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Summary 
 

Biological invasions impose ecological and economic problems on a global scale, but also provide 
extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary 
processes that underly invasion success in order to successfully manage current invaders, and to prevent 
future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new 
environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic level processes that 
translate into phenotypic diversity. In this paper, we review work that supports the idea that heritable trait 
variation, within and among invasive populations, can be created through epigenetic or other non-genetic 
processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several 
processes that have been implicated as adaptive in invasion success, focusing on various forms of “genomic 
shock” resulting from exposure to environmental stress, hybridization and whole-genome duplication 
(polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that 
contribute to phenotypic novelty. These mechanisms can contribute to transgressive phenotypes, including 
hybrid vigor and novel traits, and may thus help to understand the huge successes of some genetically 
impoverished clonal plant invaders. 
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Introduction 
Phenotypic variation fuels successful response of organisms to environmental challenges, and a lack thereof 
would thus seem to be a universal obstacle for introductions of species to new habitats (Sakai et al. 2001; 
Allendorf & Lundquist 2003). Species are generally thought to be introduced to new ranges by only limited 
numbers of individuals and therefore to undergo genetic bottlenecks that reduce genetic variation compared 
to their native range. This type of bottleneck is expected to result in inbreeding depression and decreased 
evolutionary potential, presenting a “genetic paradox” for understanding the successful plant invaders and 
their adaptation to new habitats (Allendorf & Lundquist 2003; Estoup et al. 2016).  
 
Our understanding of the importance of genetic bottlenecks is rooted in the Modern Synthesis of evolutionary 
theory, which asserts that genes (defined by DNA sequence) are the sole source of heritable phenotypic 
variation, and that inheritance of environmentally-induced non-genetic variation is impossible (Keller 2014; 
Bonduriansky & Day 2018; Müller 2017; Stoltzfus 2017). The recovery of genetic variation has therefore long 
been considered an important driver of successful invasions (Baker & Stebbins, 1965). However, applications 
of genomics approaches have revealed the actual genetic make-up of invasive populations and refined our 
views of genetic diversity and evolutionary processes during invasions. First, comparative studies in the 
native and introduced species ranges suggest that the genetic paradox may not be as severe as initially 
thought because many invasive populations undergo only modest reductions in genetic variation due to 
multiple introductions or hybridization (Estoup et al. 2016). Moreover, loss of diversity measured by 
molecular markers does not necessarily reflect loss of quantitative trait variation, or may reflect successful 
response to selection to the novel habitat from an initially higher diversity of founding genotypes. Genetic 
bottlenecks can also contribute to performance by purging deleterious alleles, revealing beneficial cryptic 
variation or creating new beneficial interactions among genomic elements (Colautti & Lau 2015; Dlugosch et 
al. 2015; Estoup et al. 2016; van Kleunen et al. 2018).  
 
In addition to genetic marker studies, accumulating whole-genome sequence data from various species allows 
us a more nuanced understanding of genome dynamics. One important insight is the prominence of genomic 
redundancy, largely resulting from multiple episodes of genome duplication (polyploidy) followed by 
genome fractionation and diploidization processes (Doyle et al. 2008; Freeling 2009; Wendel et al. 2016), which 
play a major role in plant diversification and adaptation (Van de Peer et al. 2017). Duplicated genes 
(homeologs) can exhibit various patterns of non-additive expression compared to their homologous genes in 
parental species, creating intragenomic functional plasticity even in the absence of inter-individual genetic 
variation. Another area of progress is on the effects of the “genomic shock” resulting from interspecific 
hybridization and polyploidy, which creates gene expression re-programming and phenotypic novelty 
(McClintock 1984; Comai 2005; Chen & Yu 2013; Wendel et al. 2016). However, despite abundant DNA 
sequence information for a variety of organisms, and information about broad patterns of genetic diversity on 
the landscape, biologists generally have only a limited understanding of the actual molecular underpinnings 
(e.g. the 'black box') of organismal responses to complex biotic and abiotic factors (Pigliucci 2010; Keller 2014). 
 
