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Abstract 17 

1. Ocean warming and species exploitation have already caused large-scale 18 

reorganization of biological communities across the world. Accurate projections of 19 

future biodiversity change require a comprehensive understanding of how entire 20 

communities respond to global change.  21 

2. We combined a time-dynamic integrated food web modelling approach (Ecosim) with 22 

a community-level mesocosm experiment to determine the independent and combined 23 

effects of ocean warming and acidification, and fisheries exploitation, on a temperate 24 

coastal ecosystem. The mesocosm enabled important physiological and behavioural 25 

responses to climate stressors to be projected for trophic levels ranging from primary 26 

producers to top predators, including sharks.  27 

3. We show that under current-day rates of exploitation, warming and ocean acidification 28 

will benefit most species in higher trophic levels (e.g. mammals, birds, demersal 29 

finfish) in their current climate ranges, with the exception of small pelagic fish, but 30 

these benefits will be reduced or lost when these physical stressors co-occur.  31 

4. We show that increases in exploitation will, in most instances, suppress any positive 32 

effects of human-driven climate change, causing individual species biomass to 33 

decrease at high-trophic levels. Species diversity at the trailing edges of species 34 

distributions  is likely to decline in the face of ocean warming, acidification and 35 

exploitation. 36 

5. Synthesis and applications. We showcase how multi-level mesocosm food web 37 

experiments can be used to directly inform dynamic food web models, enabling the 38 

ecological processes that drive the responses of marine ecosystems to scenarios of 39 

global change to be captured in model projections and their individual and combined 40 

effects to be teased apart. Our approach for blending theoretical and empirical results 41 
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from mesocosm experiments with computational models will provide resource 42 

managers and conservation biologists with improved tools for forecasting biodiversity 43 

change and altered ecosystem processes due to climate change. 44 

 45 

Keywords: biodiversity change, fisheries exploitation, food web models, climate change, 46 

multiple stressors, species interactions, trophic modelling 47 

 48 

 49 

INTRODUCTION 50 

 51 

Marine ecosystems and resources are facing significant challenges due to the cumulative 52 

effects of multiple global and local stressors, including overfishing, eutrophication, pollution, 53 

habitat destruction, climate change, and ocean acidification (Cheung, 2018; Halpern et al., 54 

2015). Hence, significant effort is needed to generate reliable projections of future changes in 55 

marine food webs and fisheries productivity. 56 

Past attempts to forecast climate-driven changes in populations of fisheries species 57 

have incorporated the direct impact of temperature on species physiology using deterministic 58 

food web models (Blanchard et al., 2012; Brown et al., 2010), end-to-end climate models 59 

(Olsen et al., 2018), and species distribution models (Cheung et al., 2011; Peterson et al., 60 

2002). Most of these projections, however, are based on species thermal niches or ecological 61 

proxies that do not consider real time observations from the natural system or experimental 62 

settings. Thus, they ignore the potentially large role of indirect (e.g. shifting predator-prey 63 

relationships) and interactive drivers of change (e.g., with ocean acidification) on model 64 

outcomes. Although thermal niches play an important role in governing species distributions 65 

and their population sizes, the occurrence and abundance of species is also heavily regulated 66 
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by life-history traits, metapopulation processes and biotic interactions (Fordham et al., 2013; 67 

Mellin et al., 2016). While modelling architectures have been developed to improve our 68 

understanding of how multiple drivers of global change (including warming, acidification and 69 

exploitation) interact and affect marine communities (Fulton and Gorton, 2014; Kaplan et al., 70 

2010; Koenigstein et al., 2018), accounting for complex biotic responses to multiple stressors 71 

at the level of the food web has proved difficult. 72 

The role of indirect effects of climate change (e.g. shifting predator-prey relationships) 73 

on marine communities has received less attention than direct effects, even though they are 74 

likely to strongly shape future marine communities (Lord et al., 2017; Nagelkerken et al., 75 

