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This comment was submitted in December 2019 and was under review at Nature for 
nine months before a decision was made to not publish the exchange. We now share 
the comment and response from Seibold et al. 2019 as preprints to further the 
discussion of how best to model and interpret population and biodiversity change. 
 
Summary 
An accumulating number of studies are reporting severe biomass, abundance and/or 
species richness declines of insects (Hallmann et al., 2017; Lister & Garcia, 2018; Seibold 
et al., 2019; Sánchez-Bayo & Wyckhuys, 2019). Collectively these studies aim to quantify 
the net change in invertebrate populations and/or community composition over time and 
to establish whether such changes can be attributed to anthropogenic drivers (Macgregor, 
Williams, Bell, & Thomas, 2019; Saunders, Janes, & O’Hanlon, 2019; Thomas, Jones, & 
Hartley, 2019; Montgomery et al., 2020; van Klink et al., 2020). Seibold et al. 2019 
analysed a dataset of arthropod biomass, abundance and species richness from forest 
and grassland plots in a region of Germany and report significant declines of up to 78% 
over the time period of 2008 to 2018 (Seibold et al., 2019). However, their analysis did 
not account for the confounding effects of temporal pseudoreplication of observations 
from the same years. We show that simply by including a year random effect in the 
statistical models and thereby accounting for the common conditions experienced by 
observations from proximal sites in the same years, four of the five reported declines 
become non-significant out of six tests overall. To place their estimated effect sizes and 
those of other recent studies of insect declines in a broader geographic context, we 
analysed invertebrate biomass, abundance and species richness over time from 640 time 
series from 1167 sites around the world. We found that the average trend across the 
terrestrial and freshwater realms was not significantly distinguishable from no net change. 
Shorter time series that are likely to be most affected by sampling error variance – such 
as those reported in Seibold et al. 2019 – yielded the most extreme estimates of decline 
or increase. We suggest that the uncritical media uptake of extreme negative trends from 
short time series may be serving to exaggerate the speed of "insect Armageddon" and 
could eventually undermine public confidence in biodiversity research. We advocate that 
future research include all available data and use model structures that account for 
uncertainties to build a more robust understanding of biodiversity change during the 
Anthropocene and its variation among regions and taxa (Kunin, 2019; Saunders et al., 
2019; Thomas et al., 2019; Didham et al., 2020; Dornelas & Daskalova, 2020). 
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Appropriate spatial and temporal structure in time series analysis 
Field studies that yield multiple observations per year from sites within a region are likely 
to be influenced by many shared uncontrolled variables, creating a ‘year effect’ because 
observations from the same year will often be more similar (Werner, Stuble, Groves, & 
Young, 2020). If this year pseudoreplication is ignored, our confidence in trends estimated 
across years and type I errors can be greatly inflated (Knape, 2016). A simple remedy for 
year effects is to include a year intercept random term in statistical models (Knape, 2016; 
Werner et al., 2020). Seibold et al. 2019 presented an analysis of arthropod diversity 
trends across 140 (30 in some analyses) forest plots and 150 grassland plots over a 10-
year period (a nine-year period in some cases). Their statistical analysis considered the 
spatial structure of the data in relation to consistent differences among plots and included 
plot ID as a random intercept nested within region. While Seibold et al. 2019 noted that 
there were “high numbers of arthropods in 2008”, and among year heterogeneity is clearly 
visible in their Figure 1, their analyses did not include a year random intercept term. 
Instead, they assessed the sensitivity of their findings to exclusion of different years, 
which revealed that the significance of their evidence for a decline was dependent on 
inclusion of data from 2008 (Seibold et al. 2019 Extended Data Figure 2). They also 
include multiple environmental correlates, which suggest that they were concerned about 
year effects. However, even well-chosen covariates are unable to capture all aspects of 
the environment that affect diversity in a year and year effects are likely to remain and 
inflate type I errors.  
 
