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Abstract

Context Pattern-based spatial analysis provides methods to describe and quantitatively
compare spatial patterns for categorical raster datasets. It allows for spatial search,
change detection, and clustering of areas with similar patterns.
Objectives We developed an R package motif as a set of open-source tools for
pattern-based spatial analysis.
Methods This package provides most of the functionality of existing software (except
spatial segmentation), but also extends the existing ideas through support for
multi-layer raster datasets. It accepts larger-than-RAM datasets and works across all of
the major operating systems.
Results In this study, we describe the software design of the tool, its capabilities, and
present four case studies. They include calculation of spatial signatures based on land
cover data for regular and irregular areas, search for regions with similar patterns of
geomorphons, detection of changes in land cover patterns, and clustering of areas with
similar spatial patterns of land cover and landforms.
Conclusions The methods implemented in motif should be useful in a wide range of
applications, including land management, sustainable development, environmental
protection, forest cover change and urban growth monitoring, and agriculture
expansion studies. The motif package homepage is https://nowosad.github.io/motif.

Keywords: spatial patterns, multi-layer similarity, query-by-example, similar-
ity search, patterns comparison, patterns clustering
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1 Introduction

Discovering and describing spatial patterns is an important element of many environmental
studies, as spatial patterns on different scales are related to ecological processes. With the
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ascent of computational methods, identification and characterization of spatial patterns
started to be answered with numbers rather than by means of qualitative depiction. Most
methods of spatial analysis for remotely sensed data treat single cells as basic units of
analysis, and while this standard approach is sufficient for analysis of local areas, it is
not well suited for analysis on regional, continental, or global scales. This is because
cell-scale information is, in itself, irrelevant for broad-scale analysis. For example, mapping
land cover change using cell-based transitions in a large area results in an unsatisfactory
salt-and-pepper output due to classification errors, or simply because cell size is smaller
than objects whose change we want to detect.
A “local landscape” is a more appropriate unit of analysis for broad-scale studies. For
categorical raster data is represented by a block of cells containing a local pattern of a
cell-based variable. Pattern-based spatial analysis is a set of ideas andmethods allowing for
the description of spatial patterns and calculation of similarity between patterns. The core
idea is to transform the data from a large raster consisting of cells having simple content (a
single value) into a spatial signature - a statistical description of a pattern. A large number
of landscape metrics were developed to quantify spatial patterns (O’Neill et al. 1988;
Turner and Gardner 1991; Li and Reynolds 1993; He, DeZonia, and Mladenoff 2000; Jaeger
2000; McGarigal 2014; Nowosad and Stepinski 2019), and were implemented in the existing
software (McGarigal et al. 2002; Hesselbarth et al. 2019). However, most of landscape
metrics are a single number depicting specific characteristics of a local landscape. Spatial
signatures, on the other hand, are multi-values representations of landscape composition
and configuration, and therefore can be compared using a large number of existing distance
or dissimilarity measures (Lin 1991; Cha 2007). This enables spatial analysis such as search,
change detection, clustering, and segmentation.
Ideas related to the pattern-based spatial analysis were first tested in a collection of GRASS
GIS modules called GeoPAT (Jasiewicz, Netzel, and Stepinski 2015). GeoPAT allowed for
pattern-based search and change detection for a single layer raster data using a limited
number of spatial signatures. It was also limited to a Linux operating system, as GRASS
needs to be compiled together with GeoPAT. Further improvements led to the release of
GeoPAT 2 (Netzel et al. 2018), which is a standalone command-line software, with versions
for Linux andWindows. There were also a number of changes compared to the first version,
including a new segmentation module, and experimental support for analysis of patterns
in time-series spatial data.
Both GeoPAT and GeoPAT 2 support analysis on single-layer categorical rasters (e.g. a map
of land cover or a map of geomorphons). Recently, new ideas for working on multi-layer
categorical rasters were developed. It includes new spatial signatures, the weighted
co-occurrence matrix (wecoma) that allows applying numerical weights for a categorical
raster (Dmowska, Stepinski, and Nowosad 2020) and the integrated co-occurrence matrix
(incoma) that encapsulates not only spatial patterns of many input layers but also spatial
relationships between the layers (Vadivel, Sural, and Majumdar (2007)). This signature can
be also converted into the normalized integrated co-occurrence histogram, allowing for
content-based searches, comparisons, or clusterings.
The aim of this paper is to present a new open-source software called motif. Contrary
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to GeoPAT and GeoPAT 2, it is a fully cross-platform, working on Windows, Linux, and
macOS machines. This R package provides tools to derive several types of implemented
spatial signatures based on regular and irregular regions. It includes single layer signatures
like composition or a co-occurrence histogram, as well as, multi-layer signatures, e.g. an
integrated co-occurrence matrix. The motif package also allows users to create and use
their own spatial signatures. Importantly, it has functions allowing for pattern-based
search, comparison, and clustering. Additionally, it is integrated with robust R packages
for spatial data representation, namely stars and sf (Pebesma 2020, 2018), and therefore
operations in this package can be added easily to existing workflows or be a basis for new
workflows. Finally, the computationally demanding parts of the software were written in
C++ (Eddelbuettel and François 2011), which together with a larger-than-RAM support,
allows for working on high-resolution rasters or data on continental or global scales.