2017). Empirical data that enables biotic interactions to be quantified under near-future 76 

climate change scenarios is urgently needed to better project and understand the role of direct 77 

and indirect drivers of climate change on biological systems. A promising avenue is to use 78 

large-scale mesocosm experiments to quantify the potential effect of global warming on the 79 

strength of biotic interactions, rates of species turnover and composition, along with many 80 

other key ecological processes that drive population- and community-level responses to 81 

climate change (Fordham, 2015; Nagelkerken et al., 2020). Although scale, closed 82 

boundaries, simplified ecological communities, and replication can impose challenges for 83 

researchers using mesocosm experiments, they have the potential to quantify community-to-84 

ecosystem level responses to scenarios of global warming (Sagarin et al., 2016), particularly if 85 

climate change mesocosm experiments align with regional climate projections for their study 86 

system (Korell et al., 2020). 87 

Dynamic food web simulation models have shown that scenarios of increased 88 

temperature or acidification, modelled in isolation, could positively or negatively affect future 89 

fisheries through increased primary productivity (Brown et al., 2010) or higher mortality of 90 

invertebrates (Griffith  et al., 2011; Marshall et al., 2017), respectively. However, the 91 
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cumulative effects of ocean warming and acidification on complex natural food webs remain 92 

largely unknown, despite both stressors being a consequence of human-induced greenhouse 93 

gas emissions, affecting marine systems in unison (Brierley and Kingsford, 2009). 94 

We combined empirical data from mesocosm experiments with dynamic food web 95 

models to test whether: (1) the combination of ocean warming and acidification is likely to 96 

exert synergistic, additive or antagonistic effects on food web structure and function for a 97 

temperate coastal ecosystem, and (2) whether increased exploitation will amplify these 98 

projected responses to increased greenhouse gas emissions. We use the mesocosm 99 

experiments to integrate physiological and behavioral responses of organisms to different 100 

scenarios of warming and/or acidification into the food web model, based on observations at 101 

trophic levels ranging from primary producers to top predators (including sharks). We show 102 

that integrating mesocosm experiments with dynamic food web models can provide 103 

ecologically robust frameworks for exploring the consequences of climate change on the 104 

structure and function of future food webs and their production capacity.  105 

 106 

MATERIALS AND METHODS 107 

 108 

We integrated empirical data from two food-web-level mesocosm studies (and other sources) 109 

into an existing food web model for the Port Philip Bay (PPB) temperate coastal marine 110 

ecosystem (Victoria, Australia) (Koopman, 2005) using Ecopath (Christensen et al., 2008). 111 

We validated the food web model retrospectively, using hindcast validation and then 112 

simulated likely future community-level changes for the PPB ecosystem (Fig 1). 113 
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 114 

Figure 1: Conceptual representation of how different food web parameters from mesocosm 115 

experiments can be integrated with dynamic modelling approaches to project the state of 116 

future ecosystems. Several trophic level groups are illustrated e.g.: 1) primary producers: 117 

phytoplankton, macroalgae, seagrass, algal turf, microphytobenthos; 2) primary consumers: 118 

gastropods, shrimps, copepods, bivalves, polychaetes, sea urchins, sea stars, sponges, 119 

ascidians, tanaids; 3) secondary consumers: carnivorous (pelagic) fish, omnivorous fish, 120 

herbivorous fish, carnivorous (benthic) fish; 4) tertiary consumer: scorpionfish (behavioural 121 

experiment). Organism symbols were drawn by the authors or were courtesy of the 122 

Integration and Application Network, University of Maryland Center for Environmental 123 

Science (ian.umces.edu/symbols/). 124 

 125 

Food web model and scenarios 126 

Ecopath is a mass-balance food-web modelling approach used to create a baseline snapshot of 127 

the ecosystem and quantify the flow of energy between food web functional groups 128 

(Christensen et al., 2008). The model requires four primary input variables: biomass (B), 129 
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production/biomass ratio (P/B), consumption/biomass ratio (Q/B), and diet composition. 130 

Experimental data from two large-scale mesocosms (Pistevos et al., 2015; Ullah et al., 2018), 131 

and field data published elsewhere, were used to calculate these input variables (see 132 

Supporting Information). 133 

 Differential equations were used to estimate biomass fluxes for each species and/or 134 

functional group within the food web using foraging arena theory (Ahrens et al., 2012). 135 

Vulnerability parameters were used to define predator consumption rates (Qij) (Equation 1) 136 

(see Supporting Information). For each predator-prey interaction, we calculated Qij at time t 137 

as, 138 

   ( )  
             ( )    ( )  ( )

            ( )
                                                                    (Eq. 1)               139 

where aij is the effective search rate of predator j feeding on prey i, Bi is the biomass of the 140 

prey, Bj is the predator biomass, and vij is the vulnerability of prey i to predator j (Christensen 141 

et al., 2008). The forcing function f (t) was used to account for external drivers changing 142 

through time affecting Qij . 143 

Climate change was incorporated into model projections using forcing functions that 144 

temporally affect the consumption and production of functional groups (Ainsworth et al., 145 

