularly because for OU models the different 
parameter estimates can interact with each other (Hunt 2012a). Check that z0 the starting trait 
value is within the range of tip values, and when investigating small changes on million year 
timescales both alpha and sigsq should be small, on the order of 0.01 or less. 

When you fit an OU model using geiger it should output a warning about using the VCV 
method. For our purposes, this warning can be safely ignored but deserves further comment. In 
the original version of this function, to fit OU quickly, the algorithm rescaled the branch lengths 
rather than operating on the VCV matrix directly (Slater 2013, 2014). This was problematic for 
non-ultrametric trees because this particular kind of rescaling changed the covariance between 
tips in a way that assumed the input tree was ultrametric. The current version of this and other 
functions modify the variance-covariance matrix directly to avoid the issue. Almost all PCMs 
(especially commonly used ones) can be applied to non-ultrametric trees using R 
implementations, but this is a good reminder that it is important to check that none of the 
mechanics of the implementation are problematic when applied to paleontological trees, 
particularly with newly released method implementations. 

Once the parameter estimates for the various models have been checked to make sure they are 
reasonable, the next step is to look at the AICcs (Akaike information criterion for small sample 
sizes) to find out which model is the best fit for the data and tree. The AICc is part of the output 
of the fitContinuous function that we used above so it can be accessed using 
densityBM$opt$aicc. 

[Insert table 1 here] 

These results indicate that Brownian motion is the best fit model for Density but has a 
marginal AICc difference. OU is the best fit model for Shape, with a larger AICc difference. 
Although most of the parameter estimates are biologically reasonable and broadly similar 
across different models, the exponential decline parameter in both Early Burst (EB) model fits is 
extremely small. In fact, it is at the lower boundary limits set by geiger. The maximum-
likelihood estimate for this parameter is effectively zero for both traits and therefore the EB 
model reduces to simple Brownian motion. However, note that the cost of this additional, 
unnecessary parameter leads to a decrease in model support. 
 

Table 1. Model-fitting results for analyses of trait evolution in eucladid crinoids described in 
Example Analysis 3. Models with the best fit according to AICc scores are indicated in bold. 

Trait Model logL AICc Parameter estimates 

Filtration fan 
density 

BM -66.449 137.09 σ2 =  0.012, z0 = 3.70 

OU -66.250 138.89 α = 0.002, σ2 =  0.013, z0 = 3.71 

EB -66.449 139.29 a = -0.000001, σ2 =  0.012, z0 = 3.70 

Calyx shape BM -33.209 70.57 σ2 =  0.0037, z0 = -0.207 

OU -29.337 64.98 α = 0.0094, σ2 =  0.0050, z0 = -0.333 



EB -33.209 72.73 a = -0.000001, σ2 =  0.0037, z0 = -0.207 

 

5. Incorporating estimates of error 
5.1 Error in the phylogeny 
If there are errors in the tree topology (relative to actual evolutionary relationships), this will bias 
the analysis towards support for an OU model (Cooper et al. 2016), and in fact generally bias 
support towards models with low phylogenetic signal. This is because topological error reduces 
apparent phylogenetic signal, making it appear as if trait change is less tightly linked to the 
structure of the phylogeny than the Brownian motion expectation. This effect is not something 
that can be corrected for within the analysis and is therefore something to be aware of when 
interpreting model fitting outputs, especially for trees with fossil taxa.  

5.2 Error in the trait data 
The standard error of the sample and error in the trait measurements can also introduce bias. 
Noise from error can increase the apparent trait variance, leading to incorrect parameter 
estimates in model fitting analyses, and a bias towards models with lower phylogenetic signal, 
as is the case with error in the phylogenetic relationships. Often in paleontology we are only 
collecting measurements from a small number of specimens representing each taxon, which 
means that the standard error could be large. Silvestro et al. (2015) show with simulation that 
incorporating an estimate of error should be a priority, and that not doing so can bias towards 
OU as the best fit model even when trait change was simulated under BM. Including an 
estimate of the standard error in any model fitting analysis is therefore important (for a more 
thorough discussion of this in a paleontological context see Hunt and Carrano 2010). There are 
implementations of PCMs in R that allow inclusion of error estimates that make use of a variety 
of methods (e.g. Revell 2012). In Example Analysis 3 we have incorporated an estimate of 
standard error using the argument meserr in the fitContinuous function.  

6. Variation across trees 
In the previous example analyses, each method is only applied to one tree topology. However, 
as mentioned in the introduction, it is extremely improbable that a single phylogeny (e.g. the 
maximum a posteriori tree from a Bayesian analysis, or a single most parsimonious tree) 
perfectly represents evolutionary ‘truth’. Thus, it is important to get some measure of the 
robustness of results to variation in topology and branch lengths. We strongly recommend 
accounting for variation across phylogenetic hypothesis regardless of the methodological 
approach used to infer the tree topology and branch lengths; using a point estimate of the tree is 
never recommended. A simple way to understand how sensitive a particular result is to variation 
across trees is to run the analysis over a set of different trees. In the example below we 
randomly select 100 trees from the posterior distribution output by a joint estimation analysis. 
Other commonly used sizes for tree sets are 500 and 1000, really it is arbitrary and at the 
researcher’s discretion as to how large a set of trees they need to include in order to fully 
characterize the variation in results.  

If the phylogeny was not generated with a Bayesian inference approach that produces a 
posterior distribution of trees, other methods are available to account for uncertainties in tree 
topology or node ages. For example, if phylogenetic relationships were inferred using parsimony 
methods, one could select a random subset of most-parsimonious trees generated by the 



analysis (Lloyd et al. 2012). Similarly, you could choose to investigate the sensitivity of your 
results across a set of time-scaled trees from the output of a stochastic timescaling algorithm 
(e.g., Bapst 2013) to understand the effect of branch length variation on your analysis. 