2 Pattern-based analysis

The main idea of the pattern-based analysis is that any categorical raster dataset can be
described using some spatial signatures. A large number of possible signatures were
developed (Table 1). The most basic one is a composition, which describes a number of
cells of each category in a local landscape. Gustafson (1998) highlighted that alongside
composition there is also a second fundamental element of spatial patterns - spatial
configuration. Riitters (2019) stated that amount (composition) is a more fundamental
metric than adjacency (configuration), however, he also underlines that they both are
crucial for complete pattern description. Similarly, Remmel (2009) showed that a given
composition could result in a large number of possible configurations. Therefore, the use of
more complex signatures is desirable in many cases. One of the signatures encapsulating
both composition and spatial configuration is a co-occurrence matrix. It is a k by kmatrix,
where k is a number of classes in the categorical raster, constructed by counting all of the
pairs of the adjacent cells (Haralick, Shanmugam, and Dinstein 1973; Jasiewicz, Netzel,
and Stepinski 2015). In it, diagonal values are related to the composition and non-diagonal
ones are related to the configuration. Recently, extended versions of the co-occurrence
matrix were developed for spatial data analysis. It includes a weighted co-occurrence
matrix (wecoma) (Dmowska, Stepinski, and Nowosad 2020) and an integrated co-occurrence
matrix (incoma) (Vadivel, Sural, and Majumdar (2007)). The weighted co-occurrence matrix
is created based on two raster datasets. The first one is used to find adjacencies between
classes, while the second one provides weights for each adjacency. It allows to put more
importance to some locations in the data than others. Integrated co-occurrence matrix,
on the other hand, allows incorporating spatial patterns of many rasters at the same time
as it is created based on two or more rasters. This signature consists of independent
co-occurrence matrices for each input dataset, but also co-located co-occurrence matrices
for each combination of input datasets. The co-located co-occurrence matrix uses two
matrices and counts adjacencies between the cells in the first dataset and related cells in
the second dataset. Therefore, this signature incorporates not only the spatial patterns of
all of the input layers but also the spatial relationship between layers.
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Table 1: Spatial signatures available in the motif package

Signature Abbreviation Input data Description
Composition composition One categorical

raster
A vector representing the shares
of cells for each category in a
local landscape

Co-occurrence
matrix

coma One categorical
raster

A matrix representing
composition and spatial
configuration by counting all of
the pairs of the adjacent cells for
each category in a local
landscape

Co-occurrence
histogram (vector)

cove One categorical
raster

A vector containing a
normalized form of the
co-occurrence matrix used for
spatial search, comparison, and
clustering

Weighted
co-occurrence
matrix

wecoma One categorical
and one
numerical raster
(weight matrix)

A modification of a
co-occurrence matrix, in which
each adjacency contributes to
the output based on the values
from the weight matrix

Weighted
co-occurrence
histogram (vector)

wecove One categorical
and one
numerical raster
(weight matrix)

A vector containing a
normalized form of the
weighted co-occurrence matrix
used for spatial search,
comparison, and clustering

Integrated
co-occurrence
matrix

incoma Two or more
categorical rasters

A matrix representing
composition and spatial
configuration of all of the input
rasters, but also spatial
interactions between them

Integrated
co-occurrence
histogram (vector)

incove Two or more
categorical rasters

A vector containing a
normalized form of the
integrated co-occurrence matrix
used for spatial search,
comparison, and clustering

User-defined
signature

- Depends on the
user-defined
function

Any user-defined function that
can summarize stars objects
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Spatial signatures can be calculated for either regular areas or irregular ones. A basic
example of using regular areas is when a large region is divided into a number of smaller,
square-sized regions. The size of the smaller regions can be provided as a number of cells
in each direction. This number, however, should be large enough to be able to encapsulate
meaningful local spatial patterns (Boots 2003). The pattern-based approach can be also
applied to regions having several different sizes, and thus testing how the spatial patterns
are scale-dependent. Another approach is to use irregular regions, which can be results of
the previous studies (e.g. ecoregions, climate regionalizations) or represents some existing
borders, such as counties, states, or countries.
The signatures store compressed information about local spatial patterns. They can be used
in several possible workflows. First, several information theory metrics can be calculated
for all types of co-occurrence matrices (Nowosad and Stepinski 2019). It includes marginal
entropy, representing the diversity of spatial categories or relative mutual information
quantifying the clumpiness of spatial categories. Second, all of the matrix signatures
can be also transformed into a one-dimensional form - a normalized histogram (vector)
representation (Table 1). A normalized histogram representation is created by restructuring
a 2-dimensional matrix into a 1-dimensional vector, and next, by normalizing the vector to
sum to one. This representation can be used as an input for a large number of existing
distance or dissimilarity measures that allow comparing histograms of values (Lin 1991;
Cha 2007). They make it possible to determine how similar patterns of different local
landscapes (or precisely their signatures) are to each other.
It opens a several groups of possible applications, including spatial pattern search,
comparison, and clustering. The spatial search takes a query area, computes a selected
spatial signature based on the provided categorical data for this area, and calculates the
spatial signatures for another dataset, usually divided into regular or irregular areas. Next,
the distance/dissimilarity is calculated between the spatial signature for the area of interest
and each of the areas in the second dataset. The results shows which areas have the
most and the least similar spatial patterns to our area of interest based on the provided
parameters (e.g., signature type, distance metrics). Spatial comparison, often called a
change detection, also accepts two sets of data, where both should have the same resolution
and extent. These two sets of data can be divided into many spatially consistent regular or
irregular regions. Selected signature is calculated for each subregion in both sets of data,
and a pair of signatures in each region is compared using the given distance/dissimilarity
measures. This allows locating regions without any change in spatial patterns between
datasets or regions that have very different spatial patterns in two sets of data. The third
possible application involves clustering, in which regular or irregular regions are joined
into several (possibly multi-parts) groups of similar spatial patterns. This process starts by
calculating a distance matrix that is a result of measuring distance/dissimilarity between
signatures of all provided regions. Next, one of a large number of possible clustering
techniques can be applied, including hierarchical or fuzzy clustering. The result has the
same extent as input data but divides the whole area into several clusters.
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3 Software