Here, we show that four of the five arthropod declines reported in Seibold et al. 2019 that 
are ‘statistically significant’ without a year random term became non-significant with the 
inclusion of a year random term in both a simplified version of their models as well as in 
models including the environmental variables they tested (Figure 1, Extended Data 
Tables 1-2). With a year random effect included, we estimated the among-year variances 
across metrics to be substantial and highly significant even when environmental 
covariates were included (Extended Data Tables 1-2). We recognise that a more robust 
model in this case would also incorporate autocorrelation among sites and among years, 
because year and site effects tend to be more similar between neighbouring samples, but 
for the sake of isolating the influence of the year effect, we have excluded autocorrelation 
terms here. Not accounting for year pseudoreplication in time series analyses in ecology 
is far from an issue specific to Seibold et al. 2019 (e.g., see Møller, 2019). As we work 
towards a more comprehensive understanding of change over time across invertebrate 
taxa (Saunders et al., 2019; Thomas et al., 2019), scientists need to use statistical 
methods that incorporate the pronounced spatial and temporal structure of population 
and biodiversity data.  
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Figure 1. Accounting for temporal pseudoreplication shifts four of the five detected 
declines out of six tests in Seibold et al. 2019 from significant to non-significant 
declines. The six Seibold et al. 2019 tests refer to their six models of biomass, abundance 
and richness over time in forests and grasslands (three metrics, two habitats). Points 
represent the model coefficient for the trend over time and error bars show standard error, 
as derived from the three different model structures (see legend). We focused on the key 
results in Seibold et al. 2019 (a, c) and did not include separate models for different trophic 
groups, but we anticipate that the significance of other findings reported in this study 
would be similarly affected by inclusion of a year random effect. Our reanalysis differed 
slightly from Seibold et al. (see methods for details) and thus we found a statistically 
significant relationship for abundance in the forest habitat without inclusion of a year 
random effect (a). We also analysed the three-year in addition to annual interval data 
from the forest plots (b) and found no net declines once random effects are included for 
the full dataset (b). See Supplementary Information for methods, Extended Data Figure 
1 for model prediction fits, Extended Data Table 1 for full model outputs and Extended 
Data Table 2 for summary of analyses including environmental covariates. 
 
Incorporating baselines and year to year variance in time series analyses 
Climate research has recognised for some time (Stocker et al., 2013), and biodiversity 
researchers more recently (Mihoub et al., 2017; Fournier, White, & Heard, 2019; Didham 
et al., 2020), that where there is substantial year to year variance in a metric, the start 
and end date of a time series can have a strong effect on the estimated effect size and 
significance. For this reason, it is valuable to consider the baseline conditions before 
monitoring began in the interpretation of the significance of trends found within data 

(Mihoub et al., 2017). A visual inspection of Figure 1 in Seibold et al. 2019 indicates that 
the biomass, abundance and richness were higher than average in 2008, the first year of 
the time series. With the start point of their analyses being 2008, the observations in 
subsequent years were generally lower in comparison. When 2008 is removed from the 
analysis, the trends between 2009 and 2017 do not exhibit large directional changes (as 
is also evident in Seibold et al. 2019 Extended Data Figure 2). By accounting for the 
fluctuations in biomass, abundance and species richness among years, our reanalysis 
returned estimates with much greater uncertainty and the variance in year effects was 
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estimated to be substantial and highly significant for all metrics (Extended Data Tables 1-
2).  