Once analyses have been run over an entire distribution of trees, the results should be 
summarized appropriately. Unfortunately, no universally agreed upon way to do this has been 
developed. Nevertheless, many reasonable approaches are possible for visualizing and 
summarizing the results. For example, displaying median values with the variation around them 
(as long as it is made clear that this variation is separate from the error or confidence intervals 
of the results themselves), showing model support across trees in a bar plot (Fig 6 or figure 2 in 
Halliday and Goswami 2016), or showing a representative result and discussing how robust it is, 
have been used in the literature and are all improvements over reporting a point estimate alone 
(for more examples see Hopkins and Smith 2015; Clarke et al. 2016; Soul and Friedman 2017). 
Where appropriate for the analysis, we suggest reporting the distribution of p-values across a 
sample of trees in the form of its frequency distribution and summary statistics. For example, 
some authors have summarized results of phylogenetic statistical tests in terms of either the 
mean p-value estimated across the distribution of trees and/or the proportion of samples where 
the test statistic exceeds some a priori threshold of statistical significance (Soul and Benson 
2017; Cole et al. 2019). A subset of PCM implementations do have built in ways of summarizing 
across sets of trees (see for example rjmcmc in geiger), but this is rare. The most important 
thing is to choose an approach that makes the variation in results clear, as reporting only the 
average is misleading unless there is truly no variation across trees. Note that if there is a large 
amount of variation in relationships across topologies (i.e. the phylogeny is poorly constrained), 
then in model fitting exercises there is likely to be a bias towards support for models with low 
phylogenetic signal, for the reasons discussed in section 4.3. The combination of variation 
across topologies and support for a low signal model should lead to skepticism about whether 
there is enough information in the data to reliably distinguish between models. 

 

Example Analysis 4 – Application to more than one tree 

Required packages: ape; geiger 

Here, we load the post-burnin posterior distribution of 5000 trees and select a subsample of 100 
of them, then make sure they all have a root age and no zero length branches as described in 
the text in section 2.1. Multiple trees are stored together in an object of the class ‘multiphylo’, 
which can be treated as a list of trees. There are faster ways to run analyses over many trees 
(for example using apply functions, or functions from the package dplyr, both of which we 
recommend) but here we use for loops so you can see clearly what is being done.  

Load the post-burin posterior distribution of trees 
trees <- read.tree("Eucladid_trees.tre") 

Select 100 trees 
treeset <- trees[sample(1:5000, 100, replace = FALSE)]	

The approximate age of the youngest taxon in the dataset is 268.8 Ma 
last.time <- 268.8 

Adjust the root time because all taxa are extinct, the for loop means that the root time for every 
individual tree in the treeset gets adjusted in the same way 



for (i in 1:length(treeset)){	
    treeset[[i]]$root.time <- max(diag(vcv(treeset[[i]]))) + last.time	
    } 

Any of the previous analyses can be run over the entire treeset. For example, here we fit a 
Brownian motion model to all 100 trees using a for loop, to characterize variation in results. 

Set up a vector to store results 
sigmas <- vector(length=100) 

Run the model fitting analysis on all 100 trees and store the evolutionary rate for each tree in 
the vector 
for(i in 1:100) {	
    currentTree <- treeset[[i]]	
    fitBM <- fitContinuous(phy = currentTree, 	
                           dat = Shape,  
                           model = "BM",  
                           meserr = 0.03)	
    sigmas[i] <- fitBM$opt$sigsq	
    } 

In this example we did not save the full output from the model fits, just the parameter estimate 
for the step rate in each model fit. Decide beforehand what part of the results you need to 
access, and store them in vectors if they are single integers or lists if you want to store a more 
complex output. 

Finally, view a histogram of all the estimates for the evolutionary step rate across the different 
tree topologies that we saved to the vector 
hist(sigmas) 

 

7. Model fit and model adequacy 
The previous example analyses 1-4 involved fitting models of evolution to data, by estimating 
the maximum likelihood parameter values for a particular model given the data, then comparing 
the AIC scores of each model fit to see which the best fit model was, and what that might tell us 
about evolution of the clade in question. However, just because one model is a better fit than 
the other models that were tested, it does not necessarily mean that it is actually a good model 
for the data (Pennell et al. 2015; Voje et al. 2018). No model can encompass all the different 
processes that lead to the actual pattern of trait change, but the important thing to consider is 
whether a particular model captures the evolutionary dynamics to the extent that it allows you to 
answer the question you are interested in addressing. In this section we explore how to 
approach testing model adequacy. There is not a single test that can say definitively ‘this model 
is good enough’, but there are ways to understand how much information is in a dataset, how 
reliable the outcome of a model fitting exercise is, or how confident we should be in the answer 
to an evolutionary question derived from PCMs. Often, finding the ways in which a model does 
not capture aspects of the data (i.e. model misspecification) can provide extra information about 
evolutionary processes.  



There are a variety of reasons that simple models of trait evolution applied across a whole clade 
might not be good models for the underlying dynamics (see e.g. Polly 2019). Furthermore, it 
may be the case that there is simply not enough information in your dataset to allow you to 
identify an adequate model, especially if the model you are interested in assessing produces 
similar patterns of trait evolution to other candidate models (Boettiger et al. 2012; Slater and 
Pennell 2014). With simple models like linear regression, taking steps such as plotting the data, 
applying goodness of fit tests, or inspecting the residuals, can help establish whether the model 
is adequate. For more complex approaches (i.e. most phylogenetic comparative methods) 
visualization alone does not often help (Revell et al. 2018). There are not well-established 
model adequacy testing approaches for PCMs on non-ultrametric (i.e. fossil) trees. Even for 
analyses on trees of living taxa, model adequacy testing is still relatively uncommon, despite 
growing recognition of its importance within the PCM literature.  