3.1 Software design

The open-source R (R Core Team 2020) package motif provides tools for pattern-based
spatial analysis. The package builds upon two robust R packages: stars representing
spatial raster data (Pebesma 2020) and sf for vector data representation (Pebesma 2018).
Most functions in this package use computationally fast and memory-efficient C++ code
(Eddelbuettel and François 2011; Eddelbuettel and Sanderson 2014; Nowosad 2020).
Moreover, the motif package also supports using larger-than-RAM raster datasets. All
motif functions are consistently named using the lsp_ (local spatial pattern) prefix, which
allows to quickly find any relevant function (Table 2).
The motif package describes spatial patterns of one or more categorical raster data for any
defined regular and irregular regions. Patterns are represented quantitatively by built-in
signatures based on co-occurrence matrices but any user-defined functions are also allowed.
The main structure in this package is an extended data frame of a special class lsp (Müller
and Wickham 2020). This data frame has several columns: id - unique identifier of each
defined region, na_prop - a share (0-1) of NA cells in each defined region, and signature -
a list-column containing calculated signatures, where each row relates to one of the defined
regions. Two examples of the lsp objects are presented in section 4.1.
The package enables various types of pattern-based spatial analyses, such as search (section
4.2), comparison (change detection) (section 4.3), and clustering (section 4.4). In them,
the similarity of spatial patterns between given regions is represented by a distance or
dissimilarity measure between their spatial signatures. motif allows using 46 optimized
distance and similarity measures implemented in the philentropy package (Drost 2018).
Each function in the package has an extensive help file containing a list of possible
arguments and a set of examples. The source code of this package is thoroughly tested,
with about 96% of the code lines executed using the automated tests. The package also has
a website at https://nowosad.github.io/motif/, which contains installation instructions,
documentation, examples on how to create user-defined functions, and several vignettes.

3.2 Software capabilities

Table 2 contains a list of the functions from the motif package. The functions are divided
into several groups of application: (1) description, (2) search, (3) comparison and change
detection, (4) clustering, and (5) various.
The lsp_signature() function accepts input data in form of an object of class stars
with one or more attributes. It creates spatial signatures for either entire of the provided
dataset (default), any defined regular or irregular regions. Regular regions are defined by
a number expressing a length of the side of a square-shaped block of cells in the number of
cells. For example, in case of providing a value of 100, each regular region will consist of
100 by 100 non-overlapping cells. Spatial vector objects of class sf can be used to define
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Table 2: Overview of the function in the motif package

Function Application Description
lsp_signature() Description Creates spatial signatures
lsp_search() Search Searches for similar spatial pattern
lsp_compare() Comparison or

change detection
Compares spatial patterns

lsp_to_dist() Clustering Calulates distance matrix between spatial
patterns

lsp_add_clusters() Clustering Adds custers’ ids to a lsp object
lsp_add_quality() Clustering Calculates quality metrics for all of the

clusters
lsp_extract() Various Extracts a local landscape based on a

provided id
lsp_add_sf() Various Creates vector object (of the sf class) based on

the input object or a set of parameters
lsp_add_stars() Various Creates raster object (of the stars class) based

on the input object or a set of parameters

irregular regions. The lsp_signature() function has several built-in signatures, including
"composition" that counts proportions of categories in a local landscape, "coma" - a
co-occurrence matrix and "cove" - a co-occurrence histogram, "wecoma" and "wecove" - a
weighted co-occurrence matrix/histogram, and "incoma" and "incove" - an integrated
co-occurrencematrix/histogram. Additionally, this function accepts user-defined functions,
which should allow only one argument in a form of a list containing one or more matrices
(Table 1). The lsp_signature() function is also internally used in the functions for spatial
search, comparison, and clustering.
The lsp_search() function performs query by example, searching for areas with similar
spatial patterns in categorical data. It accepts a categorical raster dataset with one or more
attributes (layers) and compares it to the second (usually larger) dataset with the same
attributes. The first dataset can be either compared to the second dataset as a whole,
divided into regular regions, or divided into irregular regions. A selected signature is
calculated for the first dataset and all of the regions in the second dataset. Next, a distance
between the signature of the first dataset and each of the signatures for the second dataset
is calculated using selected measure available in the philentropy::distance() function.
Additional parameters, such as neighborhood or normalization types, are also available.
The lsp_compare() function compares two spatial datasets with one or more layers
containing categorical raster data for the same area. Similarly to the previous functions,
both datasets can be either compared to as whole areas, areas divided into regular regions,
or areas divided into irregular regions. Spatial signatures are calculated for all regions in
both datasets and a distance between them is calculated using a selected measure from
the philentropy::distance() function. Additional parameters, such as neighborhood or
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normalization types, are also available.
The motif package makes it possible to find clusters of areas with similar spatial pat-
terns. This process has a few steps. First, a spatial signature must be derived us-
ing the lsp_signature() function for the defined regular and irregular areas. Next,
lsp_to_dist() should be used to calculate a distance between each of the areas. Its
output is a distance matrix accepted by many existing R functions for clustering. It
includes different approaches of hierarchical clustering (hclust(), cluster::agnes(),
cluster::diana()) or fuzzy clustering (cluster::fanny()) (Kaufman and Rousseeuw
1990; Maechler et al. 2019). Based on the obtained vector with group memberships (clus-
ters), the lsp_add_clusters() function adds clusters’ ids back to a lsp object, creating
a new spatial object. The output can be of stars or sf class. The motif package also
allows us to calculate three quality metrics to evaluate spatial patterns’ clustering: (1)
inhomogeneity, (2) isolation, and (3) overall quality. Inhomogeneity measures a degree of
mutual dissimilarity between all objects in a cluster. This value is between 0 and 1, where
the small value indicates that all objects in the cluster represent consistent patterns so
the cluster is pattern-homogeneous. Isolation is an average distance between the focus
cluster and all of its neighbors. This value is between 0 and 1, where the large value
indicates that the cluster stands out from its surroundings. Overall quality is calculated as
1 − (8=ℎ><>64=48CH/8B>;0C8>=). This value is also between 0 and 1, where higher values
indicate better quality (Haralick and Shapiro 1985; Jasiewicz, Stepinski, and Niesterowicz
2018).
The above applications can be applied tomany areas (local landscapes). The lsp_extract()
functionmakes it easier to extract, visualize, and analyze a single area based on the provided
id. For example, it allows us to select landscapes the most similar to the query one based on
the result of lsp_search(), areas with the largest change obtained using lsp_compare(),
or examples of members of a selected cluster. The lsp_extract() function expects three
arguments: x - an input stars object, window - a numeric value or an sf object, and id an
id number of selected area.
Additionally, the lsp_add_sf() and lsp_add_stars() functions create spatial objects
based on a given set of parameters or provided lsp objects. It allows, for example, to
visualize created regular or irregular grids.