 
Monitored populations viewed as a sample of trends across sites globally 
Concern about insect declines, as well as a general shortage of insect data, has led to a 
reliance on short time series, with Siebold et al. 2019 an example of this. To examine how 
Seibold et al.’s findings fit within a global sample of insect biodiversity trends we combined 
them with recent temporal studies of the biomass, abundance and richness of 
invertebrate species as compiled by the global-extent BioTIME database19 and data from 
the recent meta-analysis by van Klink et al. 20209 (but note that both data compilations 
include geographic gaps). The two compilations of time series data represent a variety of 
habitats and environmental conditions and were collected using different survey 
techniques, but the methods were always consistent within time series (for further details 
see original papers9,19). Our analysis of 283 BioTIME freshwater and terrestrial time series 
from 95 sites around the world indicated a decline in freshwater invertebrate biomass 
(slope = -0.02, CI = -0.04 to -0.01) and no net change in terrestrial invertebrate biomass 
(slope = 0.02, CI = -0.06 to 0.11, with units of log(biomass) per year, measured in grams), 
no net change in abundance (freshwater slope = 0.01, CI = -0.08 to 0.09, terrestrial slope 
= -0.01, CI = -0.04 to 0.02, with units of log(abundance) per year, measured in number of 
individuals) and no net change in richness (freshwater slope = -0.01, CI = -0.04 to 0.02, 
terrestrial slope = 0.01, CI = -0.01 to 0.02, with units of log(species) per year). Within 
these on average non-directional trends, we detected substantial variation including both 
declines and increases (figure 2). For example, for freshwater abundance the model 
estimates suggest that 25% of time series (i.e., 18/72 time series) may have a decline of 
5% or more per year. In our analysis of 357 time series from the van Klink et al. 20209 
data compilation, insect abundance increased in the freshwater realm but declined in the 
terrestrial realm (see Extended Data Table 3 for effect sizes and credible intervals). 
 
In statistics, there is a general expectation that the contribution of sampling error to effect 
size estimation increases as sample size and precision decline, and this effect is often 
visualised as a funnel plot (Egger, Smith, Schneider, & Minder, 1997; Gurevitch, 
Koricheva, Nakagawa, & Stewart, 2018). We found clear evidence of this effect as the 
most extreme biodiversity trends were for the shortest time series (Figure 2). An increase 
in the severity of declines toward the present time would see the most recent - and 
therefore shortest - time series being the most negative. However, this differs from the 
pattern we observed, where short time series returned the most extreme positive and 
negative trends (Figure 2), as expected if the effect was due to sampling variance. 
Additionally, longer-term studies, which should better capture the mean trend, did not 
present the dramatic declines reported in shorter term studies (Figure 2, and similar to 
the effects found in other longer-term studies like Macgregor et al., 2019; Saunders et al., 
2019). Overall, we detected considerable variation across realms and among sites, with 
some individual locations exhibiting both substantial increases and decreases (Extended 
Data Table 3, Extended Data Figure 1).  
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Our reanalysis of Seibold et al. 2019 returned very similar effect sizes to those reported 
in the original study, with estimated declines remaining substantial, yet with much higher 
uncertainty. When we considered the estimates from Seibold et al. 2019 in the broader 
geographic and taxonomic context of results from other temporal analyses, their effect 
sizes represented the negative end of the distribution but were not extreme in comparison 
to other time series of similarly short duration. It is striking that some of the prominent 
studies in the insect decline literature have been of short duration, potentially revealing a 
bias toward high impact journals publishing  more extreme and “surprising” results and/or 
their subsequent amplification by the media (Figure 2).  
 

 
Figure 2. Invertebrate trends over time span a spectrum of decreases, increases 
and no net change in biomass (a), abundance (b) and species richness (c). Points 
show effect sizes from time series from terrestrial and freshwater taxa, as well as effect 
sizes from published studies (Hallmann et al., 2017; Macgregor et al., 2019; Seibold et 
al., 2019; red points, statistical significance of the literature-reported effect sizes not 
presented). Circles show time series from the BioTIME database (Dornelas et al., 2018) 
and triangles show time series from the compilation of van Klink et al., 2020. Note that for 
visualisation purposes, we did not include the effect size (slope = -0.86) for abundance 
change in arthropods in a hurricane-dominated system from (Lister & Garcia, 2018), 
because this slope value was an extreme outlier in the distribution of trends (Blowes et 
al., 2019). See Supplementary Information for methods and Extended Data Table 3 for 
full model outputs. 
 