Throughout this manuscript we mention the possibility of the dataset not containing enough 
information to make reliable inferences based on model fitting outcomes. Simulation is one 
approach that can be used to test whether or not this is the case. For example, posterior 
predictive simulation can be used to compare the relative adequacy of two candidate models 
and allow greater power to be able to distinguish between them (see Slater and Pennell (2014)). 
A more general simulation framework can be used to investigate the power to reliably identify a 
particular model. We suggest the following steps as a straightforward addition to model fit 
comparisons, which are made possible by the wide range of simulation tools now available in R:  

1) Find the best fit model (or models if they have similar goodness of fit). 
2) Identify the fitted model parameters. 
3) Use these parameters to repeatedly simulate trait change under the best fit model(s) on the 

original phylogeny. 
4) Perform model fitting and parameter estimation on each of the simulated datasets. 
5) Record how frequently the model that was used for simulation is correctly identified. 

 
If the model that was used for simulation is not often identified as the best fit model, or the fitted 
parameter values vary widely across simulation runs, then this suggests that there is not 
enough information in the dataset to reliably inform inference, and the original outcome should 
be interpreted cautiously. 
For a subset of phylogenetic comparative approaches it is possible to use standardized 
phylogenetic contrasts to investigate model adequacy and identify types of model 
misspecification (Pennell et al. 2015). One statistical condition of the phylogenetic contrasts of 
observations of a continuous trait on a phylogeny, under some models, is that they are 
independent and identically distributed (I.I.D.). This is true for non-ultrametric trees when a 
Brownian motion model of evolution is assumed, as well as for many related Gaussian models, 
even where the mode or rate of evolution changes across the tree, but it is not true for any kind 
of OU model on a non-ultrametric tree (although it is possible to perform a scalar transformation 
of the branch lengths that results in I.I.D contrasts, see Ho and Ané (2014a)). If the contrasts 
are I.I.D then various test statistics on the contrasts can be used. The procedure (outlined in 
detail in Pennell et al. (2015), see table 1 of that paper in particular for details of the types of 
model misspecification that can be identified with different test statistics) is similar to the one 
above, except that the test statistic of interest is applied to the contrasts of the real data, and the 
contrasts of each of the simulated datasets. If the test statistic value for real data falls outside of 
the distribution of the test statistic across the simulated datasets, then there is some degree of 
misspecification, or inadequacy, of the model. For example, if the mean of the squared 



contrasts is not within the simulated distribution, this indicates that the overall rate of evolution is 
over or underestimated. 

 
 

Example analysis 5 – Model adequacy 

Required packages: ape; OUwie 

In Example Analysis 3 we found that OU was the best fit model out of those that we tested for 
the Shape data. Here we examine whether that OU model was actually a good model, and 
reliably identifiable from the data. To do this we will need to simulate under an OU model of 
evolution; the package OUwie has a function that does this. 

First extract the parameter estimates from the previous model fitting output: 

alpha <- shapeOU$opt$alpha	
sigma.sq <- shapeOU$opt$sigsq	
theta <- shapeOU$opt$z0	

Prepare the data so that it is in the format that can be read in by OUwie (see the OUwie help file 
for further details). 

shapeData <- data.frame(species = names(Shape), 	
                        regime = 1,  
                        shape = Shape)	

Use the function replicate to repeatedly simulate under OU with the same parameters and 
store the simulated trait values for the tips of the tree. The function replicate is a convenient 
shortcut, it does the same thing as a for loop but is faster when you want to repeat the same 
operation many times. The simulated tip values are output in the variable X by the function, so 
this is the element we need to store. 

simtrait <- replicate(100, 	
       OUwie.sim(phy = tree, 	
         data = shapeData[,1:2],	
         root.age = tree$root.time, 	
         alpha = c(alpha,alpha), 	
         sigma.sq = c(sigma.sq,sigma.sq), 	
         theta = c(theta,theta), 	
         theta0 = theta	
         )	
       $X)	
	

Set up the simulated trait values into vectors with names that can be read by the model fitting 
function. 

form.simtrait = list() 
for(i in 1:100) {form.simtrait[[i]] <- simtrait[,i] 
                names(form.simtrait[[i]]) <- names(Shape) 
                } 



 
Fit the single peak OU model, which was the best fit model for our data before, out of the 
models we tested (warning, if you do this over 100 iterations it will take a long time). 
 
OUfits <- lapply(x = form.simtrait,  

           FUN = fitContinuous,  
           phy = tree,  
           model = "OU" 
     ) 
 

Fit a single rate BM model to the same sets of simulated trait data 

BMAICs <- lapply(x = form.simtrait,  
           FUN = fitContinuous,  
           phy = tree,  
           model = "BM" 
     ) 

 

If you run this analysis using the Eucladid tree, you should get several warning messages 
during the OU model fitting to simulated data, a first indication that the resulting model fit is 
unlikely to be reliable. If you inspect the output model fit AICcs and estimated parameters you 
should find that OU is the preferred model over BM, but that the estimated parameters for OU 
are not similar to the parameters used for simulation, and are quite high. This suggests that the 
best fit OU model is unlikely to be adequately capturing variation in the trait data. A next step 
might be to investigate whether a single peak OU model is missing heterogeneity in rate or 
mode of evolution (see section 9). 

 

8. Post-hoc modelling of discrete characters 
The majority of models we have discussed thus far are appropriate only for continuously valued 
traits. However, discrete morphological characters have been particularly important in 
paleontology because they comprise the bulk of primary data for inferring phylogenies of fossil 
taxa, including both parsimony and model-based approaches (see Wiley and Lieberman (2011); 
Wright (2019); Warnock and Wright (2020)) and investigating patterns of morphological disparity 
(Lloyd 2016). In addition to intrinsically discrete traits (e.g., presence/absence), many other 
kinds of morphological, paleoecological, or taphonomic traits are often categorized into discrete 
character states for practical reasons (e.g., species occurrences in reef vs. non-reef settings).  