2011; Cornwall and Eddy, 2015) based on observations from the mesocosm experiments (see 146 

below). Specifically, we used the estimated effects of warming, acidification and their 147 

combination on prey vulnerability, search activity (higher trophic levels), mortality and 148 

productivity (primary producers) of trophic groups to alter modelled consumption (Q/Bi) and 149 

production (P/Bi) rate.  150 

We developed four 85-year simulations (2015-2100): a no-climate-change scenario 151 

(baseline), ocean warming (T), ocean acidification (OA) and their combination (OAT). The 152 

climate change scenarios assumed a 2.8 C increase in warming by 2100, representing a high 153 

representative concentration pathway scenario (RCP 8.5) for the Port Phillip Bay region (1.9 154 
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to 3.8 C increase from a 20-year baseline focused on 1995 (Clarke et al., 2011)). We 155 

considered only RCP 8.5 because it was feasible to do the mesocosm experiment under only 156 

one RCP scenario. Uncertainty in parameter estimates for biomass (B), production (P/B) and 157 

consumption (Q/B) rates, and ecotrophic efficiency (EE) was simulated by varying these 158 

parameters randomly within bounds of   20% coefficient of variation. 159 

The no-climate-change scenario (NC) assumes that model parameters do not change in 160 

the future, with model drivers, including fishing effort, set to the last year of the historical 161 

observation data (2015). For the three climate change scenarios (T, OA, and OAT), we 162 

incorporated direct and indirect climate-driven changes in species interactions and mortality 163 

of trophic functional groups in the food web. The effects of climate change were assessed by 164 

comparing biomasses and ecological indicators observed under the NC scenario with that of 165 

the climate change scenarios. Exploitation was initially held constant at 2015 levels for 21
st
 166 

Century climate change scenarios because fisheries management is generally done at decadal 167 

temporal resolutions, or finer (Fulton et al., 2018), meaning little is known about how 168 

exploitation rates are likely to change by the end of the century. However, we did run further 169 

scenarios to test the response of future food webs to increased exploitation. We did this by 170 

increasing exploitation by 1.5, 2 and 5-fold compared to present-day fishing pressure. 171 

 172 

Mesocosm experiment  173 

Empirical data from the mesocosm experiments were used to quantify the effects of climate 174 

change on food web structure and function, including trophic level biomass and diversity 175 

(Fig. 1; Supporting Information). Three response variables were derived and combined to 176 

estimate prey vulnerability to higher order trophic levels (trophic level ≥ 2) using behavioural 177 

experiments under the different mesocosm treatments (NC, T, OA, OAT). I) “prey attraction” 178 

was calculated as the percentage of time spent in the area close to a food cue relative to the 179 
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time spent in the entire field of view (Goldenberg et al., 2018). II) „food search activity‟ was 180 

given as the number of position changes in the area close to a food cue relative to the time 181 

spent in this area (Goldenberg et al., 2017). III) „boldness‟ was measured as the percentage of 182 

time spent directly in front of a predator within the area close to a food cue relative to the time 183 

spent in the entire area close to the food cue. We averaged across the three response variables, 184 

weighting each variable equally, to obtain a composite vulnerability index of prey to its 185 

predator. For chondrichthyans, we calculated effective search activity as the total time taken 186 

by Port Jackson sharks (Heterodontus portusjacksoni) to successfully locate prey hidden in 187 

the sand using olfactory cues (see methods in (Pistevos et al., 2015) for details). Mortality as a 188 

direct function of biomass decline was quantified for functional groups not predated in the 189 

system. Primary productivity was measured from community metabolism as gross oxygen 190 

production (mg O2/m
3
/min

1
) once per mesocosm at the end of the experiment. See Supporting 191 

Information for more details. 192 

We calculated relative effect sizes for prey vulnerability, search activity, mortality and 193 

productivity by comparing the NC (control) scenarios with climate change treatments. These 194 

effect sizes were used to derive the model forcing functions for different climate change 195 

scenarios (OA, T, and OAT) (Table S1). The forcing function (input) and responses (biomass) 196 

were standardized to the base scenario by dividing the response value by the base values 197 

under a particular scenario. We used linear interpolation to construct a time series for all the 198 

forcing function parameters between 2015 and 2100. While it is common practice in climate 199 

change ecology to interpolate temporally between climate snapshots (Fordham et al., 2012), 200 

doing so can potentially mask important decadal variation (Fordham et al., 2018). We were 201 

limited to this approach because the mesocosm experiments were snapshots focussed on year 202 