Conclusion 
Our analysis of 640 time series from the BioTIME and van Klink et al. 2020 databases 
demonstrated no evidence for invertebrate declines on average. However, steep declines 
could potentially be occurring in certain parts of the world and/or for specific taxa 

(Macgregor et al., 2019; Didham et al., 2020; van Klink et al., 2020). Moreover, based on 
the lower 95% confidence intervals, we cannot reject the possibility that the average trend 
may be of a shallow decline (1 - 6% per year) for the various biodiversity metrics and 
ecosystems for which data are available, which would still be very severe. Therefore, we 
suggest that on the balance of evidence to date, the scientific community should prioritise 
data collection to monitor local and global trends in invertebrate numbers. Against this 
backdrop, we suggest that alarmist media attention that overstates the problem runs the 
risk of later undermining wider public confidence in biodiversity research.  
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Supplementary Methods 
 
Data sources 
We used the data published in Seibold et al. 2019 to test the influence of temporal 
pseudoreplication and model structure. We used 640 time series of biomass, abundance 
and species richness from the publicly available data from BioTIME and van Klink et al. 
2020 to demonstrate the larger distribution of the varying trends of invertebrate 
biodiversity over time as well as our concerns about model structure (Extended Data 
Figure 2). The time series had a duration of at least five years and together represented 
1169 locations. The BioTIME data were rarefied based on sample size and study area as 
per (Blowes et al., 2019). The van Klink et al. 2020 data were used in their original form.  
 
Statistical methods to reanalyse the data in Seibold et al. 2019 
We reanalysed the data provided by Seibold et al. 2019 by applying three alternative 
model structures to data on biomass (log transformed), abundance and species richness 
(both using Poisson link) separately for forest and grassland plots. Model 1 was intended 
to be similar to the structure used by the authors, and included year as a continuous 
predictor, region as a fixed effect (rather than random term, as there are only three levels) 
and plot within region as a random term. Model 2 included year as a factor as an additional 
term and model 3 included a random year slope term across sites. The motivation for 
including model 3 was to estimate whether diversity trends vary across sites. To account 
for overdispersion, when modelling count data using a Poisson error structure, 
abundance and richness models also included a random intercept for a PlotIDYear 
variable (concatenation to specify each plot in each year) for Models 2 and 3.  
 
We replicated the model structure used in Seibold et al. 2019 which included 
environmental covariates and compared the detected temporal trends among models with 
and without a year random effect. We included the same environmental covariates as 
Seibold et al. 2019 – mean winter temperature, precipitation over the growing season, 
their interaction, land-use intensity, grassland cover, arable land cover and the 
interactions between year and land-use intensity, grassland cover and arable land cover. 
We advocate that the random effect model structure should be determined a priori rather 
post hoc based on retaining only terms that are statistically significant. Models were fitted 
using the same lme4 package as the authors, via the lmer and glmer functions (Bates, 
Mächler, Bolker, & Walker, 2014). Significance of the temporal trends was estimated 
using lmer via the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017). We 
inferred the significance of the year random intercept term via a likelihood ratio test 
comparing model 1 to model 2. For the forest plots, we ran two sets of analyses, one 
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restricted to the 30 plots with annual data and a second analysis using all 140 plots. We 
found less pronounced diversity declines for the second analysis. 
 
Statistical methods to demonstrate the wider distribution of invertebrate trends 
We used a Bayesian modelling framework through the package MCMCglmm (Hadfield, 
2010) to fit a model with a Gaussian error to analyse invertebrate biomass (logged) as a 
function of year (centred with a median of zero) and a random intercept term for year of 
observation, as well as year of observation grouped by ecoregion, and random slopes for 
the relationship between biomass and year at each plot. We allowed for covariation 
between the random intercepts and slopes across plots. The models we used for 
invertebrate abundance and richness followed a similar structure except they assumed a 
Poisson error distribution, since those data represent count integer data. We extracted 
the random slope values for each time series from the BioTIME and van Klink et al. 2020 
data. We presented the effect sizes, together with the effect sizes of published papers, in 
Figure 2. 
 