In practical terms, if the discrete trait of interest is included directly in a model-based 
phylogenetic inference analysis, it is possible to jointly estimate transition rates between states, 
and ancestral states with other parameters in a Bayesian context (Warnock and Wright, 2020). 
However, it is far more common to investigate patterns of discrete trait evolution across a 
phylogenetic tree (or set of trees) after conducting a phylogenetic inference analysis.  Such 
post-hoc modelling typically involves the estimation of ancestral states (i.e., the trait values at 
the nodes of the tree), which can then be used to characterize the timing and phylogenetic 
position transitions between states. In a similar way to the approach we showed previously for 
continuous traits, fitting alternative models of discrete trait evolution in R can be done with 
functions in the geiger package. 



One of the methods most widely used to estimate ancestral states for discrete characters is 
parsimony. Given a tree depicting evolutionary relationships, parsimony-based reconstructions 
map a trait onto the tree such that the number of evolutionary changes are minimized 
(Maddison and Maddison 2020). Parsimony methods do not incorporate information regarding 
branch durations, so changes are equally likely to occur on short and long branches. Notably, 
parsimony-based reconstructions cannot always be unambiguously determined, so multiple 
parsimonious reconstructions are sometimes possible, which can lead to equivocal results. 
Beyond parsimony methods, modeling discrete characters is most commonly performed using a 
variation of the Mk model described by Lewis (2001), which involves a single parameter: the 
rate of evolutionary change. In contrast with parsimony, the Mk model involves estimating 
branch lengths, and allows for the possibility of multiple changes to occur along a branch, such 
that the total number of evolutionary transitions can be greater than the minimum required under 
parsimony. In its simplest form, the Mk model assumes changes are equally likely between 
character states, and these states have identical equilibrium frequencies. However, in a 
Bayesian context these assumptions can be relaxed to accommodate a wide variety of possible 
model variations, including rate variation among characters (Wagner and Marcot 2010; Wright 
2019), unequal transition frequencies between state changes (Wright et al. 2016), and even 
whether ecological vs. non-ecological trait partitions evolve at different intrinsic rates (Wright et 
al. 2020).  

Although simulation-based studies show Bayesian methods using the Mk model often 
outperform parsimony in phylogenetic inference (Wright and Hillis 2014; O’Reilly et al. 2016; 
Puttick et al. 2019), both methods perform well when reconstructing ancestral states given a 
tree (Gascuel and Steel (2014) see below), and the decision to choose parsimony vs. model-
based approaches may depend on your research question. For example, a researcher might be 
interested to show that a particular phylogenetic hypothesis requires some minimal threshold of 
evolutionary changes, in such cases, parsimony methods may be preferred because they 
always prefer the minimum number of changes. In that sense, parsimony is biased to 
underestimate the total number of character changes when the rate of evolution is high; 
however, the extent to which a researcher can use that bias to their advantage may be useful 
for some types of questions (i.e., “this character changed at least X times across the 
phylogeny”). Moreover, sometimes it may be of interest to compare the minimum number of 
changes required between different phylogenetic hypotheses (regardless of how the trees were 
inferred). Similarly, parsimony methods (and related approaches) for discrete character 
evolution can also be used to study rate variation and patterns of character evolution (Wagner 
2012), and inform rate distributions in model-based phylogenetic methods (Harrison and 
Larsson 2015; Wright 2017a).  

Unlike reconstructing ancestral states for continuous traits (see section 4.2), methods to 
reconstruct ancestral states for discrete characters are remarkably robust and provide far more 
accurate estimates than their continuous trait counterparts. For example, a simulation study by 
Gascuel and Steel (2014) shows both parsimony and model-based methods of discrete 
ancestral state reconstruction perform well, have nearly the same accuracy, and are robust to 
sampling bias and model mis-specification. As discussed for continuous traits, the fidelity of 
methods to reconstruct ancestral state values for discrete characters improves when fossil data 
are incorporated into the tree. Puttick (2016) used simulations to examine the impact of 
including fossil taxa into analyses of discrete trait evolution in extant lineages, and showed that  
including both fossil and extant taxa consistently outperformed analyses with extant taxa alone. 
In practice, there could be errors in coding derived from incomplete or fragmentary fossil 
material, or perhaps incorrect assignment of a habitat based on incorrect paleoenvironmental 
reconstructions (e.g., freshwater vs. marine). Puttick (2016) therefore also investigated the 



impact of including a proportion of fossil taxa having incorrect discrete trait values and found 
that analyses of fossil and extant taxa still outperformed extant only analyses at estimating 
ancestral states even when up to 75% of fossil taxa were incorrectly coded. These results 
highlight the important role of fossil taxa for estimating ancestral states for discrete characters, 
and encourage the inclusion of as many fossil taxa as possible, even when there is uncertainty 
in their underlying traits. 

 

Example Analysis 6 – Models for discrete trait change 

Required packages: ape; phytools; geiger 

In this example we will fit three models of discrete character evolution to the maximum clade 
credibility tree for eucladid crinoids to investigate the evolution of calyx complexity, an important 
trait related to growth patterns and rates of development (Kammer 2008; Wright 2015; Ausich et 
al. 2020). Calyx complexity is defined as the number of plates interrupting the posterior interray 
(more plates = increased ‘complexity’). This trait typically varies from zero to three among most 
Paleozoic eucladid taxa, and is therefore a multistate character with four discrete states. 