4 Case studies

Four case studies are presented in the next sections to describe different capabilities of
the motif package, including calculation of spatial signatures (section 4.1), spatial pattern
search (section 4.2), spatial pattern comparison (section 4.3), and spatial pattern clustering
(section 4.4). Complete code and data to recreate all of the case studies is available at
https://github.com/Nowosad/motif-examples.
The case studies were based on four raster datasets. It includes the CCI land cover map
for the year 1994, the C3S land cover map for the year 2018, European Digital Elevation
Model (EU-DEM), and the Hammond’s landform regions (European Space Agency 2017;
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European Centre for Medium-Range Weather Forecasts 2019; European Environment
Agency 2016; Karagulle et al. 2017). These datasets were derived from the following
resources: http://maps.elie.ucl.ac.be/CCI/viewer/, https://cds.climate.copernicus.eu/
cdsapp#!/dataset/satellite-land-cover, https://land.copernicus.eu/imagery-in-situ/eu-
dem/eu-dem-v1.1, and https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/.
The CCI land cover data for the year 1994, C3S land cover data for the year 2018 were
reclassified into nine broader IPCC (Intergovernmental Panel onClimateChange) categories.
The land cover and landform regions data were also reprojected into the interrupted Goode
homolosine projection and resampled into the resolution of 300 meters.
European Digital Elevation Model was cropped into the area of Poland and used as a basis
for the calculations of geomorphons (Jasiewicz and Stepinski 2013). Geomorphons, used
in section 4.2, classify a digital elevation model into one of ten most common terrain forms:
flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit.
Besides the motif package, the case studies require the stars and sf packages to read spatial
data (Pebesma 2020, 2018).

library(motif)
library(sf)
library(stars)

All of the following visualizations were created using the tmap package (Tennekes 2018).

4.1 Basic signatures

The basic functionality of the motif package is to derive spatial signatures based on the
input data. Derived spatial signatures are also often used as an intermediate step in the
other types of spatial pattern-based analysis, as well as a source of values to calculate
some metrics related to spatial composition and configuration. For example, the co-
occurrence matrix derived with the motif package can be an input for the calculation of
the information theory metrics, such as marginal entropy (diversity) or relative mutual
information (clumpiness) (Nowosad and Stepinski 2019). That being said, the most basic
use of spatial signatures is to summarize the data. In this case study, we show how the
spatial signatures are calculated and stored in the motif package. It is presented using
two possible approaches - one with regular rectangular regions (Figures 1) and one with
irregular regions (Figures 2).
We used the land cover classification for New Guinea for this purpose. The island is
coveredmostly by forest, but also has areas with six additional land cover classes, including
agriculture or grasslands (Figures 1, 2). This dataset was read into R using the stars
package.
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landcover = read_stars("landcover.tif")

Land cover:

agriculture

forest

grassland

settlement

shrubland

sparse vegetation

water

Figure 1: A land cover of NewGuinea divided into a number of regular rectangular regions
of 200 by 200 cells (60 by 60 km)

First, land cover composition (proportion of each of the land cover classes) was derived
based on a set of regular non-overlapping regions using the lsp_signature() function
(Figure 1). This function requires just a few arguments, including the input data, type of the
calculated signature, and optionally, a value in the window argument. The default, window
= NULL, calculates the spatial signature for the entire input dataset. In this example, we set
window to 200, which means that each regular region will consist of 200 by 200 cells.

comp_output = lsp_signature(landcover,
type = "composition",
window = 200)

comp_output

## # A tibble: 300 x 3
## id na_prop signature
## * <int> <dbl> <list>
## 1 2 0.644 <dbl[,7] [1 x 7]>
## 2 3 0.0992 <dbl[,7] [1 x 7]>
## 3 4 0.145 <dbl[,7] [1 x 7]>
## 4 5 0.602 <dbl[,7] [1 x 7]>
## 5 6 0.775 <dbl[,7] [1 x 7]>
## # ... with 295 more rows

The output of the lsp_signature() function is an extended data frame of class lsp. It has
three columns, id of each region, the proportion of cells with missing values in each region,
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and a list-column containing calculated signatures. The list-column allows storing each
type of spatial signatures from a single value signatures (or metrics) to multidimensional
arrays.
Each signature can be accessed as a regular list object in R. For example, the spatial
signature of the first region in this object is:

comp_output$signature[[1]]

## 1 2 3 5 6 7 9
## [1,] 0.0009141411 0.9611138 0 0 0 0 0.03797201

It is a one-row matrix, where each column relates to the subsequent land cover category,
and each value is a proportion (0-1) of each category. The lsp_signature() function
makes it also possible to return the actual number of cells with each category with the
normalization argument set to "none".