Supplementary methods references 
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects 

Models using lme4. ArXiv:1406.5823 [Stat]. Retrieved from 
http://arxiv.org/abs/1406.5823 

Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed 
models: the MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22. 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: 
Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13). 
doi:10.18637/jss.v082.i13 

 
Code and data availability 
The data from Seibold et al. 2019 are available from the original paper. The raw BioTIME 
time-series data are available from http://biotime.st-andrews.ac.uk/. The rarefied version 
of the BioTIME time series is available from the authors upon request. All code for 
statistical analyses is available from the following GitHub repository 
https://github.com/gndaskalova/Seibold_et_al_Reply. 
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Extended Data Figure 1. Accounting for temporal pseudoreplication shifts four of 
the five detected declines in Seibold et al. 2019 from significant to non-significant 
declines. Model structure was as follows: plots as random intercept (Model 1), plots and 
years as random intercepts (Model 2), random slopes and intercepts for year across plots 
(Model 3). Boxplots show the distribution of the raw data. Note that, like in Seibold et al. 
2019, for visualisation purposes some of the boxplots do not include outliers. Lines and 
error bands show model fit and 95% confidence intervals, respectively. Models with 
significant trends are marked with an asterisk. Although the magnitude of the effect sizes 
for change over time were similar across the three types of models that we ran, adding a 
year random term (models 2 and 3) demonstrated no net changes in arthropod metrics 
over time, with two exceptions. First, grassland abundance declined on average in all 
three models. The second exception was grassland species richness, where we also 
documented a net decline, but that was only when we used the smaller dataset of 30 plots 
monitored annually. When using the full dataset (140 plots), we found no net change in 
species richness. See Supplementary Information for methods and Extended Data Table 
1 for full model outputs. 
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Extended Data Figure 2. Geographical distribution of time series from freshwater 
and terrestrial invertebrate taxa part of the BioTIME database19. Circles show time 
series from the BioTIME database19 and triangles show time series from the compilation 
of van Klink et al. 20209 These locations represented the following numbers of BioTIME 
time series – freshwater biomass (5), terrestrial biomass (21), freshwater abundance (72), 
terrestrial abundance (90), freshwater richness (15), terrestrial richness (80), of a total of 
283 time series. The sample sizes for the van Klink et al. 2020 time series were as follows 
– freshwater biomass (39), terrestrial biomass (18) freshwater abundance (79) and 
terrestrial abundance (221), resulting in 357 time series. Sampling methods varied among 
time series, but were always consistent within time series.

Freshwater Terrestrial
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Extended Data Table 1. Summary table of outputs for the reanalysis of Seibold et al. 2019 for models with plots as random 
intercept (Model structure 1), plots and years as random intercepts (Model structure 2), random slopes and intercepts for year 
across plots (Model structure 3). For model structure 3, we found plot-level variation in trends, with biomass, abundance and richness 
increasing in some plots, while other plots showed decreases or no net change. To account for overdispersion, often the case when 
modelling count data using a Poisson error structure, abundance and richness models also included a random intercept for a PlotIDYear 
variable (concatenation to mark each plot in each year) for model structures 2 and 3. 
 