First, let’s fit a model with a single rate parameter describing all possible transition rates 
between character states. For example, if a character has two discrete states (e.g., # of 
posterior plates), labeled “1” and “2”, this single parameter model assumes the transition rate 
between states “1” à “2” is equal to the backward transition between “2” à “1”. The same logic 
can be extended to multistate characters, such as our example of calyx complexity. This model 
is specified as equal rates, or ‘ER’ for the model argument in the fitDiscrete function.  

ER <- fitDiscrete(tree, dat = Complexity, model = "ER") 

In contrast with the simplistic equal rates model, we can also specify a more complex model 
where each possible rate is a unique parameter. For example, a different rate is estimated for 
transitions between states “1” à “2” and “2” à “1”, etc. In geiger, this model is specified as all 
rates different, or ‘ARD’ for the model argument in the fitDiscrete function.  

ARD <- fitDiscrete(tree, dat = Complexity, model = "ARD") 

For discrete traits with more than two states, we might predict that certain kinds of traits evolve 
along an order sequence of changes between states. For example, based on developmental 
patterns, some crinoid researchers consider that calyx complexity should be an ordered 
character, i.e. transitions should be restricted so that they can only occur between consecutive 
states (e.g., Wright 2015, 2017). In this case you can use the meristic model to model transition 
rates. 

MER <- fitDiscrete(tree, dat = Complexity, model = "meristic") 

As in previous examples, models can be compared using the AICcs. 

ER[[4]]$aicc	
ARD[[4]]$aicc	
MER[[4]]$aicc 

Here, we have found that the meristic model corresponding to ordered state transitions is the 
best fit model for the data. 



It is also straightforward to reconstruct ancestral states, and the associated uncertainty, under 
an equal rates model. phytools has useful functions for plotting the likelihood of a given state 
onto the tree. 

First estimate ancestral states using the function ace from the ape package 
anc.char <- ace(Complexity, tree, type = "discrete")	
 

Ladderize the tree for better visualization and then plot in the usual way 
plot(ladderize(tree), show.tip.label = FALSE)	
 

Add pie charts of character state likelihoods to the nodes 
nodelabels(pie = anc.char$lik.anc, 	
           piecol = c("lightblue", "darkblue", "salmon", "darkred"), 	
           cex = 0.5	
           ) 

 

 

Another popular model-based method for post-hoc modelling of discrete character evolution is a 
Bayesian approach called stochastic character mapping (Nielsen 2002; Revell 2013). In this 
method, discrete trait evolution is simulated an arbitrarily large number of times across a tree, 
and the resulting character histories are sampled proportional to their posterior probability, using 
Markov-chain Monte Carlo, to generate the posterior distribution. Although the output can be 
difficult to visualize for traits with more than two states (Revell 2013), a benefit of stochastic 
character mapping is that the uncertainty in patterns of character evolution can readily be 
accounted for by examining the posterior distribution of character histories. As might be 
expected, this method presents a challenge for any attempts to summarize results across a 
distribution of time-calibrated trees (see section 6 for ideas regarding how to summarize results 
across tree distributions). Stochastic character mapping can be conducted in R using the 
make.simmap function in the package phytools. 

A common feature of models discussed thus far, for both continuous and discrete traits, is that 
the underlying dynamics of trait evolution do not change over time and/or among clades. 
Relative to the literature on discrete traits, modelling heterogeneous dynamics of trait evolution 
is far more developed for continuous characters, which is more thoroughly discussed in section 
9. However, an important, promising family of methods for investigating heterogeneous 
dynamics in discrete character evolution was developed by Lloyd et al. (2012). Using discrete 
character matrices (such as those constructed for phylogeny estimation or disparity analyses), 
these approaches use likelihood ratio tests to evaluate whether a given phylogeny is consistent 
with a single-rate vs. multi-rate models, where two (or more) rates may arise from either 
temporal shifts in evolutionary dynamics and/or along specific branches. This method attempts 
to account for patterns of character sampling and completeness, and has been applied to a 
variety of macroevolutionary questions in a variety of fossil groups, including lungfish (Lloyd et 
al. 2012), echinoids (Hopkins and Smith 2015), Mesozoic mammals (Close et al. 2015), and 
Paleozoic crinoids (Wright 2017b). Relevant functions for performing these kinds of analyses 
are available in the R package Claddis and further described by Lloyd (2016). 



9. Modelling heterogeneous trait evolution 
In this section we provide descriptions and some introductory scripts for a variety of more 
complex, or recently published, approaches. These approaches deal with modelling continuous 
trait evolution where the tempo or mode varies through time or across lineages (for examples of 
approaches that can be applied to discrete trait evolution to model heterogeneous change, see 
the section on discrete traits above). This is not an exhaustive review of all the approaches 
available, but a summary of some of those that might be of most interest to paleontologists, and 
references where they have been applied in a paleobiological context. 

When starting out with more complex models it is appropriate to be cautious. There are several 
publications that highlight situations where phylogenetic comparative approaches do not behave 
as expected or intended (Freckleton 2009; Uyeda et al. 2018). It is very important to ensure that 
any method applied is appropriate for the question and data, and that it is applied correctly. This 
is likewise true of all the more straightforward analyses we explained above, but it can be more 
difficult to identify problems as models become more complex. Like all statistical methods, 
PCMs have assumptions, biases, and limitations (Cooper et al. 2016). Because PCMs comprise 
a diverse ensemble of models, we cannot provide a comprehensive guide or checklist of 
assumptions pertaining to particular methods here. Instead, we emphasize it is critical for 
researchers to carefully consider the statistical assumptions of a given PCM (and their biological 
implications) when designing a study or interpreting results. We reiterate this advice is general 
to all biological sciences and not an issue specific to PCMs.  

