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Abstract
Aquatic Invasive species (AIS) are a growing driver of change across marine and freshwater
ecosystems but spatially-explicit information is seldom available for supporting management
actions and decision making. Here we conceived and tested a new participatory method to
map the distribution of three invasive species (Callinectes sapidus, Procambarus clarkii and
Oreochromis niloticus) in the coastal lagoon of Lesina (Italy). Local fishers were asked to
draw the distribution of each species on pre-printed maps, indicating districts of the lagoon
characterized by different abundance levels. Then, maps were converted to a lattice grid and a
Bayesian hierarchical Generalized Additive Modeling was adopted to model species distribution
in the lagoon, calculating the coefficient of variation for model fitted values to map fishers
agreement about the distribution of each species.

The spatial gradient in the abundance of the three species in the lagoon aligned with their
ecological requirements. C. sapidus was abundant throughout the whole lagoon, peaking
in correspondence of saltmarsh vegetation, while P. clarkii and O. niloticus, were much less
abundant and remained distributed near to freshwater inputs. Experts agreed about the spatial
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distribution of C. sapidus in the lagoon, with a median coefficient of variation in model fitted
values of 3.9%. On the other hand, the coefficient of variation was higher for P. clarkii (19.9%)
O. niloticus (18.4%), indicating a higher level of uncertainty about their estimated distribution.

With this example, we provided new metrics to evaluate the quality of LEK-based participatory
mapping in terms of agreement and consistency among experts. The resulting information
provides new insights for spatially informed management across aquatic realms in relation to
the increasing ecological and socio-economical pressures posed by biological invaders.
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1 Introduction

Participatory mapping refers to a wide range of methodologies, whose general objective is to
engage indigenous people in the elicitation of spatial information, compared to conventional
cartography, where such information is derived from field measurements [1]. Participatory
maps are increasingly employed for a variety of different applications, not only in natural
resource management but also in many other domains [2]. Their outcomes can be particularly
valuable to investigate patterns and processes fast enough to outrun large-scale ecological
surveys, especially in contexts of limited data availability. These conditions are common in
conservation sciences, which have recently witnessed an outburst of participatory mapping
initiatives throughout the world, in both developing and developed countries [2][3][4]. In fact,
information extracted from the knowledge of people living in close relationship with the natural
environment can complement, or even surrogate, ecological sampling, at various spatial and
temporal scales [5][6][7]. This expert knowledge, often reported as ‘Local Ecological Knowledge’
(LEK) is currently accessed to estimate a variety of biological and ecological parameters [8][9][10]

in both terrestrial and aquatic systems, where ecological monitoring is particularly demanding
[11]. LEK-based surveys indeed overcome the pragmatical constraints that hamper investigating
the distribution of aquatic organisms [12], including AIS [13][14]. These methodologies provide
fresh new inputs to conventional cartography [15] and may truly serve the needs of Marine
Protected Areas [16], coral reef management [17]; fishing management [18] and provide key
information for the conservation of marine [19] and freshwater [20] ecosystems.

Nevertheless, although LEK has been employed to reconstruct invasion dynamics and to
investigate temporal variations in invasive species [5][14][21], participatory mapping is seldom
applied to invasive species [22][23], especially in aquatic systems were, to the best of our knowl-
edge, really few experiences exist. This absence probably stems from the skepticism of many
conservationists about LEK itself and by their limited experience with these approaches: LEK-
based studies, although growing, are relatively recent and minoritarian in conservation. Local
experts are often perceived as less “objective” than ecological surveys and many researchers
tend to adopt LEK only to complement “real” data obtained from the field. Moreover, partic-
ipatory mapping also requires experience with cartography and research methods from the
social sciences (e.g. interviews), a combination which further constrained its adoption by the
scientific community.

This gap is worth to be filled, particularly for Invasive species that are a major driver of
change [24] and knowing their distribution is considered a priority for conservation planning
and adaptation in both terrestrial [25][26] and aquatic systems [27].