2100. The forcing functions were applied to appropriate functional groups in the model (Table 203 
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S1). We provide a more detailed explanation of the estimation of different forcing function 204 

parameters in the Supporting Information. 205 

 206 

Analysis and model validation 207 

We pooled food web functional groups into 10 community levels, including pelagic groups 208 

(mammals, birds, cephalopods, pelagic finfish), demersal groups (chondrichthians and 209 

demersal finfish) and their prey (benthic crustaceans, invertebrates, small pelagic crustaceans, 210 

primary producers) (Table S2). We calculated effect sizes for changes in biomass under 211 

different model scenarios using Hedges‟ g (Lakens, 2013). We calculated and compared key 212 

biodiversity indicators under different model scenarios, including the Shannon index 213 

(Shannon and Weaver, 1963) and Kempton‟s Q index (Ainsworth and Pitcher, 2006). The 214 

Shannon diversity index captures changes in evenness, whereas the Kempton‟s Q index 215 

captures changes in both evenness and richness at the level of functional groups (see 216 

Supporting Information for details). 217 

We did an ecosystem model skill assessment (Olsen et al., 2016) and a global 218 

sensitivity analysis (Fordham et al., 2016) to determine the influence of input parameters on 219 

model results (see Supporting Information). To assess ecosystem model skill for our PBB 220 

model  and verify that parameters from our mesocosm were transferrable to the PPB coastal 221 

marine system  we validated hindcast simulations using independent catch-data (Table S3). 222 

Historical abundances (1993 and 2011) were simulated using the full-PBB model and sub-223 

models with only functional groups in the mesocosm experiment. We assessed model-skill 224 

using a wide range of metrics (Olsen et al., 2016; Stow et al., 2009): root mean squared error 225 

(RMSE), average error (AE), average absolute error (AAE), modelling efficiency (MEF), and 226 

Pearson (P) and Spearman (S) correlation.  227 
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We determined the sensitivity of Ecopath input parameters  biomass (B), production 228 

(P/B) and consumption (Q/B) rates, and ecotrophic efficiency (EE)  on estimates of change 229 

in biomass under a scenario of projected ocean warming and acidification (OAT) and a 230 

scenario that included a moderate level of exploitation as well as OAT. To do this we used the 231 

built-in Monte Carlo routine within Ecosim module, which allows model input parameters to 232 

be varied (Coll and Steenbeek, 2017; Heymans et al., 2016). Specifically, we ran 100 Monte 233 

Carlo simulations with B, P/B and Q/B and EE varying randomly within bounds of   20% 234 

coefficient of variation. Initial and projected future biomass for 3 community groups 235 

(cephalopods, pelagic finfish and invertebrates) were recorded for the year 2100. We used 236 

generalized linear models (GLM) to explore the relative importance of different model input 237 

parameters on projected changes in future biomass (Fordham et al., 2016). We did this by 238 

calculating standardized regression coefficients (SRC) along with the coefficients and their 239 

confidence intervals. Furthermore,  we assessed the quality of input data for the PPB model 240 

using food web diagnostics (Link, 2010) and explored the effects of parameter uncertainty on 241 

model outputs using sensitivity analysis. See Supplementary Information for more details.  242 

 243 

RESULTS 244 

 245 

Biomass changes under future climate change 246 

Model simulations show that the total biomass of most higher-trophic-order community 247 

groups (mammals, cephalopods, chondrichthians, and demersal finfish) is likely to benefit 248 

from ocean warming (T) or acidification (OA), when modelled separately (Fig. 2, Fig S1). 249 

However, the combination of the two stressors has an antagonistic effect on biomass increase. 250 

At the level of individual species or functional group the positive effects on biomass are more 251 

disparate (Figs. S2, S3).  252 
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Our models project an average increase in marine mammal biomass of 85% by the end 253 

of the 21
st
 Century under the combined effect of acidification and warming (OAT) compared 254 

to no-climate-change and current levels of fish exploitation („no change‟ scenario) (Fig. 2A). 255 

Modelling acidification (OA) and warming (T) separately resulted in even higher average 256 

increases in marine mammal biomass: 254% and 213%, respectively. Cephalopod biomass is 257 

projected to increase by 144% under OAT, while warming and acidification in isolation likely 258 

boost biomass by 237% and 205%, respectively. Although chondrichthyans showed the 259 

largest increase in their biomass under warming, this increase in biomass was affected by 260 

parameter uncertainty. Demersal finfish and seabirds are projected to increase their biomass 261 

the most in response to OA (252% and 165%, respectively), with a smaller increase under T. 262 