Land cover:

agriculture

forest

grassland

settlement

shrubland

sparse vegetation

water

Figure 2: A land cover of New Guinea divided into 22 ecoregions

A second possible approach is to use irregular regions that can be provided as a spatial
vector object of class sf.

ecoregions = read_sf("ecoregions.gpkg")

The ecoregion object contains 22 ecoregions for the New Guinea area derived from
Dinerstein et al. (2017) (http://ecoregions2017.appspot.com/). Calculation of spatial
signatures for irregular regions requires just using this object as a value in the window
argument.

11

http://ecoregions2017.appspot.com/


landcover_comp_e = lsp_signature(landcover, type = "composition",
window = ecoregions["id"])

landcover_comp_e

The structure of the output is identical to the first example.

## # A tibble: 22 x 3
## id na_prop signature
## * <int> <dbl> <list>
## 1 1 0.114 <dbl[,7] [1 x 7]>
## 2 2 0.0851 <dbl[,7] [1 x 7]>
## 3 3 0.0377 <dbl[,7] [1 x 7]>
## 4 4 0.0914 <dbl[,7] [1 x 7]>
## 5 5 0 <dbl[,7] [1 x 7]>
## # ... with 17 more rows

4.2 Spatial pattern search

Spatial pattern search allows for quantifying similarity between the query region and the
search space and finally finding regions that are the most similar to the query one. In
this case study, we were interested in finding areas of similar topography to the area of
Suwalski Landscape Park.
Suwalski Landscape Park is a protected area in north-eastern Poland with a post-glacial
landscape consisting of young morainic hills. One possible approach to the raised question
is to use a geomorphons map of this region. Geomorphons categorize cells in this area into
one of ten landform types. Left panel at Figure 3 shows that this area has irregular spatial
patterns with a significant part represented by slopes and only a limited number of flat
areas. Spatial search requires two groups of input data, one representing the query region,
and second that we want to search.

gm_suw = read_stars("gm_suw.tif")
gm_pol = read_stars("gm_pol.tif")

The lsp_search() function allows us to calculate distances between the query region and
the search area. It accepts the query region and the search region and the type of signatures
we want to compare. Next, an applicable distance measure needs to be specified. Here,
we used the Jensen Shannon distance. Similarly to the first use case, it is also possible to
search for either regular rectangular regions or irregular regions.

gm_search = lsp_search(gm_suw, gm_pol,
type = "cove", dist = "jensen-shannon",
window = 100)
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Geomorphons:

flat

summit

ridge

shoulder

spur

slope

hollow

footslope

valley
depression

Figure 3: Geomorphons of: (left) Suwalski Landscape Park, (right) Poland with a triangle
pointing to the location of the Suwalski Landscape Park

The output gives a distance value between the query region and every search region
(Figure 4). The results show that majority of similar areas are located in northern Poland
and forms a belt with homogeneous topography. The lsp_extract() function allows to
pull out selected regions. Eight examples of the areas with the most similar patterns of
geomorphons comparing to the Suwalski Landscape Park are presented in Figure 4. They
are also similar to each other, suggesting a high-quality result.

4.3 Spatial pattern comparison

Spatial pattern comparison allows detecting changes in spatial patterns between two sets
of data. Here, our goal is to compare how the land cover changed for the Amazon region
between the years 1992 and 2018. For this purpose, two categorical raster datasets with the
same resolution and extent need to be read (Figure 5).

lc92 = read_stars("lc_am_1992.tif")
lc18 = read_stars("lc_am_2018.tif")

Comparison of spatial patterns is a role for the lsp_compare() function. Its syntax is very
similar to lsp_search(), however, it expects two datasets. Here, we used the co-occurrence
vector as a signature, the Jensen-Shannon distance, and regular regions of 300 by 300 cells.

lc_am_compare = lsp_compare(lc92, lc18,
type = "cove", dist_fun = "jensen-shannon",
window = 300)
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Distance (JSD):

0.003 0.010 0.032 0.100 0.316

Figure 4: (Left) A result of the spatial pattern search between the Suwalski Landscape
Park and the Poland area. Triangles represent eight areas with the most similar patterns of
geomorphons comparing to the Suwalski Landscape Park (Right) Examples of the eight
areas with the most similar patterns of geomorphons comparing to the Suwalski Landscape
Park

1992 2018
Land cover:

agriculture

forest

grassland

wetland

settlement

shrubland

sparse vegetation

bare area

water

Figure 5: Land cover for the Amazon region for the years 1992 and 2018
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The resulting object provides an overview of the land cover pattern changes for the Amazon
region (Figure 6). Areas with the most intensive changes are located in the southern
and eastern parts of the region. Figure 6 also shows seven areas with the largest land
cover changes extracted with the lsp_extract() function. In all of the cases, the spatial
pattern-change is similar. Regions covered mostly by forest in 1992 are now vastly replaced
with extensive areas of agriculture.