Ultimately evolutionary response to challenging environmental conditions relies on heritable phenotypic 
variation, regardless of the underlying mechanisms of heritability, and we now have evidence that the 
structural and functional dynamics of genomes along with a variety of epigenetic and other non-genetic 
effects can affect heritable variation and thus contribute to adaptation (Johannes et al. 2009; Kooke et al. 2015; 
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Richards et al. 2017; Bonduriansky & Day 2018). Recent efforts have particularly addressed the ‘black box’ of 
the translation from genotype to phenotype by exploring intermediate molecular-level phenomena. For 
example, genome-level processes are often mediated by epigenetic changes (chromatin modifications, DNA 
methylation, small RNAs), which can vary among individuals within populations and be selected for, much 
like genetic variation, and serve as an additional source of heritable variation (Becker & Weigel, 2012; Richards 
et al. 2017). Changes in DNA methylation are known to be associated with allopolyploidization (e.g. Madlung 
et al. 2002; Salmon et al. 2005; Sehrish et al. 2014; Li et al. 2019), exposure to environmental stress (Verhoeven et 
al. 2010), different habitat types or shifts in species ranges (Xie et al. 2015; Foust et al. 2016; Gugger et al. 2016; 
Keller et al. 2016), and with variation in plant phenotypes (Cortijo et al. 2014; Kooke et al. 2015; Zhang et al. 
2018). Epigenetic variation in turn can regulate differential gene expression and transposable elements (TE) 
activation or repression (Underwood et al. 2017; Niederhuth & Schmitz 2017; Cavé-Radet et al. 2020). The 
importance of TE activity in the context of biological invasion is still largely unexplored (reviewed in Stapley 
et al. 2015; but see Niu et al. 2019), but several studies have explored how differential gene expression 
underlies variation in ecologically important traits (reviewed in Alvarez et al. 2015; e.g. Hodgins et al. 2013; 
Turner et al. 2017; Xu et al. 2019). Particularly relevant in the context of biological invasions, changes in gene 
expression can translate into variation in secondary metabolism, which combines into complex phenotypes 
that can be finely tuned and provide a diverse array of appropriate responses to environmental challenges 
(Kooke & Keurentjes 2012; Kooke et al. 2019).  
 
These possible contributions of genome dynamics to phenotypic variation and adaptation are particularly 
intriguing and relevant for invasion biology because some extremely invasive clonal plant species have almost 
no detected genetic diversity even after they become well established, e.g. knotweeds in the US (Richards et al. 
2012) and Europe (Parepa et al. 2014; Zhang et al. 2016; Holm et al. 2018), alligator weed (Alternanthera 
philoxeroides) in China (Xu et al. 2003; Geng et al. 2007), Spartina anglica in Europe (Baumel et al. 2001; Ainouche 
et al. 2004) and water hyacinth (Eichhornia crassipes) outside of South America (Zhang et al. 2010). Researchers 
attempting to explain the huge success of these species often argue for the importance of phenotypic plasticity 

(“general-purpose genotype”; Baker 1965; Loomis & Fishman 2009; Oplaat & Verhoeven 2015), which could be 
mediated by epigenetic effects that translate into gene expression and changes in plant chemistry and other 
phenotypes (Nicotra et al. 2010; Richards et al. 2010a, 2017; Sultan 2015; Banta & Richards 2018; Kooke et al. 
2019). Many of the hypotheses that attempt to explain variation in invasion success involve genetic or plastic 
response to novel biotic interactions, often associated with changes in secondary metabolites (Müller-Schärer 
et al. 2004; Joshi & Vrieling 2005; Lankau et al. 2009; Mitchell et al. 2006; Macel et al. 2014).  
 
In the present paper, we take advantage of work done in plant invaders to outline how epigenetics may 
impact phenotypes and adaptation of species in their native versus introduced range. We specifically discuss 
how epigenetic variation can translate into transcriptomic and metabolomic variation, with a special focus on 
the biotic interactions of invasive plants and how epigenetic mechanisms can facilitate plant invasion by 
providing sources of variation to clonal plants, or novelty through hybridization and polyploidization.  
 

Rapid adaptation during plant invasion 
In spite of all of the progress on understanding genomic level processes during species introductions, the 
ultimate goal of invasion biology is to understand successful invasions, and for this we need to also consider 
the traits of invaders, their biotic interactions, and how these are linked to the fitness advantages of invaders, 
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and thus adaptation. Below we briefly summarize some of the key ecological-evolutionary hypothesis for 
plant invasion success, and suggest links to underlying genomic processes.  
 
Several hypotheses in the invasive species literature have examined how biotic interactions contribute to 
increased fitness of invasive species in their introduced ranges. The Enemy Release Hypothesis (ERH; Keane 
& Crawley, 2002) proposes that escape from native herbivores and other specialist enemies explains the 
success of many exotic species. In complement, the Evolution of Increased Competitive Ability hypothesis 
(EICA; Blossey & Nötzold, 1995) assumes that after enemy release the invasive plants reallocate resources and 
rapidly evolve toward less defended but more vigorous ecotypes, as reported e.g. in A. philoxeroides (Zhang et 
al. 2019b).  
 
An extension of EICA is the shifting-defense hypothesis (SDH; Müller-Schärer et al. 2004, Müller, 2018). The 
SDH postulates an evolutionary shift towards plant defenses against generalist instead of specialist herbivores 
(i.e. secondary plant metabolites like flavonoids or glucosinolates; through a trade-off from quantitative to 
qualitative defenses). Several metabolomic analyses have found invasive species to harbor more total 
secondary metabolites in invasive populations than in their native range (e.g., Thelen et al. 2005; Macel et al. 
2014; Lin et al. 2015; Zhang et al. 2018b; Wan et al. 2019).  
 