In fact, many criticisms of PCM approaches can be addressed by a researcher 1) ensuring they 
fully understand the method being implemented, as well as the data it is applied to, to identify 
possible biases or features of the data that could lead to misleading results (e.g. sampling rate 
[Soul and Friedman 2017]), 2) taking important steps such as checking that output parameter 
estimates are biologically reasonable. If in doubt, simulation can be a practical way to try and 
characterize the behavior of a particular method when applied to data similar to your own 
(Barido-Sottani et al. 2020a), and 3) not over interpreting results. Finally, we note that many 
potential issues with PCM-based studies are alleviated or otherwise improved when fossil taxa 
are included (Slater et al. 2012; Ho and Ané 2014b; Hunt and Slater 2016).  

9.1 Multi-regime OU models 
Ornstein-Uhlenbeck models have three or four parameters that define an ‘adaptive peak’ on a 
phenotypic landscape (sensu Simpson 1944). In the context of phylogenetic paleobiology, this 
peak can also be thought of as a macroevolutionary regime, or macroevolutionary landscape 
(Boucher et al. 2018). For some period of time, the evolution of a set of taxa can be 
characterized using single estimates for each model parameter, and though the actual 
mechanisms generating the observed patterns may vary through time, they have the same 
outcome. This model is consistent with Simpson’s concept of the adaptive landscape. Often, we 
would not expect that a clade would remain in the same macroevolutionary regime (i.e. where 
the same trait value is optimal and the strength of 𝛼 [the constraint parameter] remains the 
same) over the many tens of millions of years of its evolutionary history, or that all branches of a 
clade would experience the same regime. We might also be interested in how the regime a 
clade experiences relates to factors like environmental change, or whether multiple non-sister 
lineages experienced the same regime, which can result in convergence. 

It is possible to model shifts in the evolutionary regime through time, or along lineages, by 
estimating new parameter values for different sections of the phylogeny. The package OUwie 
has model fitting and trait simulation functions for this purpose. OUwie has several options for 



models, you can allow the strength of the selection parameter α, the trait optimum θ, or the 
evolutionary rate σ to shift. You can also fix or vary different combinations of these for each 
regime. The function requires a priori definition of clade or time regime shift points; it is therefore 
suitable for hypothesis testing (Gearty and Payne 2020). When choosing shift points for an 
analysis they should be related to specific hypotheses about factors that may have affected the 
evolutionary history of the clade (e.g. a novel adaptation, dispersal to a new region, or 
environmental changes). Thus, we emphasize it is critical to have in-depth knowledge of the 
taxonomic group under investigation to meaningfully address evolutionary questions with these 
methods. If you are not an expert on the group you want to investigate, we encourage you to 
consider reaching out to collaborate with one. A variety of other packages can also be used to 
investigate multi-regime models (including multivariate multi-regime models) of trait evolution, 
including mvMorph, mvSLOUCH, OUCH, geiger and ape. 

Multi-regime OU models can be very complex and are therefore often computationally difficult to 
fit. It is especially important to check for convergence when estimating parameters (Gearty and 
Payne 2020) and that the parameter values are sensible. For example, for OUwie, ensure that 
the results show estimated values for θ (theta_0 the value at the root of the tree) that are 
within or close to the known range of trait values, and that the step rate is not unreasonably 
high. If it is not clear what could be considered a reasonable rate, it should usually be possible 
to find rate estimates in the literature for the same taxon, or for similarly preserved taxa. 

 

Example analysis 7 – Multi-regime OU 

Required packages: OUwie 

Most of this example script serves to correctly set up the input objects. First set up a data frame 
and tree in the format that can be read in. OUwie has a very specific format required for the 
input data. It requires a three-column data frame where the first column contains the taxon 
names, the second contains the regime each tip belongs to (at the start the regime labels are 
placeholders for when we define them according to a hypothesis later), and the third column 
contains the trait data. You can optionally give a fourth column with the standard error of the 
trait measurements (this means an estimate of the intraspecific error if you have multiple 
specimens, plus measurement error; see section 5 on error), this is advisable whenever it is 
possible. The tree must have internal node labels corresponding to the regime the node falls 
within. At the time of publication it is the case that to prevent the function outputting an error 
message there must be two or more regimes, even if a single regime model is subsequently fit. 

Here we use the same crinoid data for the Density trait that we have been using previously. 
The possible regime shift points defined further down are based on D.F.W’s prior knowledge as 
a crinoid systematist & taxonomist familiar with their morphology and ontogeny, derived from 
previous experience and knowledge of the published literature. 

Set up data frame for the trait we are using, with three columns as specified above 
densityData <- data.frame(species = names(Density), 	
                          regime = 1,  
                          density = Density) 

Add node labels to the phylogeny we have been using 
prunedTree$node.label <- sample(c(1,2),  



                         Nnode(prunedTree),  
                         replace = TRUE) 

Once the data and phylogeny are correctly formatted, we can estimate parameters for single 
rate BM and OU models, in the same way as we demonstrated in Example Analysis 3 using the 
alternative R package geiger. The root age of the tree must be provided, and it can be helpful 
to provide starting values for the parameters to aid convergence. Ideally the algorithm should be 
started from a variety of values to make sure that it converges on the same parameter 
estimates, and not local optima. 

The argument root.station defines whether the algorithm should estimate theta_0 the 
ancestral trait value as part of the model. Sometimes estimates of theta_0 and alpha can 
interact (Ho and Ané 2014b); check for sensible parameter estimates after the model fit. Setting 
root.station = TRUE means that the starting state is not estimated, which can stabilize 
estimates of the adaptive optimum trait value. If you have reason to think there may be a trend 
(different starting and optimum trait means) then theta_0 should be estimated in the model fit. 
In this case be sure to check that the final parameter estimates are reasonable. It can be 
sensible to check the results with and without estimating theta_0 and compare them. 