Figure 6: A visualization of the Amazon region presenting the change magnitude between
the land cover patterns between 1992 and 2018 (top left), and the seven examples of areas
with the largest changes of spatial land cover patterns between 1992 and 2018

4.4 Spatial pattern clustering

Spatial pattern clustering allows us to identify regions with similar spatial patterns and
group them together. The previous case studies used the single layer datasets, either
representing land cover categories or geomorphons. However, the pattern-based spatial
analysis is not limited to just single layers. It also works on many layers, but in these
cases, it requires using an appropriate spatial signature. Recently, a new signature, an
integrated co-occurrence matrix, was developed to represent multilayer spatial patterns.
This signature is implemented in the motif package in the form of a matrix (incoma) and
vector (incove).
In this case study, we were interested in in finding clusters of regions with similar patterns
of land covers and landforms in Africa. Two datasets representing land cover and landform
regions of Africa were read into R, and combined into a single stars object (Figure 7).
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Figure 7: Land cover map (left) and landform regions map (right) of Africa

lc = read_stars("data/land_cover.tif")
lf = read_stars("data/landform.tif")
eco = c(lc, lf)

Next, spatial pattern clustering requires a few steps. The first one is to derive a spatial
signature for all of the analyzed regions using lsp_signature(). Here, we are interested in
the multi-layer spatial patterns of both land cover and landform regions, therefore we can
use the "incove" signature. The second step uses lsp_to_dist() to calculate the distance
between spatial signatures for each region. The result of the calculation is an object of class
dist that can be used in any clustering technique requiring a distance matrix.

eco_signature = lsp_signature(eco_data,
type = "incove",
window = 300,
normalization = "pdf")

eco_dist = lsp_to_dist(eco_signature, dist_fun = "jensen-shannon")

In this example, we used the hierarchical clustering with the Ward agglomeration method,
and based on the dendrogram plot, we decided to distinguish eight clusters. Cluster were
added to the lsp object using the lsp_add_clusters() function and are presented on the
left in Figure 8.
Figure 8 also contains an example for each of the clusters derived with the lsp_extract()
function. The first cluster represents areas with diverse land cover (with dominating
agriculture) on complex terrain. Contrary to the first one, the second cluster is mostly
located in one region (Sahel), with agriculture, grassland, sparse vegetation, and bare areas
on plains. Most areas from the third cluster form a belt south from the second cluster.
It consists of areas with dominating agriculture on plains or hills. The fourth and fifth
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Figure 8: Africa divided into eight clusters of similar spatial patterns of land cover and
landform regions (left) and examples of each cluster (right). Legends for the colors in the
examples are presented in Figure 7

clusters are closely related to the parts of the Sahara desert, with the fourth cluster located
on mountains and the fifth one on plains or hills. The sixth and eights clusters also have
similar land cover, both covered mostly by forests with smaller areas of agriculture and
grasslands. They differ in terms of their landforms, with the sixth cluster located mostly
on plains, and eighth on complex terrain. Finally, the seventh cluster relates to areas with
the domination of shrublands.
The motif package also makes possible to evaluate properties of each cluster with the
lsp_add_quality() function. It returned three values to each cluster indicating their
inhomogeneity, isolation, and quality (Table 3). All clusters showed similar levels of
isolation, but differed in terms of inhomogeneity, and therefore overall quality. The best
overall quality was found for the fifth cluster, which had the most homogeneous spatial
patterns (lowest inhomogeneity). On the other hand, the first cluster showed the lowest
values of overall quality having the most inhomogeneous spatial patterns of land cover
and landform regions.

5 Discussion

In this paper, we introduced the motif R package for pattern-based spatial analysis. It
allows for the extraction of single- and multi-layer spatial patterns, pattern-based search,
comparison, and clustering. The software is fully operational, and its functionality has been
tested on global datasets with several billions of cells. This software was designed to work
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Table 3: Quality metrics for eight clusters divided based on similar spatial patterns of land
cover and landform regions for Africa

Cluster Inhomogeneity Isolation Quality
1 0.48 0.75 0.37
2 0.40 0.70 0.42
3 0.34 0.69 0.51
4 0.29 0.73 0.60
5 0.12 0.70 0.83
6 0.28 0.61 0.54
7 0.37 0.69 0.46
8 0.29 0.68 0.57

on any modern laptop and does not require any external servers to run its calculations.
The motif package is based on the R language due to several reasons. R proved to be a
main or one of the most important programs in many fields of science that rely on spatial
data and spatial data patterns. It includes different subfields of ecology (Sciaini et al. 2018;
Lai et al. 2019), spatial statistics, and GIScience (Lovelace, Nowosad, and Muenchow
2019). A vast number of existing R packages allow using the motif package not only as an
individual tool but also as a part of many possible workflows. It is built upon popular R
spatial frameworks, such as stars and sf, and therefore each input to this package can be
beforehand processed in R, and also all of the calculation outputs could be further used
and modified using existing tools. Keeping most or all calculations inside of one toolbox
increases replicability and reproducibility, and makes it a key element to validate scientific
studies (Lovelace, Nowosad, and Muenchow 2019).
The existing software GeoPAT and GeoPAT 2 (Jasiewicz, Netzel, and Stepinski 2015; Netzel
et al. 2018) already proved to be useful for the content-based search of Earth observation
data archives (Peng et al. 2019), assessment of land cover change (Netzel and Stepinski 2015),
or mapping geomorphological landscapes (Józsa and Fábián 2016). Their functionality,
however, is limited to working on just one layer (a type of spatial data) at the time. The
motif package provides most of the functionality of the existing software and opens new
potential applications for pattern-based analyses of many layers.
Future improvements of the software will be aimed in several directions. The R language
lacks a robust implementation of spatial segmentation. It would be worth not only to
implement some spatial segmentation techniques using for the R language but also to
investigate if the existing algorithms for spatial segmentation can be applied for multilayer
data. The methods should be written efficiently to work on large spatial datasets, and
thoughtfully tested and evaluated before adding them to the motif package. Second,
new signatures can be developed to provide new, useful measures of spatial patterns. It
especially includes signatures aimed at describing many spatial scales at the same time.
Third, there is a need to develop a comprehensive approach to analyze howdifferent selected
spatial scales influence obtained results and to provide an evidence-based way to decide
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on a selected spatial scale. Fourth, possible performance improvements, especially when
working on irregular regions and obtaining quality of clusterings should be investigated.
Fifth, a large number of different spatial signatures and distance measures exist, however,
we are not aware of any study comparing their effectiveness, advantages, and disadvantages
when applying to different types of spatial patterns. The design of this package allows
us to quickly tests many combinations of possible parameters, which then can be used
as a basis of the comparison study. Finally, future users’ inputs and experiences will be
appreciated, as they can shed light on missing features or further areas of development.