A further problem is that, whilst the potential of eliciting information from single experts
appears to be large, the quality and validity of the observational data needs to be properly
addressed through structured elicitation protocols and appropriate data processing. This aspect
is of key importance to improve the accuracy and transparency of the resulting judgments when
expert judgments are used to inform science [28][29].

In this study, we aim to offer a first answer to this need. We tested a participatory mapping
methodology with the aim of providing spatially-explicit information on the distribution and
abundance of three AIS occurring in a Mediterranean coastal lagoon: C. sapidus, P. clarkii and O.
niloticus. In absence of complementary field data, statistical modeling is employed to measure
agreement among experts, providing a first assessment for self-reported spatial data.
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Figure 1 | Map of the study area in the Apulia region (Italy): the Lesina lagoon.

2 Methods

2.1 Study area and target species

The Lesina lagoon (Fig. 1), located along the south-western Adriatic coasts (Apulia region, Italy)
is a micro-tidal coastal lagoon, characterized by brackish waters (area: 51. 4 km2; average
depth: 0.7 m; salinity: 11 – 34 psu; temperature: 7-26°C) and surrounded by a mosaic of
intensive farmlands, urbanized areas, salt marshes and coastal dunes. The lagoon hosts a little
community of small-scale fishers that once relied mostly on the European eel (Anguilla anguilla)
[30], while today they mostly exploit sea breams (Sparus aurata) and the sea bass (Dicentrarchus
labrax) [31][32].

Various AIS are currently established in the lagoon, notably the Atlantic blue crab (Callinectes
sapidus), the red swamp crayfish (Procambarus clarkii) and the Nile tilapia (Oreochromis niloti-
cus)[33]. All these three species can develop abundant populations, with severe ecological and
economical impacts [34][35][36][37][38], but spatial-explicit information is currently unavailable
for the Lesina lagoon [33].

2.2 Data collection

Interviews were carried out from February to April 2018. Expert fishers, operating in the Lesina
lagoon, were identified through snowballing and recruited only after having evaluated their
knowledge [39], their interest to the topic and their availability to share knowledge. At the
beginning of each interview, the interviewer explained the aims of the study, and respondents
agreed to provide information for scientific purposes.

The interview focused on two invasive crustaceans, C. sapidus, P. clarkii and one invasive fish
O. niloticus, checking for their correct identification through pictures and field guides. Spatial
information was extracted through a sketch mapping approach [40], sometimes referred as
mental mapping, a method for representing “free drawing” from memory [41]. Fishers were
provided with pre-printed maps of the lagoon and they were asked to draw were each species
was distributed, indicating with demarcation lines districts of the lagoon characterized by
homogeneous levels of abundance. The abundance of each species was rated on an ordered
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scale, ranging from 0 (absent) to 5 (dominant).
In the second part of the interview, we used a semi-structured protocol [14], to assist re-

spondents in the retrospective elicitation of the abundance of each species across time but this
information was not included in the present study. Participatory mapping took approximately
15 minutes, and time series elicitation took about 20 minutes.

2.3 Geographical representations and statistical analysis

Each sketch map drawn by the fishers on paper was georeferenced by overlaying a lattice grid (N.
248 cells of 500 x 500 m), obtaining a regular grid of cells with associated values of perceived
abundance for the three species.

We mapped perceived abundances of the three species, and also evaluated the quality of
information at hand by means of Bayesian hierarchical models. Notably, we fit a Generalized
Additive Mixed Model (GAMM), accounting for differences between fishers in the perceived
average abundance of each species, through a random intercept term. Following Plant (2012)
[42], we modeled the spatial variation in perceived abundances by de-trending for the effect
of the latitude and longitude of each cell through a nonparametric random walk term, and
then by accounting for the similarity between neighboring cells through a Besag-York-Mollié
structure [43][44]. Although our data were measured through an ordinal scale, we treated them
as if they were generated by a continuous Skewed-Gaussian distribution. We mapped predicted
abundances for each cell of the grid, to assess the perceived distribution and abundances of
each species in the lagoon.