Pelagic finfish showed a negative response to warming, irrespective of acidification, with 263 

small pelagics (mostly planktivores) showing severe depletions (>70%) under both under T 264 

and OAT (Fig. S2). 265 

 266 

 267 
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FIGURE 2:: A) Mean (± 95% confidence interval) relative change in biomass (∆ %) in year 268 

2100  for different food web community groups under three climate change scenarios relative 269 

to a no-climate-change (NC) scenario. OA = ocean acidification, T = ocean warming, and 270 

OAT = combined ocean acidification and warming. Functional groups of food web models 271 

are aggregated to community groups (CGs) for better representation and clarity. The order of 272 

CGs is based on the mean trophic level (shown in blue). B) The future standing biomass 273 

(kg/km
2
; ln- transformed) estimates for each CG. The bubble size is proportional to its 274 

biomass. Exploitation rates for all scenarios are modelled at present-day rates.  275 

 276 

 277 

Conversely, ocean warming – either alone or in combination with ocean acidification 278 

– is projected to exert a negative effect on lower trophic-level faunal groups, with the 279 

exception of benthic crustaceans (Fig. 2A). Invertebrates (predominantly molluscs and 280 

invertebrates that do not possess a chitinous exoskeleton; Table S5), and small pelagic 281 

crustaceans (zooplankton) are projected to experience biomass declines of 7-78% and 45-282 

70%, respectively, under T or OAT (Fig. 2).  283 

The standing biomass of primary producers increased under OA and T, but decreased 284 

by ~ 26% under OAT (Fig. 1A), largely driven by a reduction of phytoplankton, micro-285 

phytobenthos and macro-algal biomass (Fig. S3). Turf algae, in contrast, experienced a large 286 

increase in biomass (Fig. S3). 287 

 288 

The combined effect of warming, acidification and exploitation 289 

In the absence of ocean warming and acidification, exploitation reduced (by 1-32%) projected 290 

biomass in the year 2100 for most higher-order community groups under a 1.5- to 2-fold 291 

increase in exploitation rate (Fig. 3). Further increases in exploitation (up to 5-fold) 292 

exacerbated this declining trend (by 41-66%) for mammals, birds (due to reduced prey) and 293 

chondrichthians. Negative effects of up to a 2-fold increase in exploitation were suppressed at 294 
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higher trophic levels (except for pelagic finfish) under modelled climate change (OA, T and 295 

OAT), due to greater top-down control of consumers on prey resources (Fig. 2). However, a 296 

5-fold increase in exploitation caused the biomass of mammals and birds to collapse under 297 

warming scenarios, causing some functional groups for example cephalopods to increase in 298 

biomass (T: 178%; OAT: 144%) (Fig. S4). Whilst both T and OA scenarios positively 299 

affected higher trophic levels in the face of medium-to-high increases in exploitation, their 300 

largely negative effects on lower trophic levels (primary producers, small pelagic crustaceans 301 

and invertebrates) were not decreased by increased exploitation (Fig. 3; Fig. S5). 302 

 303 

FIGURE 3: Mean (± 95% confidence interval) relative change in biomass (∆ %) in year 2100 304 

compared to no change in climate and fishing from present-day levels (NC). OA = ocean 305 

acidification, T= ocean warming, and OAT = combined ocean acidification and warming. 306 

Functional groups are aggregated to community groups (CGs) for better representation and 307 

clarity. Number of „folds‟ equals the magnitude of increase in fishing pressure starting in 308 

2015. 309 

 310 



15 
 

 311 

Under the NC scenario, the Shannon diversity index remained relatively stable in the 312 

future under 1.5- and 2- fold increases in exploitation, whilst it decreased by ~ 4% under a 5-313 

fold increase in exploitation (Fig. 4A). In contrast, the Shannon diversity index declined under 314 

all global change scenarios with the largest declines projected for OAT, under a 5-fold 315 

increase in exploitation (Fig. 4A). The Kempton Q metric for higher trophic levels showed a 316 

stronger decline (after  year 2070) under OAT compared to the other climate change scenarios 317 

(Fig. 4B). A 5-fold increase in exploitation resulted in a steep and immediate decline in the 318 

Kempton Q index regardless of the climate change scenario.  319 

 320 

 321 

FIGURE 4: Ecological indicators of change in community composition, showing A) Shannon 322 

diversity index and B) Kempton Q index. The grey shadows represent the 95% percentile and 323 