While the shifting-defense hypothesis was an improvement over the EICA hypothesis, the evolution of plant 
defenses during invasions is even more complex. On the one hand, plant defense can involve both resistance 
and tolerance mechanisms, where resistance generally reduces damage to plants (Strauss et al. 2002), but 
tolerance mitigates the fitness impact of the damage, e.g. through rapid re-growth (Strauss & Agrawal 1999). 
On the other hand, resistance mechanisms can be either constitutive, i.e. constantly present, or only induced 
by herbivore attack (Karban & Baldwin 1997). Previous EICA or SDH studies have rarely evaluated the entire  
breadth of defense mechanisms (Liu et al. 2020), but those that did usually found more complex evolutionary 
changes. For instance, a recent SDH study on invasive Spartina alterniflora in China found increased resistance 
(= poorer herbivore performance) but lower tolerance to generalist herbivores in invasive populations (Ju et al. 
2019). 
 
Evolutionary changes in the chemistry of invasive plants can contribute to so-called ecological or evolutionary 
traps for native species where animal populations can show maladaptive behavior in response to the 
introduced plants (Schlaepfer et al. 2002, 2005; Battin 2004; Hale & Swearer 2016; Robertson & Blumstein 2019). 
For instance, when invasive plants are more attractive than native host plants, then herbivores in the invaded 
range may experience reduced fitness. The phenomenon was recently described for invasive Spartina 
alterniflora and the native herbivorous moth Laelia coenosa in China, where the levels of alkaloids and phenolics 
in S. alterniflora compared to the native host Phragmites australis were associated with reduced herbivore 
performance (Sun et al. 2020). Sun et al. (2020) suggested that volatile organic compounds (VOCs) attracted 
insect oviposition, but plant nutritional and defense (secondary metabolites) traits ultimately reduced the 
fitness of these natural enemies. In another example, cardenolide concentrations of an introduced Asclepias 
species were associated with reduced fitness of the specialist herbivore Danaus plexippus (Faldyn et al. 2018). A 
recent meta-analysis by Yoon & Read (2016) reported numerous additional studies supporting the idea of such 
ecological traps during plant invasion. 
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Ultimately, we would like to understand the genomic mechanisms that underly the responses to novel biotic 
interactions described above, and in particular the potential contribution of epigenetic processes. Although so 
far, to our knowledge, no study exists that fully encompasses genomic and epigenomic data to metabolome, 
biotic interactions and plant fitness, we have evidence for several important pieces of this puzzle.  
 
For instance, numerous transcriptomic, epigenetic and metabolomic profiling studies have supported the 
correlation of these mechanisms with herbivory. In Arabidopsis thaliana, herbivory-induced changes in gene 
expression involved up- and down-regulated genes in plant secondary metabolism networks, hormone 
signaling pathways or plant defense related genes (Ehlting et al. 2008; Davila Olivas et al. 2016). Changes in 
expression patterns of genes involved in plant defense against herbivory were also observed in Populus (Babst 
et al. 2009) and Solanum (Kariyat et al. 2012; Lortzing et al. 2017) and in the invasive species Ambrosia 
artemisiifolia (Hodgins et al. 2013) and Solidago canadensis (Xu et al. 2019). Likewise, some studies in non-
invasive species have linked epigenetic variation to herbivory. Herrera & Bazaga (2011) found methylation 
polymorphisms to be correlated with herbivory damage in Viola cazorlensis, and Kellenberger et al. (2016) 
reported herbivory-associated changes in DNA methylation in Brassica rapa. In herbivore-infested plants and 
when herbivory was simulated by methyl jasmonate exposure, DNA demethylation was correlated with 
changes in floral signaling to pollinators. Similarly, in A. thaliana response to plant defense hormones like 
jasmonic acid and salicylic acid were shown to be correlated with differences in DNA methylation among 
epigenetic recombinant inbred lines (epiRILs; Zhang et al. 2018a; Latzel et al. 2012). Other studies in A. thaliana 
have shown that histone modifications, DNA methylation, or RdDM (RNA-directed methylation by small 
RNAs) are correlated with the expression of chemical defenses such as glucosinolates and flavonoids 
(Rasmann et al. 2012; Shen et al. 2012; Xue et al. 2015; Aller et al. 2018), supporting a role of these epigenetic 
mechanisms in shifting defenses.  
 
The idea that epigenetic signatures may correlate with invasion relies partly on the assumption that changes 
in DNA methylation are involved in the regulation of gene expression, particularly since methylation of gene 
promoters has been associated with gene silencing (reviewed in Paun et al. 2019). However, studies over the 
last 10 years do not always support this idea since many transcription factors show increased DNA binding 
affinity for methylated DNA (de Mendoza et al. 2020). Although DNA methylation of the 5-prime end of genes 
has been correlated with gene silencing in plants, the functional relevance of gene body methylation varies by 
context and across taxa, and it is not always correlated to gene expression (Niederhuth et al. 2016; Bewick & 
Schmitz 2017; Niederhuth & Schmitz 2017). Changes in gene expression have also been shown to cause 
variation in patterns of DNA methylation (Meng et al. 2016; Feldman et al. 2013), e.g. in nearby TEs (Secco et al. 
2015). 
 