To measure the level of uncertainty in fishers’ evaluation of abundances, as well as about
their spatial distribution, we calculated the coefficient of variation (CV) for the predicted values
of the model, expressed as the ratio between the standard deviation of predicted values and
their average value, for each cell of the grid. The coefficient indicated the relative uncertainty
about the abundance of the various species in each cell, ranging between 1 an 100. We plotted
CV for each cell of the grid, to map spatial gradients in uncertainty about species abundances
and we compared the distribution of the CV between the three species, to appreciate species-
specific differences in fishers uncertainty. Distribution maps were digitalized with QGis [45] and
statistical analysis were carried out with R [46] and INLA [47]. A complete reproducible dataset
and a software code is available on OSF.

3 Results
Overall, we recruited a total of 25 expert fishers, who unambiguously identified the three
species and were able to draw their spatial distribution over the maps. Considering that the
fishing community of the Lesina lagoon is estimated in approximately 40 people [30], our
interviews covered more than half of the available sample. They were 88% professional and
12% recreational fishers, all men, and their age was 50.48 ± 15.69 years (mean ± sd). Taken
together, respondents’ experience accounted for a total of 914 years of observations in the
lagoon, and average experience was 36.56 ± 15.18 years (mean ± sd). Three main fishing
gears were used by the respondent, mostly trammel nets (92% of respondents); traps (84%)
and fish weirs locally called ‘bertovelli’ (36%).

Overall, predicted values from the model (Table 1, 2) show that the Atlantic blue crab C.
sapidus is deemed to have colonized the entire lagoon, with high abundances (Absent = 0%,
Rare = 4.6%, Occasional = 11.0%, Common =25.8%, Abundant =37.4%, Dominant = 21.2%)
and with a prevalence for the northern coasts (Fig. 2). The crayfish P. clarkii occurs at very low
densities (Absent = 77.6%, Rare = 1.3%, Occasional = 10.1%, Common = 4.0%, Abundant
= 3.6%, Dominant = 3.4%), mostly on the internal part of the lagoon (Fig. 2). Finally, the
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Figure 2 | Abundances of the three species in the lagoon, predicted values from the spatially-correlated models: C.
sapidus (a), P. clarkii (b) and O. niloticus (c). Abundances ranged from 1 = “Absent”, 2 = “Rare”, 3 = “Occasional”, 4
= “Common”, 5 = “Abundant” to 6 = “Dominant”.

Nile tilapia O. niloticus resulted distributed with low densities (Absent = 51.1%, Rare = 13.1%,
Occasional = 13.2%, Common = 3.9%, Abundant = 11.6%, Dominant = 7.1%) and mostly
near to freshwater inputs from karst springs on the internal part of the lagoon (Fig. 2).

The analysis of the spatial distribution of the CV also indicates that fishers became more
uncertain about the species abundances, when considering those part of the lagoon where
species were less abundant (Fig. 3). For example, uncertainty about the abundances of O.
niloticus peaked for that part of the lagoon which was far away from the freshwater inputs were
the species was believed to occur.

The analysis of the distribution of CV of the various cells, also revealed differences in fishers
uncertainty about the abundance of each species (Fig. 4): respondents had little uncertainty
about the abundances of C. sapidus (median CV = 3.9%), but they were more uncertain about P.
clarkii (median CV =19.9%) and even more about O. niloticus (median CV = 18.4%).
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4 Discussion

This study constitutes a first application of LEK as a source of information for the participatory
mapping of AIS and for non indigenous species in general. It shows how spatially-explicit LEK,
collected from multiple experts without deliberation, can be evaluated by researchers, in terms
of its ecological plausibility and in terms of differences in expert evaluations.