5% percentile. NC = no change in climate from present-day levels, OA = ocean acidification, 324 
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T = ocean warming, and OAT = combined ocean acidification and warming. CL= current 325 

level of fishing effort. Number of „folds‟ equals the magnitude of increase in fishing pressure 326 

starting in 2015. 327 

 328 

 329 

Model validation and sensitivity 330 

Hindcasts of biomass from models parameterized using mesocosm data were correlated with 331 

empirical field data for carnivorous fish and omnivorous fish (correlation coefficient [r] = 332 

0.54-0.82). The food web model skill assessment showed that models parametrized with 333 

mesocosm data are generally as skillful at projecting changes in biomass as models 334 

parameterized with field data (Fig. 5). Model projections for carnivorous and omnivorous fish 335 

biomass were relatively synchronous with independent biomass (survey) data, regardless of 336 

whether the models were parameterized using empirical data from the field (r = 0.73, RMSE 337 

≤ 0.0001; r = 0.82, RMSE = 0.007, respectively) or mesocosm (r = 0.69, RMSE ≤ 0.0001; r = 338 

0.82, RMSE = 0.007, respectively) data. Models parameterized with either field or mesocosm 339 

data did worse at projecting observed temporal variability in biomass for Port Jackson shark (r 340 

= 0.12, RSME = 0.011, r = 0.29, RSME = 0.011, respectively). Estimates of modelling 341 

efficiency (MEF) suggest that models for omnivorous fish and carnivorous fish do better than 342 

random (MEF > 0). This was not the case for Port Jackson sharks (Fig. S6). Importantly, bias 343 

(average error) in model projections remained low for all functional groups for models 344 

calibrated with field (carnivorous fish: + 0.24 g; omnivorous fish: - 0.02 g; Port Jackson 345 

shark: -0.12 g) or mesocosm data (carnivorous fish: + 0.18 g; omnivorous fish: -0.03 g; Port 346 

Jackson shark: -0.09 g). 347 

The global sensitivity analysis (Table S6) showed that estimates of change in biomass 348 

(years 2015 to 2100) under an OAT scenario for pelagic finfish and invertebrates are most 349 

sensitive to changes in the Ecopath input parameter B followed by PB. For cephalopods, 350 
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estimates of change in biomass were most sensitive to changes in QB, followed by PB. The 351 

most important parameter for each community remained the same regardless of whether 352 

exploitation was modelled or not. 353 

 354 

 355 

 356 

FIGURE 5: A) Mesocosm transferability. Comparison of the Port Phillip Bay (PPB) model 357 

built with the field (pink) and experimental data from the mesocosms (green) to standing 358 

catch biomass (tonnes per km
2
;
 
solid

 
black dots) for two major functional groups between 359 

years 1993 and 2011. BCF = benthic carnivorous fish and OF = omnivorous fish. 360 

B) Ecosystem model skill assessment for models built using empirical field (pink) and 361 

experimental mesocosm data (green) for Port Phillip Bay (between 1993 and 2011): root 362 

mean squared error (RMSE), average error (AE), average absolute error (AAE), Spearman 363 

rank (S) and Pearson (P) correlation, and modelling efficiency (MEF) for 2 species. Y-axis 364 

limited to show values between -0.05 and 1.00.  365 

 366 

 367 
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DISCUSSION 368 

 369 

By integrating empirical data on species physiological and behavioural performance from two 370 

large-scale mesocosm experiments into dynamic food web models, accounting for historical 371 

exploitation rates, we show that climate change is likely to benefit the biomass of animals at 372 

higher trophic levels in some temperate marine ecosystems, albeit at a potential cost to 373 

biodiversity. Increased biomass under warming results from strengthened top-down control of 374 

consumers that occupy higher trophic levels, supported by a positive biomass response of 375 

some of their prey groups. Accordingly, the structure of future temperate marine food webs 376 

appears to be shaped by altered predator-prey dynamics, resulting from a reshuffling of 377 

predatory and prey species abundances in response to warming, and not a continuous fuelling 378 

of the food web from the bottom up as would be the case if ocean acidification was the 379 

dominant climate stressor (Nagelkerken et al., 2020; Sswat et al., 2018). 380 

Organisms at higher trophic levels are likely to increase their top-down control on 381 

their prey, and therefore increase in biomass, in response to temperature-driven enhancements 382 

in their metabolic rates (Brown et al., 2010). Although an increase in top-down control by 383 

consumers has been previously suggested as a response to ocean warming for simplified 384 