Considering that many of the interactions between plants and herbivores are mediated by secondary 
chemistry, metabolomic approaches could provide an opportunity to better understand the translation of 
genomic variation into plant success in novel environments. With appropriate experimental designs, 
metabolomic analyses can provide information on how plant secondary chemistry is induced by abiotic and 
biotic environmental challenges and is a functional readout of genome-level processes complementary to 
transcriptomic studies. Metabolomics approaches have already offered mechanistic support for the SDH 
hypothesis through surveys that showed herbivory impacts on the production of defense metabolites (Macel 
et al. 2014; Tewes et al. 2018; Müller et al. 2020). Still, how genomic and epigenomic variation translates into 
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variation in metabolites and, as a consequence, interactions with herbivores and invasion success, has been 
largely unexplored. This is partly because interactions between transcriptomic and metabolomic changes can 
be difficult to identify since the relationships between gene networks and metabolite pathways are complex.  
 
In Arabidopsis, studies of epiRILs have identified epigenetic QTL underlying response to herbivore attack, 
providing evidence that methylation is involved in the control of secondary metabolism (Kooke et al. 2019). 
Differences in glucosinolates, flavonoids, and additional metabolites among epiRILs support the importance 
of variation in DNA methylation in plant responses to herbivory. In Brassica hybrids, the integration of 
transcriptome and metabolome data allowed for investigation of enhanced flavonoid and glucosinolates 
production, but no details about epigenetic variation were surveyed (Zhang et al. 2019a). Such analyses are 
much more challenging in non-model species without extended genomic resources, but more restricted 
approaches such as methylation sensitive AFLP or epigenotyping by sequencing (epiGBS) coupled with 
untargeted metabolomics could nevertheless provide important insights (Thiebaut et al. 2019). Combining 
(epi)genomic and metabolomic analyses in an integrative approach will reveal new understanding of the 
molecular mechanisms underlying exotic species responses to biotic interactions. 
 

Clonal plant invasions 
Besides a possible general contribution to plant adaptation, another main reason why epigenetics could play a 
role in plant invasions is that epigenetic changes are much more persistent in clonal plants, and clonal growth 
is particularly common among invasive plant species. If epigenetic variation can provide a source of 
phenotypic variation within clones, which translates into fitness differences, it could contribute to invasion 
success (Figure 1). Some of the world’s most successful invasive plants are thought to be entirely genetically 
uniform in their introduced ranges. Among the 468 invasive plants from the IUCN Global Invasive Species 
Database (http://www.issg.org/database) 70% reproduce clonally. Out of the 37 plants included in the well-
known list of 100 worst invasive species (Luque et al. 2014), 30 reproduce clonally, and for nine it is the main 
mode of reproduction in their introduced range. In a survey of invasive plants in China, Liu et al. (2006) found 
that almost half (44%) of the 126 invasive plants studied were clonal, and among the 32 most invasive ones the 
fraction of clonal plants was even 66%. The high frequency of clonality among invasive plants suggests that 
this mode of reproduction is beneficial for plant invasion.  
 

One of the best-known cases of an invasive clonal plant is Japanese knotweed (Reynoutria japonica aka Fallopia 
japonica), where a single octoploid clone has spread aggressively through a broad range of habitats in 
temperate Europe and North America (Beerling et al. 1994; Bailey & Conolly 2000; Grimsby et al. 2007; Gerber 
et al. 2008; Bailey et al. 2009; Richards et al. 2012). In the United States, Richards and colleagues found only 
individuals of the same single AFLP haplotype of R. japonica that is the only one present throughout Europe, 
while 12 other populations were made up of only a few haplotypes of the hybrid hexaploid species R. 
×bohemica (Richards et al. 2012). They reported that some individuals of each haplotype were found in beaches 
and marshes— novel habitats from the perspective of Japanese knotweed— with epigenetic variation 
correlated to the different habitats (Richards et al. 2012; Robertson et al. 2020). Another study across central 
Europe confirmed that all individuals of R. japonica belonged to one haplotype, but different populations 
harbored significant epigenetic and phenotypic variation which was associated with climate of origin and thus 
possibly related to adaptation (Zhang et al. 2017).  
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Another group of clonal species that provides intriguing cases of successful invasion is represented by several 
members of the polyploid genus Spartina. The molecular evolutionary history of the Spartina genus has been 
investigated well by Ainouche and colleagues (Baumel et al. 2002; Fortune et al. 2007; Rousseau-Gueutin et al. 
2015; Salmon & Ainouche 2015). Cases of well-documented intercontinental invasions are illustrated in S. 
alterniflora, S. anglica, and S. densiflora (Ainouche et al. 2009; Strong & Ayres 2013; Ainouche & Gray 2016). 
Unlike in the case of Japanese knotweed, the hexaploid S. alterniflora has been studied extensively in its native 
range (North American Atlantic and Gulf Coasts), providing some insight into the potential mechanisms 
underlying its invasive abilities (Pomeroy & Weigert 1981; Pennings & Bertness 2001). Spartina alterniflora is a 
critical foundation species that supports fisheries, provides storm protection, and has a broad environmental 
tolerance (Pennings & Bertness 2001; Richards et al. 2005). The species is adapted to anoxic and salt conditions, 
and is highly tolerant to reduced, sulfidic sediments, and oil/PAH pollution (Pennings & Bertness 2001; 
Maricle et al. 2006, 2009; Robertson et al. 2017; Alvarez et al. 2018, 2020; Cavé-Radet et al. 2019). Like other 
marsh species, S. alterniflora exhibits extensive variation in these traits across habitats, and a range of 
ecological studies have shown that traits of native S. alterniflora are correlated to the environmental 
heterogeneity of salt marshes (Bertness & Ellison 1987; Pennings & Bertness 2001; Richards et al. 2005). More 
recently, several studies have also found correlations between DNA methylation and habitat or oil pollution 
(Foust et al. 2016; Robertson et al. 2017; Alvarez et al. 2020).  
 