First fit single regime BM and OU to the Density trait to provide a null against which more 
complex models can be compared. 

densityBM <- OUwie(phy = prunedTree, data = densityData, 	
                   model = "BM1", root.station = FALSE, 	
                   quiet = TRUE,	
                   root.age = tree$root.time)	
densityOU <- OUwie(phy = prunedTree, data = densityData, 	
                   starting.vals = c(0.01,0.01), 	
                   quiet = TRUE,	
                   model = "OU1", root.station = TRUE, 	
                   root.age = tree$root.time) 

Now we can specify the node labels on the tree according to the hypothesized regimes. There 
are two subclades within the Eucladida tree that seem to show many modifications associated 
with building a dense filtration fan (e.g. many branches per arm or many pinnules on branches). 
OUwie can be used to test whether this high fan density was associated with a different trait 
mean or rate of evolution. In this example we will define the tip and node regimes ourselves 
beforehand because it involves more than one clade. If we hypothesize a rate shift in only one 
clade it is easiest to use the ‘clade’ argument within the OUwie function rather than defining 
the regimes before. 

Find the node defining the first clade of interest 
mrca1 <- getMRCA(prunedTree, c("Blothrocrinus", "Hydreionocrinus")) 	
 

Make a vector of all nodes and tips that descend from it 
first <- c(mrca1, getDescendants(prunedTree, mrca1)) 

Do the same for the second clade 
mrca2 <- getMRCA(prunedTree, c("Pirasocrinus", "Zeacrinites"))	
second <- c(mrca2, getDescendants(prunedTree, mrca2))	
 



Combine the two vectors to a single one specifying all nodes and tips that we hypothesize 
belong to the ‘high density fan’ regime 
desc <- union(first, second) 	
 
Separate out node and tip vectors and label the nodes of the phylogeny with regimes 
accordingly 
tips <- prunedTree$tip.label[desc[desc<=Ntip(prunedTree)]] 	
nodes <- desc[desc>Ntip(prunedTree)]-Ntip(prunedTree)	
treeD <- prunedTree	
treeD$node.label <- rep(1, Nnode(treeD))	
treeD$node.label[nodes] <- rep(2, length(nodes)) 

Modify the trait data frame to specify the correct regime labels for tips 
regimetableD <- densityData	
regimetableD[tips,2] <- 2	

Now that the data and phylogeny are prepared, we can fit a variety of multi-regime models to 
the data. Any combination of model parameters can be fixed or allowed to change between 
regimes, using the “model” argument, refer to the documentation for OUwie for a full 
explanation of all the options for this argument and what they mean. Here we did not include 
estimating theta_0. Depending on the number of taxa in the dataset and the variation in trait 
values, very complex models such as one where all parameter values change (“OUMVA”), may 
not be well fit to the data or generate reliable parameter estimates. In that situation, variation 
across different possible topologies will be useful to assess how reliable the result is. Below is 
code to fit a single regime Brownian motion model, and an OU model with two regimes that 
have different trait means. The other models can be fit by modifying the model argument. See 
the full script online for the code to do this. The results of fitting all of the available models are 
shown in table 2. 

high_densityBMS <- OUwie(phy = treeD, data = regimetableD, 	
                         model = "BMS", root.station = TRUE, 	
                         quiet = TRUE,	
                         root.age = tree$root.time)	
high_densityOUM <- OUwie(phy = treeD, data = regimetableD, 	
                         starting.vals = c(0.01,0.01), 	
                         model = "OUM", root.station = TRUE, 	
                         quiet = TRUE,	
                         root.age = tree$root.time)	
 

After parameter estimates are checked, AICcs can be compared to those for the simple model. 
Although OUwie may indicate that a reliable solution to the model fit has been reached, it is 
common for more complex models like OUMVA to have unrealistic estimates of parameters 
indicating the algorithm did not effectively fit the model. In fact this is the case with the Eucladid 
data we are using, where very high model support for OUMVA only occurs in the case where 
parameter estimates are biologically unrealistic (Table 2).  

A single rate Brownian motion model is the best fit model but it is only marginally better than the 
next best model, or in fact than most of the other models (Table 2). It is likely the case that there 
is not enough information in our dataset to be able to meaningfully distinguish between these 
models. Figure 6 is an example of how to summarise variation across a set of trees; we show 



the median and variance of Akaike weights for each model when it has been fit to data 
combined with 100 trees drawn randomly from the posterior distribution. 

Figure 6. Mean and variation in Akaike weights for 7 candidate models of continuous trait 
evolution. Note that although the mean weight for complex models is low, for some trees within 
the set complex models have high weights. These often represent fits with unrealistic model 
parameters. 

 

Table 2. Model-fitting results for multi-regime OU analyses 

Model logL AICc Parameter estimates 

BM -66.449 137.09 σ2 =  0.012, θ = 3.70 

OU  -66.250 138.89 α = 0.002, σ2 =  0.013, θ = 3.71 

BMS -64.831 138.33 σ21 =  0.011, σ22 =  0.012, θ1 = 3.68, θ2 = 5.48 

OUM -64.442 137.55 α = 0.0023, σ2 =  0.0023, θ1 = 3.68, θ2 = 5.51 



OUMV -64.474 139.96 α = 0.0016, σ21 =  0.0373, σ22 =  0.0354, θ1 = 3.68, θ2 = 
5.50 

OUMA -64.421 139.86 α1 = 0.0027, α2 = 0.0053, σ2 =  0.0126, θ1 = 3.68, θ2 = 5.03 

OUMVA -64.580 142.62 α1 = 2.4 x 10-8, α2 = 7.3 x 10-8, σ21 =  0.0114, σ22 =  0.0119, 
θ1 = 3.68, θ2 = 5.20 

9.2 Character dependent continuous trait change 
A further question that can be answered with multi-regime OU models is how a particular 
discrete character has influenced the evolution of other continuous traits. OUwie can be used to 
test this. If the discrete trait is confined to particular clades, then the same approach as in 
Example Analysis 7 can be used to define regimes. If the discrete trait is distributed over the 
tree rather than being confined to particular clades then you can use any ancestral state 
reconstruction approach to reconstruct the state at each node (see section 8), and then use the 
different estimated states to define the regimes on the tree. Uncertainty in the ancestral states 
estimated can be appropriately accounted for using the package SIMMAP. The additional layer 
of uncertainty derived from estimating the ancestral states under a particular model of evolution, 
should be taken into account when interpreting results. Price (2019) provides a worked example 
for paleontological data (see also Price et al. 2015).  