(three-trophic- level) food webs (Goldenberg et al., 2017; Marino et al., 2018), a robust 385 

understanding of how higher-order consumers or apex predators will respond to global 386 

warming, and the subsequent effects for lower-order trophic levels, has until now been 387 

lacking. We show that under future scenarios of warming, the biomass of all higher-order 388 

consumers and apex predators (mammals, birds, cephalopods, chondrichthians, and demersal 389 

finfish) is likely to increase compared to a no-warming scenario due to amplified rates of prey 390 

consumption (pelagic finfish, invertebrates and small pelagic crustaceans), driven, in part, by 391 

increases in biomass of benthic crustaceans (major prey group in the system).  Our new 392 
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results, for a temperate marine ecosystem, suggest that the benefit of warming for higher 393 

trophic levels is likely to be universal, with associated negative effects for their prey at lower 394 

trophic levels. 395 

Acidification alone is not expected to enhance top-down control by consumers 396 

because elevated CO2 tends not to positively affect the metabolism of consumers (Carter et 397 

al., 2013; Kroeker et al., 2013). Recent food web studies showed that enhanced primary 398 

production can enlarge available prey resources, which can boost the growth of consumers 399 

under acidification (Nagelkerken et al., 2017; Sswat et al., 2018). This was true for all higher-400 

order predators in our study, although for chondrichthians the biomass increase was weak. 401 

Elevated CO2 is known to affect the foraging behaviour (e.g. reduced prey search efficiency 402 

and impaired odour tracking) of chondrichthians which might explain the reduced increase in 403 

biomass for this group (Pistevos et al., 2015). Because of their different physiology, highly 404 

active predators such as marine mammals, birds, and non-bony animals such as cephalopods 405 

tend to be more tolerant to increasingly acidic environmental conditions (Melzner et al., 406 

2009). They benefit from amplified acidification only if increased resource availability at the 407 

bottom of the food web is transferred up the food web. 408 

Although warming and acidification in isolation showed striking positive effects on 409 

the biomass of predators, their combined effect was antagonistic for many of the top 410 

consumers in the food web and caused a decline in the biomass of many lower-order 411 

consumers. Previous studies have shown that warming and acidification can antagonistically 412 

affect the growth of carnivores such as sharks by affecting prey search time (Pistevos et al., 413 

2015), and of herbivores by increasing the degree of unpalatable or poor-quality food (Poore 414 

et al., 2013). Two of the major prey groups in our model (small pelagic crustaceans and 415 

invertebrates) experienced collapses in their biomass under the combined effect of warming 416 
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and acidification, reducing the availability of resources for higher level consumers, resulting 417 

in reduced rates of change in consumer biomass under this scenario. 418 

In contrast to other invertebrates, benthic crustaceans sustained a biomass increase 419 

under all modelled climate scenarios, enabling an increase in the biomass of their consumers 420 

(e.g. demersal finish, and consecutively some higher-order predators). Benthic crustaceans 421 

(e.g. lobsters, crabs, and shrimp) are generally considered to have a higher tolerance to 422 

acidification than other invertebrates (Kroeker et al., 2013) and show, in some cases, positive 423 

responses to warming (Faulkner et al., 2014). These observations could explain their 424 

successful propagation under scenarios of global warming.  425 

Exploitation is a local stressor that negatively affected the biomass of all higher order 426 

community groups, except pelagic finfish. However, warming and acidification negated these 427 

negative effects, boosting the biomass of top predators at exploitation intensities equal to or 428 

smaller than a two-fold increase. Global-scale models, with static fishing rates, suggest that 429 

some commercial fisheries (ranging from crustaceans, small and large fish, to sharks) in high-430 

latitude regions could experience an increase in future catches, owing to temperature-driven 431 

shifts in species distributional ranges (Cheung  et al., 2010). However, we here limited our 432 

findings to changes in food webs based on current species distributions (i.e. at their climate 433 

trailing edges). Dynamic food web approaches also project a productivity increase in pelagic 434 

fisheries in response to forecast warming of oceans (Blanchard et al., 2012), and increased 435 

yields of commercially valuable fish stocks by 2050 under future warming (Merino et al., 436 