From the Atlantic North American Coast, S. alterniflora colonized the South American Atlantic Coast 
(Argentina), where it is now well-established (Bortolus et al. 2015). The species was also introduced to 
California (Strong & Ayres 2013), Western Europe (Ainouche et al. 2009), South Africa (Adams et al. 2012), and 
China, where its spread is particularly spectacular (Li et al. 2009). Clonal propagation seems to have 
contributed to the spread of this otherwise wind-pollinated perennial species in many cases (Davis et al. 2004; 
2019; Maebara et al. 2020; but see Qiao et al. 2019; Shang et al. 2019). Although Chinese populations appear to 
be genetically diverse (Qiao et al. 2019; Shang et al. 2019), the introduction from China to Japan so far has 
resulted in a lack of diversity in the Japanese populations suggesting both founder effect and predominantly 
clonal propagation (Maebara et al. 2020). Other invasive Spartina species spread extensively by clonal means, 
such as S. patens (syn. S. versicolor; Baumel et al. 2016) introduced from North America to Europe (Sanchez et al. 
2019) and S. anglica, which has expanded in Europe and is now introduced on several continents (Baumel et al. 
2001; Ainouche et al. 2009). However, this allododecaploid species may maintain high intra-genomic diversity, 
which can contribute to the evolution of gene expression repatterning even within a single clone (Ainouche et 
al. 2012; Chelaifa et al. 2009; Feirreira de Carvalho et al. 2017).  
 
Other prominent examples of nearly genetically uniform clonal plant invaders are the South American 

alligator weed (Alternanthera philoxeroides; Geng et al. 2007), “Bermuda buttercup” (Oxalis pes-caprae; Ornduff 
1987), hawkweed (Hieracium aurantiacum; Loomis & Fishman 2009), crimson fountain grass (Pennisetum 
setaceum; Le Roux et al. 2007), and water hyacinth (Eichhornia crassipes; Zhang et al.. 2010). There are many 
more successful clonal plant invaders that have not yet been studied at the molecular level, even though 
clonality has been found to be overrepresented among invasive plants (e.g. Liu et al. 2006). 
 
Several authors have argued that epigenetic mechanisms could be particularly important for invasive species 
that are clonal or have low genetic diversity since they could provide a non-genetic source of heritable 
variation (Figure 1), and because clonal reproduction “bypasses” the resetting of epigenetic effects that is 
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thought to occur through meiosis (although this resetting is not universal, see Feng et al. 2010; Herrera et al. 
2013, 2014; reviewed in Verhoeven & Preite 2014; Douhovnikoff & Dodd 2015; Liebl et al. 2015; Rollins et al. 
2015; Richards et al. 2017). However, although there are compelling arguments for the importance of 
epigenetic effects in invasive clonal plants (Verhoeven & Preite 2014; Douhovnikoff & Dodd 2015; Richards et 
al. 2017), so far all studies of clonal plant invasions have been limited by a lack of genomic information. This is 
important because whole genome studies in the model plant Arabidopsis thaliana and in human cancers 
showed how quickly novel epigenetic variation can be generated, and can be dramatically shaped by de novo 
sequence mutation. For example, we know that even single nucleotide polymorphisms can have a remarkable 
impact on the methylome (Becker et al. 2011; Timp & Feinberg 2013; Dubin et al. 2015; Feinberg et al. 2016; 
Sasaki et al. 2019). Therefore, the low levels of somatic mutations cannot be dismissed, and could contribute to 
the rapid generation of epigenetic variation in natural clonal lineages. This is particularly true since several 
studies have reported that high rates of somatic mutation may allow asexual species to maintain abundant 
genetic variation and adapt to changing environmental conditions (Lynch et al. 1984; Gill et al. 1995; Schoen & 
Schulz 2019).  
 