References

Boots, Barry. 2003. “Developing Local Measures of Spatial Association for Categorical
Data.” Journal of Geographical Systems 5 (2): 139–60. https://doi.org/10/fjm8dk.

Cha, Sung-Hyuk. 2007. “Comprehensive Survey onDistance/SimilarityMeasures Between
Probability Density Functions.” International Journal of Mathematical Models and Methods
in Applied Sciences 1 (4): 300–307.

Dinerstein, Eric, David Olson, Anup Joshi, Carly Vynne, Neil D. Burgess, Eric Wikra-
manayake, Nathan Hahn, et al. 2017. “An Ecoregion-Based Approach to Protecting
Half the Terrestrial Realm.” BioScience 67 (6): 534–45. https://doi.org/10.1093/biosci/
bix014.

Dmowska, Anna, Tomasz F Stepinski, and Jakub Nowosad. 2020. “Racial Landscapes - a
Pattern-Based, Zoneless Method for Analysis and Visualization of Racial Topography.”
Applied Geography.

Drost, HG. 2018. “Philentropy: Information Theory and Distance Quantification with R.”
Journal of Open Source Software 3 (26): 765. http://joss.theoj.org/papers/10.21105/joss.
00765.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel, Dirk, and Conrad Sanderson. 2014. “RcppArmadillo: Accelerating R with
High-Performance C++ Linear Algebra.” Computational Statistics and Data Analysis 71:
1054–63. http://dx.doi.org/10.1016/j.csda.2013.02.005.

European Centre for Medium-Range Weather Forecasts. 2019. “ICDR Land Cover Product
User Guide and Specification.”

European Environment Agency. 2016. “European Digital Elevation Model (EU-DEM),
Version 1.1.”

European Space Agency. 2017. “Land Cover CCI Product User Guide Version 2.” ESA
Libin, Belgium.

Gustafson, Eric J. 1998. “Quantifying Landscape Spatial Pattern: What Is the State of the
Art?” Ecosystems 1: 143–56.

19

https://doi.org/10/fjm8dk
https://doi.org/10.1093/biosci/bix014
https://doi.org/10.1093/biosci/bix014
http://joss.theoj.org/papers/10.21105/joss.00765
http://joss.theoj.org/papers/10.21105/joss.00765
https://doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1016/j.csda.2013.02.005


Haralick, Robert M, Karthikeyan Shanmugam, and Its’ Hak Dinstein. 1973. “Textural
Features for Image Classification.” IEEE Transactions on Systems, Man, and Cybernetics,
no. 6: 610–21. https://doi.org/10/bdqvtn.

Haralick, Robert M, and Linda G Shapiro. 1985. “Image Segmentation Techniques.”
Computer Vision, Graphics, and Image Processing 29 (1): 100–132.

He, Hong S, Barry E DeZonia, and David J Mladenoff. 2000. “An Aggregation Index (AI)
to Quantify Spatial Patterns of Landscapes.” Landscape Ecology 15: 591–601.

Hesselbarth, Maximilian H. K., Marco Sciaini, Kimberly A. With, Kerstin Wiegand, and
Jakub Nowosad. 2019. “Landscapemetrics : An Open-Source R Tool to Calculate
Landscape Metrics.” Ecography 42 (10): 1648–57. https://doi.org/10.1111/ecog.04617.

Jaeger, Jochen A G. 2000. “Landscape Division, Splitting Index, and Effective Mesh Size:
New Measures of Landscape Fragmentation.” Landscape Ecology 15: 115–30.

Jasiewicz, Jarosław, Paweł Netzel, and Tomasz Stepinski. 2015. “GeoPAT: A Toolbox for
Pattern-Based Information Retrieval from Large Geospatial Databases.” Computers &
Geosciences 80: 62–73. https://doi.org/10.1016/j.cageo.2015.04.002.

Jasiewicz, Jarosław, and Tomasz F. Stepinski. 2013. “Geomorphons a Pattern Recognition
Approach to Classification and Mapping of Landforms.” Geomorphology 182 (January):
147–56. https://doi.org/10.1016/j.geomorph.2012.11.005.

Jasiewicz, Jarosław, Tomasz Stepinski, and Jacek Niesterowicz. 2018. “Multi-Scale
Segmentation Algorithm for Pattern-Based Partitioning of Large Categorical Rasters.”
Computers & Geosciences 118 (September): 122–30. https://doi.org/10.1016/j.cageo.
2018.06.003.

Józsa, Edina, and Szabolcs Ákos Fábián. 2016. “Mapping Landforms and Geomorphologi-
cal Landscapes of Hungary Using GIS Techniques,” 13.

Karagulle, Deniz, Charlie Frye, Roger Sayre, Sean Breyer, Peter Aniello, Randy Vaughan,
and Dawn Wright. 2017. “Modeling Global Hammond Landform Regions from 250-M
ElevationData.” Transactions in GIS 21 (5): 1040–60. https://doi.org/10.1111/tgis.12265.

Kaufman, Leonard, and Peter J Rousseeuw. 1990. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons.

Lai, Jiangshan, Christopher J. Lortie, Robert A. Muenchen, Jian Yang, and Keping Ma. 2019.
“Evaluating the Popularity of R in Ecology.” Ecosphere 10 (1). https://doi.org/10.1002/
ecs2.2567.

Li, Habin, and James F. Reynolds. 1993. “A New Contagion Index to Quantify Spatial
Patterns of Landscapes.” Landscape Ecology 8 (3): 155–62. https://doi.org/10.1007/
BF00125347.