Habitat Response N. plots 
Model 
structure 

Year slope 
coefficient +/- s.e 

Proportional 
change per 
year 

Year slope P 
value 

Year (RE) 
variance 

Year slope 
variance 

LR for model 
1 v 2 or 2 v 3 

P value from 
LR test of 
model 1 v 2 
or 2 v 3 

forest biomass 30 1 -0.036 +/- 0.011 0.964 0.001 - - - - 

forest biomass 30 2 -0.037 +/- 0.031 0.964 0.269 0.05 - 34.082 <0.001 

forest biomass 30 3 -0.036 +/- 0.032 0.964 0.29 0.051 0.003 10.2319 0.006 

forest biomass 140 1 -0.037 +/- 0.01 0.963 0 - - - - 

forest biomass 140 2 -0.02 +/- 0.026 0.98 0.46 0.032 - 25.6603 <0.001 

forest biomass 140 3 -0.002 +/- 0.032 0.998 0.939 0.043 0.02 50.5905 <0.001 

grassland biomass 150 1 -0.089 +/- 0.009 0.914 0 - - - - 

grassland biomass 150 2 -0.091 +/- 0.049 0.913 0.1 0.192 - 212.6024 <0.001 

grassland biomass 150 3 -0.091 +/- 0.049 0.913 0.101 0.194 0.003 9.9108 0.007 

forest abundance 30 1 -0.023 +/- 0.011 0.977 0.036 - - - - 

forest abundance 30 2 -0.024 +/- 0.033 0.977 0.48 0.062 - 70.186 <0.001 

forest abundance 30 3 -0.024 +/- 0.034 0.977 0.488 0.063 0.001 3.7243 0.1553 

forest abundance 140 1 0.016 +/- 0.01 1.016 0.112 - - - - 

forest abundance 140 2 0.006 +/- 0.035 1.006 0.867 0.065 - 121.1933 <0.001 

forest abundance 140 3 0.039 +/- 0.038 1.04 0.31 0.071 0.019 66.1134 <0.001 

grassland abundance 150 1 -0.116 +/- 0.008 0.891 0 - - - - 

grassland abundance 150 2 -0.117 +/- 0.044 0.89 0.008 0.156 - 329.8063 <0.001 

grassland abundance 150 3 -0.117 +/- 0.044 0.89 0.008 0.156 0.002 7.8177 0.0201 

forest 
species 
richness 30 1 -0.04 +/- 0.005 0.96 0 - - - - 

forest 
species 
richness 30 2 -0.042 +/- 0.016 0.959 0.009 0.014 - 71.7612 <0.001 
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forest 
species 
richness 30 3 -0.042 +/- 0.017 0.959 0.012 0.015 0 8.8626 0.0119 

forest 
species 
richness 140 1 -0.033 +/- 0.005 0.967 0 - - - - 

forest 
species 
richness 140 2 -0.029 +/- 0.017 0.972 0.088 0.015 - 129.7137 <0.001 

forest 
species 
richness 140 3 -0.013 +/- 0.019 0.988 0.511 0.018 0.003 37.4154 <0.001 

grassland 
species 
richness 150 1 -0.034 +/- 0.004 0.966 0 - - - - 

grassland 
species 
richness 150 2 -0.034 +/- 0.018 0.967 0.058 0.025 - 225.8448 <0.001 

grassland 
species 
richness 150 3 -0.035 +/- 0.018 0.966 0.053 0.025 0.001 25.9936 <0.001 
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Extended Data Table 2. Summary table of outputs for the reanalysis of Seibold et al. 2019 including environmental covariates 
for models with plots as random intercept (Model structure 1), plots and years as random intercepts (Model structure 2). We 
included the same environmental covariates as Seibold et al. 2019 – mean winter temperature, precipitation over the growing season, 
their interaction, land-use intensity, grassland cover, arable land cover and the interactions between year and land use intensity, 
grassland cover and arable land cover. The year (random effect) variance remained substantial in the models with a year random term 
and environment variables (i.e., when compared to models with the random term but without the environmental variables, Extended data 
Table 2). For further details, see analysis scripts at https://github.com/gndaskalova/Seibold_et_al_Reply. 
 

Response variable 
Year trend (no year random 

term) 

Year trend (with year random 

term) 

Year (RE) variance in models 

with year random term and 

environmental variables 

forest biomass (30) 1 0 0.07 

forest biomass (140) 1 0 0.18 

grassland biomass 1 0 0.27 

forest abundance (30) 1 0 0.24 

forest abundance (140) 1 (increase) 0 0.40 

grassland abundance 1 0 0.31 

forest species (30) 1 1 0.02 

forest species (140) 1 0 0.40 

grassland species 1 0 0.04 
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Extended Data Table 3. Summary table of outputs for the analysis of the BioTIME19 and van Klink et al. 20209 time series for 
models of biomass, abundance and richness change in invertebrate taxa over time. Each model included year as a continuous 
fixed effect and a random intercept term for year of observation, as well as year of observation grouped by ecoregion, and random slopes 
for the relationship between diversity metric (biomass, abundance or richness) and time for each time series. Models did not include a 
plot or PlotIDYear random intercept as data did not consistently have a nested plot within site structure. 
Model Variable Post. mean Lower 95% CI Upper 95% CI Eff. sample pMCMC Effect 
Biomass (freshwater, 
BioTIME, n = 5) (Intercept) 1.413 -0.342 3.204 7,605.473 0.083 fixed 