Deciphering the contributions of genetic and epigenetic variation to invasion success is consequently 
complicated even in clonal plants (Richards et al. 2017; e.g. Robertson et al. 2020). A recent study described 
somatic mutation within a single tree of Populus trichocarpa to be only slightly lower than the seed-to-seed 
mutation rate observed in A. thaliana lines (Hofmeister et al. 2019). Other studies have reported that structural 
and regulatory mutations can have large effects on phenotype, and mutation may be common enough to fuel 
adaptation even in the short time frame of an invasion (Colautti & Lau 2015; Dlugosch et al. 2015; Stapley et al. 
2015). This is thought to be particularly true for the multi-locus traits which have increased opportunities for 
mutations to occur (Lande 2015). Dlugosch et al. (2015) argued that in the introduced range a greater range of 
mutations may be advantageous, and fast population growth provides more opportunities for new mutations 
to become fixed. They also argue that copy number variation (CNV) mutations occur almost as often as point 
mutations but more frequently contribute to beneficial phenotypes (Dlugosch et al. 2015; Estoup et al. 2016). 
Further, transposable elements activated by environmental stress can involve epigenetic processes, create 
novel genetic variation and further contribute to adaptation (reviewed in Stapley et al. 2015; Estoup et al. 2016). 
 

Contribution of hybridization and polyploidy to invasive potential 
Hybridization and polyploidy are known to be significant drivers of speciation and genetic diversity in plants 
(reviewed in Soltis et al. 2009; Wendel 2015; Van de Peer et al. 2017) and occur frequently throughout plant 
evolution (Wood et al. 2009; Alix et al. 2017). Like the pervasiveness of the clonal reproductive strategy in 
invasive plants, a growing number of studies have emphasized the potential importance of these genome level 
processes in invasions (Schierenbeck & Ainouche 2005; Pandit et al. 2011; Bock et al. 2015; Colautti & Lau 2015). 
In a systematic review and meta-analysis, Hovick & Whitney (2014) found that in 14 established hybrid plant 
taxa, the hybrids were significantly more fecund and larger than their parental taxa. In a global analysis of 
plant species, Pandit et al. (2011) compared ploidy level and chromosome number in 81 invasive species and 
2356 of their congeners, and found that invasive species were disproportionately likely to be polyploid, while 
rare and endangered plants are generally more likely to be diploid (see also Dar et al. 2020). 
 
Hybridization is generally thought to facilitate successful invasions through the transgressive segregation of 
traits, whereby extreme novel phenotypes are produced through the recombination of parental alleles (te 
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Beest et al. 2012; Gallego-Tévar et al. 2018; Kagawa & Takimoto, 2018; Qui et al. 2020). Even intraspecific 
hybridization can facilitate successful invasions through increasing genetic diversity and heterosis (e.g. S. 
alterniflora; Strong & Ayres 2013; Qiao et al. 2019; Shang et al. 2019). Kagawa and Takimoto (2018) modeled 
transgressive segregation in theoretical hybrid species and found that adaptive radiation into suitable novel 
niches was most likely to occur in hybrid offspring from parental species with moderate genetic 
differentiation (Kagawa & Takimoto, 2018; Qui et al. 2020). However, several recent studies support that 
hybridization between closely related lineages within species, between more divergent lineages within species 
or between species can contribute to standing levels of diversity, transgressive segregation, increased 
heterozygosity or purging of deleterious alleles (Bock et al. 2015; Colautti & Lau 2015). In addition, 
introgression following recurrent backcrosses between hybrids and the parental species can contribute to the 
invasion process (Currat et al. 2009), which has been particularly well-documented in European oak species 
(Quercus petraea and Q.robur; Petit et al. 2004). The vigorous introgressant hybrids between S. alterniflora and 
the native S. foliosa in California exhibited greater male fitness (viable pollen production of the hybrid was 400 
times that of the native plants) and they rapidly invaded the San Francisco Bay area (Ayres et al. 2008). 
 
Broad ecological tolerance is also generally reported in polyploid species (Stebbins 1985; Levin 1983; te Beest et 
al. 2012; Rosche et al. 2016; Nagy et al. 2017; Dar et al. 2020), and may be attributed to a large range of 
mechanisms, involving intrinsic (e.g. history and genome dynamics) or external (e.g. selective) evolutionary 
forces. Polyploids may arise from diverse pathways in natural populations (Ramsey & Schemske 2002), 
ranging from autopolyploidy (genome duplication within species) to allopolyploidy (hybrid genome 
duplication), resulting in duplication of more or less divergent genomes (Doyle et al. 2008). The relative 
abundance of auto- versus allopolyploids has been much debated (reviewed in Barker et al. 2016), but 
ecological success and invasiveness has been widely correlated with allopolyploidy. For example, major 
grassland ecosystems of the planet appear to be dominated by allopolyploids (Estep et al. 2014). 
Allopolyploids combine the heterosis effects that are a consequence of hybridization, with the fertility, genetic 
redundancy and plasticity provided by genome duplication. At the genomic level, these two components of 
the allopolyploid speciation process (namely differentiated genome merger and genome redundancy) have 
important, though different consequences, particularly with regard to epigenetic consequences.  
 