9.3 Heterogeneous rates on individual branches 
It is possible to model change of one or more continuous traits on a phylogeny with rate 
differences between and/or along each branch, and a range of models has been developed to 
do so (O’Meara et al. 2006; Hunt 2013; Revell 2013; Landis and Schraiber 2017). MCMC 
approaches are computationally well suited for use to fit this kind of highly heterogeneous 
model. One example model and Bayesian implementation is AUTEUR (Eastman et al. 2011) 
which is implemented with the function rjmcmc.bm in geiger. This method has been applied 
to paleontological data (Anderson et al. 2013; Benson and Choiniere 2013; Soul and Benson 
2017; Ruta et al. 2019). A further example, trait MEDUSA, can be applied to multivariate data 
and is implemented using maximum likelihood in the package motmot (Thomas and Freckleton 
2012; Puttick et al. 2020), and has also been applied to datasets of fossil taxa (Brocklehurst and 
Brink 2017; Button et al. 2017; Ruta et al. 2019). Both of these packages can also be used to fit 
and compare simpler phylogenetic models. Other methods can be used to infer rates for 
multivariate data, rather than to a single trait (Adams 2014). Diniz-Filho et al. (2015) use an 
approach based on phylogenetic eigenvectors to detect nonstationarity (i.e. significant shifts) in 
evolutionary rates in the skulls of theropod dinosaurs. Levy processes can be used to model 
jumps in evolutionary rate along branches in a phylogeny (Landis and Schraiber 2017) although 
this has not yet been implemented for non-ultrametric trees.  

9.4 Other new approaches 
There are a range of other phylogenetic models and rate estimation approaches that have been, 
or could be, applied to trees of fossil taxa. Often they can be used to model trait change in 
groups of lineages, characters, or periods of time, without having to specify the groupings in 
advance. This can be particularly useful for exploratory analyses of trait change, rather than for 
hypothesis testing as in our previous example analyses. At the time of writing many of these 



methods are relatively new and have not yet been applied in a broad range of different 
scenarios. This means both that there are exciting opportunities for new discoveries, but also 
that in some cases the behavior of the methods across different areas of parameter space is not 
yet well characterized and results should be interpreted cautiously. Below is a subset of new 
approaches that have been applied to fossil data, or where they have not yet been applied to 
paleontological phylogenies, they have a software implementation that allows for it. 

a) The Fokker-Plank-Kolmogorov (FPK) model (Boucher et al. 2018; Blomberg et al. 2020) 
is a flexible modelling framework that can be used to estimate the shape of a 
macroevolutionary landscape that has one or more optima, using a parameter called the 
‘evolutionary potential’. This framework is distinct from the multi-peak OU models above 
where switches between macroevolutionary regimes are modelled; instead it fits a model 
of trait change in a single macroevolutionary regime, but that regime can have multiple 
optima, and be bounded or unbounded.  

b) Mitov et al. (2019) introduced an approach for fitting mixed Gaussian phylogenetic 
models, which infers regimes that can be any combination of mode or rate for each 
model parameter across the phylogeny (for implementation see Mitov et al. 2019).  

c) Parins-Fukuchi (2020) introduces a modelling framework for change in disparity of 
continuous traits partitioned into integrated suites.  

d) The matching competition model (Drury et al. 2016, modified for application to non-
ultrametric trees in Manceau et al. 2017) is designed to model the effect of biotic 
interactions on trait evolution and is implemented in RPanda (Morlon et al. 2016).  

e) As a more explicit alternative to convergence inferred via multi-peak OU models, Stayton 
(2015) presents phylogenetic metrics designed for hypothesis tests of convergence. 
Speed and Arbuckle (2017) provide a review of other recent approaches to quantifying 
convergence using phylogeny. 

f) Relative rates of morphological evolution and ancestral character states can be 
estimated using the threshold model (Revell 2014, applied to paleontological data in 
Sallan et al. 2018). 

10. Conclusion 
As models for the ‘Tree of Life’, phylogenetic trees are science’s best attempt to represent a 
very complex process – the diversification of life through time – in a tractable way. Phylogenies 
and comparative methods allow us to answer questions about how evolution works that could 
not otherwise be answered, but they are obviously a simplification of real evolutionary 
processes. There is a large suite of phylogenetic comparative methods available for 
paleontologists to apply in order to understand their group of interest, and most of these are 
now easily implemented using R and other software. These methods are very powerful tools for 
inference, but are not always intuitive. For this reason they can seem intimidating, and 
misunderstandings are common. We hope that we have provided a practical entry point for 
those looking to begin using PCMs in their own work, while emphasizing the importance of 
careful interpretation of results and a good understanding of the relationship between the quality 
of the data you put in with the reliability of the information you get out. Phylogenies are 
themselves hypotheses, and uncertainty in the ages of fossils and relationships between the 
taxa they represent, combined with uncertainties in model fit, should always be considered 
when interpreting results and should always be clearly represented in published work. Caveats 
aside, this is an exciting time to be a paleontologist, as recent advances in computational and 



mathematical tools are allowing us to address some of evolutionary biology’s biggest questions 
in a rigorous quantitative way.  

Supporting materials 
Supplemental data, full scripts for analyses, and trees are available at: 
github.com/daveyfwright/PCMsForPaleontologists 
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