 year -0.023 -0.038 -0.007 9,000 0.011 fixed 
 year (random) 0.069 0 0.157 190.091  random 
 BIOME_MAP:year 0.060 0 0.151 156.001  random 
 (Intercept):(Intercept).timeseries_id 4.263 0.210 13.385 98.580  random 
 year:(Intercept).timeseries_id -0.003 -0.029 0.019 9,000  random 
 (Intercept):year.timeseries_id -0.003 -0.029 0.019 9,000  random 
 year:year.timeseries_id 0.0001 0 0.0003 3,152.831  random 
 residual 3.381 3.344 3.422 9,000  residual 
Biomass (terrestrial, 
BioTIME, n = 21) (Intercept) 3.406 2.783 3.993 9,000 0.0001 fixed 

 year 0.023 -0.059 0.106 8,891.493 0.543 fixed 
 year (random) 0.073 0 0.222 856.275  random 
 BIOME_MAP:year 0.069 0 0.208 642.891  random 
 (Intercept):(Intercept).timeseries_id 1.669 0.768 2.892 814.857  random 
 year:(Intercept).timeseries_id 0.040 -0.019 0.112 9,388.619  random 
 (Intercept):year.timeseries_id 0.040 -0.019 0.112 9,388.619  random 
 year:year.timeseries_id 0.009 0.003 0.016 4,591.964  random 
 residual 5.407 5.328 5.483 8,256.110  residual 
Abundance (freshwater, 
BioTIME, n = 72) (Intercept) -35.552 -38.277 -32.656 17.361 0.0001 fixed 

 year 0.008 -0.076 0.090 1,028.219 0.870 fixed 
 year (random) 0.249 0 0.867 333.450  random 
 BIOME_MAP:year 0.264 0 0.882 465.401  random 
 (Intercept):(Intercept).timeseries_id 4.173 0.461 10.428 355.982  random 
 year:(Intercept).timeseries_id 0.039 -0.119 0.235 1,949.763  random 
 (Intercept):year.timeseries_id 0.039 -0.119 0.235 1,949.763  random 
 year:year.timeseries_id 0.008 0.00000 0.026 479.210  random 
 residual 161.640 141.372 185.506 9.507  residual 
Abundance (terrestrial, 
BioTIME, n = 90) (Intercept) -7.198 -7.929 -6.533 576.513 0.0001 fixed 

 year -0.010 -0.041 0.020 691.455 0.506 fixed 
 year (random) 0.020 0 0.064 184.098  random 
 BIOME_MAP:year 0.291 0.199 0.396 509.243  random 
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 (Intercept):(Intercept).timeseries_id 5.020 2.963 7.461 243.295  random 
 year:(Intercept).timeseries_id 0.025 -0.022 0.077 761.867  random 
 (Intercept):year.timeseries_id 0.025 -0.022 0.077 761.867  random 
 year:year.timeseries_id 0.003 0.001 0.005 331.897  random 
 residual 4.175 4.080 4.272 200.122  residual 
Richness (freshwater, 
BioTIME, n = 15) (Intercept) 1.757 1.027 2.426 7,208.066 0.0002 fixed 

 year -0.009 -0.036 0.018 5,559.542 0.486 fixed 
 year (random) 0.008 0 0.026 4,003.809  random 
 BIOME_MAP:year 0.008 0 0.025 3,603.565  random 
 (Intercept):(Intercept).timeseries_id 1.790 0.596 3.387 660.368  random 
 year:(Intercept).timeseries_id -0.024 -0.067 0.013 5,776.470  random 
 (Intercept):year.timeseries_id -0.024 -0.067 0.013 5,776.470  random 
 year:year.timeseries_id 0.002 0.0002 0.004 1,515.561  random 
 residual 0.072 0.036 0.112 2,169.687  residual 
Richness (terrestrial, 
BioTIME, n = 80) (Intercept) 2.908 2.669 3.123 7,866.785 0.0001 fixed 