In practice, the importance of hybridization and polyploidization in invasions can be difficult to tease apart 
(Bock et al. 2015), particularly since some estimates suggest that greater than 70% of angiosperms have 
undergone polyploidization in their evolutionary history (Wood et al. 2009) and allopolyploidy involves both 
hybridization and genome duplication (Salmon et al. 2005; Salmon & Ainouche 2015). The formation of 
hybrids and polyploids results in wide-scale genomic changes sometimes referred to as ‘genomic shock’ due 
to the processes involved in the merging of genomes or whole genome duplications, as well as subsequent 
deletions of genomic regions, and chromosomal rearrangements (Chen 2007; Otto 2007). While these 
alterations are often maladaptive, occasionally these processes can mask deleterious mutations through gene 
redundancy, release constraints on gene function, or result in offspring that exhibit heterosis, thereby 
increasing the potential for adaptive radiation and invasion success (Chen 2007; Sémon & Wolfe, 2007; te Beest 
et al. 2012; Kagawa & Takimoto, 2018; Qui et al. 2020).  
 
Young hybrid and polyploid complexes appear to be particularly relevant in rapid range expansion (e.g. in 
knotweeds, Mandák et al. 2005; Bailey et al. 2009; Walls 2010; in Phragmites australis, Clevering & Lissner 1999; 
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Lambertini et al. 2012; Saltonstal et al. 2014; Liu et al. 2020; in Spartina, Ainouche et al. 2009; Strong & Ayres 
2013; Ainouche & Gray 2016), which suggests a major immediate ecological consequence of hybridization and 
genome doubling. The recent hybridization and genome duplication events that occurred in genus Spartina 
provide an excellent opportunity to explore such questions. Comparisons between the F1 hybrid S. x towsendii 
(resulting from hybridization between the hexaploids S. maritima and S. alterniflora) and its allododecaploid 
derivative S. anglica, which formed in the 19th century, allow for distinguishing the effects of hybridization and 
genome duplication per se (Ainouche et al. 2004). During the allopolyploidization process, hybridization 
(rather than genome doubling) appears to have induced major DNA methylation alterations in S. x townsendii, 
which were transmitted to the invasive allododecaploid S. anglica (Salmon et al. 2005). Most of these changes 
affected regions flanking transposable elements (Parisod et al. 2009), but post-transcriptional gene regulation 
(via microRNAs), as well as repeat-associated small interfering RNA (targeting repetitive sequences) changes 
were also detected following genome merger and genome duplication (Cavé-Radet et al. 2020).  
 
The parental hexaploid genomes have similar repetitive DNA contents (c.a. 45%) but higher amounts of 
transposable elements are found in S. maritima (c.a. 751 Mb/2C) than in S. alterniflora (724 Mb/2C; 
Giraud et al. in press). Transcriptomic analyses indicated transposable element repression following 
hybridization and genome duplication, which is congruent with previously reported changes  in DNA 
methylation (Giraud et al. submitted). Epigenetic control of transposable elements has been shown to 
affect the expression of neighboring genes (e.g. Hollister et al. 2010), and in Spartina both hybridization 
and genome doubling entailed gene expression evolution, with non-additive parental expression 
patterns affecting genes involved in stress tolerance and epigenetic regulation (Chelaifa et al. 2010, 
Giraud et al. submitted). Non-additive patterns of parental expression contributed to enhance gene 
expression plasticity and adaptive responses to fluctuating environments observed in the allopolyploid 
populations (Ferreira de Carvalho et al. 2017). The increased tolerance to xenobiotic stress recently 
reported in S. anglica compared to its parental species could also be partly due to these novel expression 
patterns (Cavé-Radet et al. 2019)  
 
Other studies in Spartina suggest that these species have high stress tolerance and increased phenotypic 
variation and tend to occur more frequently in newly created, harsh, and recently disturbed environments 
(Grewell et al. 2016). Further, phenotypic plasticity in newly formed hybrids promotes niche expansion 
(Ainouche & Jenczewski 2010; te Beest et al. 2012; Grewell et al. 2016; Banerjee et al. 2019). The vigorous 
intercontinental invader S. densiflora is a heptaploid created from hybridization between a hexaploid and a 
tetraploid species, and is native to the south-American Atlantic coast (Fortune et al. 2008). Grewell et al. (2016) 
reported high phenotypic plasticity in response to salinity in invasive populations of S. densiflora on the Pacific 
Coast of North America, but an examination of the F1 offspring of S. maritima and S. densiflora showed that 
Spartina hybrids have even greater tolerance to salinity than their parental species (Gallego-Tévar et al. 2018). 
In California, where S. densiflora hybridized with the native S. foliosa, the hybrids exhibit higher salt stress 
tolerance than their parents (Lee et al. 2016). Spartina densiflora has also invaded the southern coasts of Iberian 
Peninsula, hybridized with the native S. maritima and produced hybrids that grow better than the parent 
species in most cases (Castillo et al. 2010). 
 