Lin, Jianhua. 1991. “Divergence Measures Based on the Shannon Entropy.” IEEE
Transactions on Information Theory 37 (1): 145–51.

Lovelace, R, J Nowosad, and J Muenchow. 2019. Geocomputation with R. Chapman and
Hall/CRC Press.

20

https://doi.org/10/bdqvtn
https://doi.org/10.1111/ecog.04617
https://doi.org/10.1016/j.cageo.2015.04.002
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.cageo.2018.06.003
https://doi.org/10.1016/j.cageo.2018.06.003
https://doi.org/10.1111/tgis.12265
https://doi.org/10.1002/ecs2.2567
https://doi.org/10.1002/ecs2.2567
https://doi.org/10.1007/BF00125347
https://doi.org/10.1007/BF00125347


Maechler, Martin, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. 2019.
Cluster: Cluster Analysis Basics and Extensions.

McGarigal, Kevin. 2014. “Landscape Pattern Metrics.” Wiley StatsRef: Statistics Reference
Online, 13.

McGarigal, Kevin, Sam A Cushman, Maile C Neel, and Eduard Ene. 2002. “FRAGSTATS:
Spatial Pattern Analysis Program for Categorical Maps.”

Müller, Kirill, and Hadley Wickham. 2020. Tibble: Simple Data Frames. https://CRAN.R-
project.org/package=tibble.

Netzel, Pawel, Jakub Nowosad, Jaroslaw Jasiewicz, Jacek Niesterowicz, and Tomasz F
Stepinski. 2018. “GeoPAT 2: User’s Manual.”

Netzel, Pawel, and Tomasz F. Stepinski. 2015. “Pattern-Based Assessment of Land Cover
Change on Continental Scale with Application to NLCD 2001.” IEEE Transactions on
Geoscience and Remote Sensing 53 (4): 1773–81. https://doi.org/10.1109/TGRS.2014.
2348715.

Nowosad, Jakub. 2020. Comat: Co-Occurrence Matrices of Spatial Data. https://nowosad.
github.io/comat/.

Nowosad, Jakub, and Tomasz F. Stepinski. 2019. “Information Theory as a Consistent
Framework for Quantification and Classification of Landscape Patterns.” Landscape
Ecology 34 (9): 2091–2101. https://doi.org/10.1007/s10980-019-00830-x.

O’Neill, R. V., J. R. Krummel, R. H. Gardner, G. Sugihara, B. Jackson, D. L. DeAngelis, B.
T. Milne, et al. 1988. “Indices of Landscape Pattern.” Landscape Ecology 1 (3): 153–62.
https://doi.org/10.1007/BF00162741.

Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector
Data.” The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.

———. 2020. Stars: Spatiotemporal Arrays, Raster and Vector Data Cubes.
Peng, Feifei, Le Wang, Shengyuan Zou, Jing Luo, Shengsheng Gong, and Xiran Li.

2019. “Content-Based Search of Earth Observation Data Archives Using Open-Access
Multitemporal Land Cover and Terrain Products.” International Journal of Applied Earth
Observation and Geoinformation 81 (September): 13–26. https://doi.org/10.1016/j.jag.
2019.05.006.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing. https://www.R-project.org/.

Remmel, T. K. 2009. “Investigating Global and Local Categorical Map Configuration Com-
parisons Based on Coincidence Matrices: Investigating Global and Local Categorical
Map Configuration.” Geographical Analysis 41 (2): 144–57. https://doi.org/10/bvbjrv.

Riitters, Kurt. 2019. “PatternMetrics for a Transdisciplinary Landscape Ecology.” Landscape
Ecology 34 (9): 2057–63. https://doi.org/10.1007/s10980-018-0755-4.

Sciaini, Marco, Matthias Fritsch, Cédric Scherer, and Craig Eric Simpkins. 2018. “NLMR
and Landscapetools: An Integrated Environment for Simulating andModifyingNeutral

21

https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://doi.org/10.1109/TGRS.2014.2348715
https://doi.org/10.1109/TGRS.2014.2348715
https://nowosad.github.io/comat/
https://nowosad.github.io/comat/
https://doi.org/10.1007/s10980-019-00830-x
https://doi.org/10.1007/BF00162741
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1016/j.jag.2019.05.006
https://doi.org/10.1016/j.jag.2019.05.006
https://www.R-project.org/
https://doi.org/10/bvbjrv
https://doi.org/10.1007/s10980-018-0755-4


Landscape Models in R.” Edited by Nick Golding. Methods in Ecology and Evolution 9
(11): 2240–8. https://doi.org/10.1111/2041-210X.13076.

Tennekes, Martĳn. 2018. “tmap: Thematic Maps in R.” Journal of Statistical Software 84 (6):
1–39. https://doi.org/10.18637/jss.v084.i06.

Turner, Monica G, and Robert H Gardner. 1991. Quantitative Methods in Landscape Ecologythe
Analysis and Interpretation of Landscape Heterogeneity. 574.5 T8.

Vadivel, A., Shamik Sural, and A. K. Majumdar. 2007. “An Integrated Color and
Intensity Co-Occurrence Matrix.” Pattern Recognition Letters 28 (8): 974–83. https:
//doi.org/10.1016/j.patrec.2007.01.004.

22

https://doi.org/10.1111/2041-210X.13076
https://doi.org/10.18637/jss.v084.i06
https://doi.org/10.1016/j.patrec.2007.01.004
https://doi.org/10.1016/j.patrec.2007.01.004

	Introduction
	Pattern-based analysis
	Software
	Software design
	Software capabilities

	Case studies
	Basic signatures
	Spatial pattern search
	Spatial pattern comparison
	Spatial pattern clustering

	Discussion
	References