 year 0.008 -0.001 0.018 2,168.926 0.082 fixed 
 year (random) 0.005 0 0.016 147.846  random 
 BIOME_MAP:year 0.024 0.012 0.038 411.633  random 
 (Intercept):(Intercept).timeseries_id 0.880 0.596 1.222 3,726.325  random 
 year:(Intercept).timeseries_id -0.001 -0.009 0.005 702.989  random 
 (Intercept):year.timeseries_id -0.001 -0.009 0.005 702.989  random 
 year:year.timeseries_id 0.0003 0.00003 0.001 62.303  random 
 residual 0.002 0.0002 0.005 150.395  residual 
Biomass (freshwater, 
van Klink et al., n = 39) (Intercept) 2.697 1.678 3.720 9,000 0.0001 fixed 

 year -0.024 -0.053 0.006 9,000 0.102 fixed 
 year (random) 0.012 0 0.043 7,110.446  random 
 WWFecoRegion:Year 0.360 0.228 0.500 8,523.191  random 
 (Intercept):(Intercept).Timeseries_id 10.262 5.813 15.677 1,401.594  random 
 year:(Intercept).Timeseries_id 0.083 -0.013 0.185 8,629.515  random 
 (Intercept):year.Timeseries_id 0.083 -0.013 0.185 8,629.515  random 
 year:year.Timeseries_id 0.005 0.002 0.009 4,509.669  random 
 residual 2.676 2.540 2.823 9,000  residual 
Biomass (terrestrial, van 
Klink et al., n = 18) (Intercept) 2.585 0.638 4.578 9,000 0.013 fixed 

 year -0.041 -0.062 -0.022 6,912.661 0.0004 fixed 
 year  (random) 0.071 0.00000 0.136 4,538.983  random 
 WWFecoRegion:Year 0.022 0 0.075 3,905.155  random 
 (Intercept):(Intercept).Timeseries_id 17.272 7.219 31.697 673.187  random 
 year:(Intercept).Timeseries_id -0.019 -0.121 0.058 1,710.907  random 
 (Intercept):year.Timeseries_id -0.019 -0.121 0.058 1,710.907  random 
 year:year.Timeseries_id 0.0005 0 0.001 3,755.425  random 
 residual 0.862 0.796 0.928 8,782.746  residual 
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Abundance (freshwater, 
van Klink et al., n = 79) (Intercept) 5.837 5.329 6.386 9,000 0.0001 fixed 

 year 0.001 -0.014 0.017 8,704.744 0.845 fixed 
 year (random) 0.006 0 0.021 4,628.452  random 
 WWFecoRegion:Year 0.103 0.067 0.141 8,409.004  random 
 (Intercept):(Intercept).Timeseries_id 5.313 3.531 7.221 2,155.026  random 
 year:(Intercept).Timeseries_id 0.013 -0.022 0.050 7,383.029  random 
 (Intercept):year.Timeseries_id 0.013 -0.022 0.050 7,383.029  random 
 year:year.Timeseries_id 0.002 0.001 0.004 3,465.915  random 
 residual 1.608 1.552 1.664 6,042.458  residual 
Abundance (terrestrial, 
van Klink et al., n = 221) (Intercept) 4.511 4.111 4.893 9,000 0.0001 fixed 

 year -0.014 -0.021 -0.006 4,679.015 0.0001 fixed 
 year (random) 0.003 0 0.009 2,901.541  random 
 WWFecoRegion:Year 0.036 0.021 0.051 3,663.796  random 
 (Intercept):(Intercept).Timeseries_id 8.731 7.106 10.400 4,209.539  random 
 year:(Intercept).Timeseries_id 0.003 -0.018 0.025 1,510.321  random 
 (Intercept):year.Timeseries_id 0.003 -0.018 0.025 1,510.321  random 
 year:year.Timeseries_id 0.001 0.001 0.002 1,687.778  random 
 residual 1.528 1.498 1.558 2,078.304  residual 
 