Precisely how polyploidy and hybridization might influence invasion success is highly dependent on 
introduction histories, the stages through which an invasion proceeds, and whether these microevolutionary 
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processes exist within a founding population or arise later as a result of introduction and the subsequent stress 
of competing in a novel environment (te Beest et al. 2012; Suda et al. 2015). The apparent association of 
hybridization or increased ploidy with traits that appear to impart invasiveness may not reflect causal 
linkages. Detecting these linkages may be challenging since traits with high adaptive potential at one life stage 
could be deleterious either at another life stage or under diverse environmental conditions (Suda et al. 2015; 
Martinez et al. 2018). Ploidy level and hybridization are both known to affect cell size and biomass (Bashir et al. 
2014; Corneillie et al. 2019; Wu et al. 2019), as well as changes in seed weight and size, suggesting that each 
could play a role in vegetative and reproductive trait variation (Song & Chen, 2015). Polyploidization is also 
known to result in changes in flowering phenology between diploid and polyploid cytotypes (te Beest et al. 
2012). This partitioning influenced the persistence of a novel cytotype of Anacamptis pyramidalis that might 
otherwise have been outcompeted by its diploid progenitor (Pegoraro et al. 2019). Niche differentiation of 
allopolyploid species relative to their progenitors could help explain the abundance of invasive allopolyploid 
hybrids (te Beest et al. 2012).  
 
A growing body of evidence supports that these evolutionary phenomena are important for successful plant 
invasions (Schierenbeck & Ellstrand, 2009; te Beest et al. 2012; Welles & Ellstrand, 2016; Rosche et al. 2017; Wu 
et al. 2020). Anthropogenic forces such as the global plant trade, increased land use change, habitat 
fragmentation, and climate change have been proposed to increase opportunities for hybridization and 
polyploidization events that lead to invasiveness (Schierenbeck & Ellstrand, 2009). These forces create novel 
environments and shape new ecological niches that existing and novel hybrids and polyploids may exploit 
(Van de Peer et al. 2017; Banerjee et al. 2019). New tools and approaches are now available for better 
understanding of the molecular mechanisms underlying hybridization and polyploidy in plant invasion 
success; such studies so far remain limited to a few model systems or rely mostly on phenotypic associations 
that accompany changes in ploidy without identifying the underlying molecular mechanisms (Van de Peer et 
al. 2017). 
 

Conclusions 
In studies of natural populations and through ecological experiments, we have some level of information 
about how genomic and epigenetic mechanisms (mainly DNA methylation) may contribute to organismal 
response to environmental challenges, but these ideas have only rarely been applied to the understanding of 
secondary chemistry or invasions. Further, most of our knowledge about ecological epigenetics is fairly coarse 
grained and lacking critical fine-scale genomic context and understanding of the dynamics involved in 
processes of hybridization and polyploidization—  processes that are often involved in invasion. Better 
understanding of the other molecular epigenetic mechanisms, like the action of small RNAs, chromatin 
modifications, and cellular location is required to truly flesh out how epigenetic mechanisms interact with 
each other to contribute to heredity along with genetic and other non-genetic mechanisms that ultimately 
translate into organismal performance (Keller et al. 2014). In addition, we know little about the translation of 
genomic and epigenomic differences into other molecular level phenotypes like gene expression and 
metabolites. Unravelling the role of epigenetics in plant biotic interactions is challenging, and has received 
particularly little attention in studies of plant invasion (Alonso et al. 2019). Although the genetic and 
epigenetic bases underlying defense mechanisms of invasive plants are virtually unexplored, increased access 
to omics approaches and tools to analyze (epi)genetic markers are providing novel insights for this 
perspective. Integrating epigenetics, expression, and defense chemical production (i.e. metabolome) to predict 
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molecular level mechanisms involved in invasion could provide novel insights for understanding plant 
defense strategies in response to native enemies.  
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Figure 1. Hypothetical relationships between genetic, epigenetic, and phenotypic 
variation in invasive compared to native populations. Three segments of the genome 
are shown for each of three individuals from native (top panel) and invasive (lower 
panel) populations. The horizontal bars are the DNA, with differences in DNA 
sequence indicated by different colors. Epigenetic modifications at a particular gene are 
indicated by the black triangles. Natural epigenetic variation may be found within or 
between ranges. Epigenetic variation can be independent of or confounded with genetic 
variation. Some epigenetic variation in natural populations may be plastic and may 
therefore be non-heritable, i.e. it will not persist in a common environment. If 
independent epigenetic variation persists in a common environment, this is evidence 
for epigenetic inheritance. If this heritable epigenetic variation translates into 
phenotypic and fitness differences (as illustrated above), it could contribute to invasion 
success (modified from Bossdorf et al. 2008). 
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