2012). While the latter studies modelled food web responses, they used a simplified approach, 437 

with phytoplankton productivity as the only primary source of energy input, exploited species 438 

as the primary elements of the food web, and ocean warming as a single stressor. Here, using 439 

a more inclusive dynamic food web modelling approach, we show that opportunistic and less-440 

targeted groups such as cephalopods are likely to flourish in their biomass at higher fisheries 441 
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exploitation (≥ two-fold) rates due to a decrease in the biomass of major commercial species 442 

such as demersal finfish irrespective of climate change. Overall, we show that the greatest 443 

effects on future marine food webs are likely to arise at the top of the food web when 444 

overexploitation coincides with the combined effect of warming and acidification. 445 

Ocean warming and acidification have a much greater negative effect on functional 446 

diversity in food webs than overexploitation. Future ocean warming and acidification can 447 

significantly reduce diversity (i.e., Shannon diversity) within temperate coastal food webs 448 

even under present-day exploitation levels, owing to declines in the biomass of primary 449 

producers (i.e. non-weedy species such as macrophytes and certain species of phytoplankton), 450 

small pelagic crustaceans, invertebrates, and pelagic fish species. Moreover, it can cause a 451 

reduction in evenness (Kempton Q index) for higher-order groups in the food web. These 452 

changes in diversity and evenness are likely to enable ecological opportunistic species to 453 

flourish (Woodruff, 2001 ), such as high-order cephalopods and lower-order “weedy” turf 454 

algae, leading to further simplification of community structure (Nagelkerken and Connell, 455 

2015). Together, global warming and fishing will likely shift the distribution of biomass 456 

within the community and reduced diversity of future food webs.  457 

By combining empirical data on species response to climate change from large 458 

mesocosms with historical population data (from scientific surveys and fisheries landings) in 459 

a dynamic food web model, we moved from experimental ecology to making projections and 460 

management recommendations aimed at safeguarding marine biodiversity under climate 461 

change. Blending mesocosm experiments with “real world” ecological models has been 462 

questioned on the grounds that they are unlikely to attain realistic projections (Carpenter, 463 

1996). By independently validating our model projections against historical population data 464 

(trawl surveys), we not only show that our dynamic food web model does a fair to good job at 465 

reconstructing observed historical trends in biomass (particularly for selected functional 466 
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groups), but that models based on mesocosm experiments provide a relatively close 467 

representation of „real world‟ food webs. Therefore, mesocosms with realistic multifactorial 468 

experiments that capture food web complexity can indeed be used with confidence to 469 

parameterize ecosystem models and help to bridge the gap between simplified experimental 470 

conditions and the real world. 471 

Our modelling approach, like other modelling techniques, has its own caveats. El 472 

Niño–Southern Oscillation (ENSO) is known to influence Australia‟s marine ecosystem 473 

through its year-to-year dynamics in climate variability (Lough and Hobday, 2011). These 474 

fine temporal scale climate dynamics could not be captured in the mesocosm experiment and 475 

therefore the food web model. This could, potentially, affect our modelled trajectories of 476 

biomass and community composition. To calculate the vulnerability of fish to their 477 

consumers, all fish species were considered into two major categories, namely carnivores and 478 

omnivores (feeding guilds). The somewhat poor fit of modelled projections to observed data 479 

for Port Jackson shark is likely to reflect an over-simplification of food web structure for the 480 

validation exercise (see Supplementary Information). Likewise, important and unaccounted 481 

uncertainties in the validation data (i.e., detection probability) could partly explain the 482 

difference between predicted and observed patterns of temporal variability in biomass 483 

(Guillera-Arroita, 2017). Despite these limitations, our study included the best available 484 

historical data and the most robust estimates of physiology and behaviour responses to global 485 

warming for a 4-trophic level temperate food web system. 486 

 487 

CONCLUSIONS 488 

Here we used a novel approach to simulate the effects of global warming, ocean acidification, 489 

and fishing on the biomass and diversity of species in a temperate coastal ecosystem, using 490 

experimental data on the effects of ocean warming and ocean acidification on species 491 
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interactions and physiology, and historical fisheries (survey and catch) data. By simulating the 492 

potential magnitude and direction of biomass changes for different functional groups, we 493 

show that the structure and function of future temperate marine food webs under ocean 494 

warming is likely to be altered by predator-prey dynamics at the top of the food web rather 495 

than changes from the bottom up. Consumers at higher trophic levels are likely to benefit 496 

from ocean warming and acidification, but these benefits will be reduced or lost when these 497 

stressors co-occur. More generally, we show that mesocosm experiments can be integrated 498 

with food web models to better manage marine biodiversity in response to 21
st
 century 499 

climate change. 500 
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