We adopted the practice of mental mapping, which plays an important role in geography
[48], but which was never applied before to the study of biological invaders. Through vis-a-vis
interviews, we facilitated local experts to project their mental maps into a georeferenced space.
Drawing demarcation lines on a pre-printed map of the lagoon was a very easy task for the
small-scale fishers of Lesina, requiring minimum assistance from researchers. We believe that,
due to its simplicity, this approach can be suitable for a broad adoption across different cultures
and social contexts (including those with reduced literacy), being this aspect is a key requisite
for large scale monitoring and planning [49]. For these reasons, participatory mapping is worth
to be explored in those aquatic environments where tracing the abundance and the spatial
distribution of species is particularly difficult [50][51] and where biological invasions typically
outrun ecological sampling with consequent lags in the information chain (sensu Azzurro et
al., 2016)[52]. Another benefit of this method is that participants were actively involved in the
research framework, which is one of the core themes for co-management and informational
governance [53][54].

Our study took sketch mapping one step further, as we decomposed a handwritten map into
a discrete grid of values, which could be analyzed quantitatively as lattice data to: i) summarize
fishers’ judgments through statistical modeling, testing for the ecological significance of spatial
patterns and ii) highlight species-specific differences and spatial patterns in fishers’ uncertainty.

Summarizing experts’ judgments through statistical modeling was a parsimonious approach
to explore spatial patterns of abundance. Fitting a hierarchical model provided us with a map of
fitted values for the abundance of the three species, enabling us to test if these patterns aligned
with species-specific ecological requirements. This praxis can be the only way to the reliability of
LEK data, in absence of other kind of spatial information about the distribution of a certain species
and it requires summarizing observed data with a statistical model. In this study, the spatial dis-
tribution and the abundance of the three species in the lagoon aligned well with their ecological
requirements. Indeed C. sapidus was reported to be generally widespread, as expected from a
marine species in a brackish lagoon, and more abundant close to the area of the lagoon with a salt-
marsh, rich in aquatic plants that are important as nurseries [55]. On the contrary, P. clarkii and O.
niloticus were reported to occur at low abundances and only close to freshwater inputs from the
inland, as it would be expected given their low tolerance to high salinities which in the lagoon
exceed the limits of the two species (P. clarkii: https://www.cabi.org/isc/datasheet/67878; O.
niloticus: https://www.cabi.org/isc/datasheet/72086). Analyzing the CV of model predictions
also revealed differences in expert judgments about the three species. Appreciating these differ-
ences might be important to quantify the reliability of abundance estimates and decide whether
to adopt the extracted knowledge as a source of information. We found that the agreement was
maximum for C. sapidus, while it significantly decreased for P. clarkii and O. niloticus. We there-
fore considered as highly reliable C. sapidus maps and at the same time, provided appropriate
metrics to evaluate if using or not the information related to P. clarkii and O. niloticus. These
species-specific differences in expert evaluations can have multiple explanations, which could
be addressed by acting on the study design. For example, we should consider that different
species could be characterized by different levels of detectability, like the use of different fishing
gears [14]. Considering that our sample of experts was homogeneous with respect to possible
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Figure 3 | Coefficient of variation of predicted values from the spatially correlated models: C. sapidus (a), P. clarkii
(b) and O. niloticus (c). The coefficient of variation ranges between 0% and 100%.

gear-related bias (the used almost entirely set nets and traps), the observational processes could
be influenced by other behavioral and on-ground conditions affecting individual’s ecological
knowledge [56]. Also, as a hierarchical model produces higher values of the CV for those cells
where abundance scores were more heterogeneous, mapping the spatial distribution of the CV of
model prediction can highlight spatial patterns in expert disagreement. Few LEK-based studies
focus on expert disagreement, which could nevertheless be fundamental for assessing the quality
of LEK [6]. In participatory mapping, identifying those areas where respondent’s evaluation
differ, might be highly informative about the observational process behind LEK and important
for its integration with ecological surveys. In our case study, the CV of model predictions had a
relatively scarce spatial variation, because the lagoon was shallow and small, with respondents
that moved across it homogeneously. However, larger areas, deeper waters or heterogeneous
seabeds, could lead fishers exploiting different habitats and using different fishing gears with
consequent variation in individual knowledge and appreciation of fishing resources [57]. This
would result in variable levels of disagreement about species distribution and abundances, and
in higher values of the CV.
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Our approach also mitigates one major flaw of interviews and questionnaires, for expert
elicitation, namely the lack of deliberation between experts. Deliberation is fundamental to
understand if, how much, and why experts agree over a certain topic [8][28]. Unfortunately, when
experts are not gathered together, like in many LEK studies based on interviews, deliberation
does not occur and most researchers deem impossible to evaluate the information at hand.
We showed that this idea is misleading: through statistical modeling it is possible to partially
evaluate what is elicited from experts. In our case we found coherent spatial patterns in the
evaluation of the abundance of the three species in the lagoon which, for C. sapidus, also
had relatively modest errors of prediction. The quality of LEK about C. sapidus was therefore
deemed to be highly reliable for ecological mapping. Our case study focused on participatory
mapping but we believe that a similar approach can also be potentially useful for evaluating
time-series [21][58] and other kind of LEK-generated information.

It must be clear that our case study also has some clear simplifications. First and foremost,
the scale and the accessibility of the study area: the Lesina lagoon is relatively small (51.4 km2)
and shallow, with no boundaries. Fishermen therefore move across the entire area. This enabled
us to easily combine multiple distribution maps and to compare expert LEK, but future research
could develop participatory mapping protocols combining experts with partially overlapped
fishing areas. These studies should also explore the extent to which confidence in LEK varies at
increasing distances from the core fishing area.

10%

20%

30%

C.sapidus P.clarkii O.niloticus

C
V

Figure 4 | Distribution of the coefficient of variation (CV) of predicted values from the spatially correlated models
for the three species. The coefficient of variation ranges between 0% and 100%.
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5 Conclusions
Yet, much has evolved in the theory and practice of participatory science and expert engagement
in conservation biology [59][60]. Many different methods, like matrix scoring, causal-linkage
or diagramming, have been adopted and used by conservationists all over the world. Due to
the need for spatial-explicit information in invasive species monitoring and management, our
experience highlights the potential benefits that could result from a structured participatory
mapping methodology based on a rigorous and transparent evaluation of LEK-generated infor-
mation. Improving the scientific quality of spatial representations, such kind of practices could
be better and more widely used for the needs of research, conservation, resource management
and decision-making.
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Table 1. Fitness indexes of the models without spatial correlation
and with a Besag-York-Mollié (BYM) correlation structure: widely
applicable information criterion (WAIC), deviance information
criterion (DIC).

WAIC (non spa-
tial model)

WAIC (BYM
model)

DIC (nonspa-
tial model)

DIC (BYM
model)

C. sapidus 11439.75 11364.08 11434.77 11341.43

P. clarkii 11005.16 10951.95 11025.91 11002.19

O. niloticus 10670.90 10609.98 10692.33 10659.49
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Table 2. Coefficients of the generalized additive models for the
three species.

C. sapidus

Variable Mean 0.025 quantile 0.975 quantile

Intercept 4.25 3.97 4.59

Precision:longitude 6.85 0.89 0.19

Precision:latitude 17900.00 1296.70 66500.00

Precision:respondent 2.24 1.736 3.07

P. clarkii

Variable Mean 0.025 quantile 0.975 quantile

Intercept 0.72 0.503 0.935

Precision:longitude 13500.00 463.570 55800.00

Precision:latitude 367.00 29.476 1800.00

Precision:respondent 5.07 2.280 8.80

O. niloticus

Variable Mean 0.025 quantile 0.975 quantile

Intercept 1.706 1.117 1.294

Precision:longitude 13800.00 293.089 57400.00

Precision:latitude 6870.00 725.930 21300.00

Precision:respondent 0.48 0.24 0.78
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