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Quantifying the complexity of ecological networks has remained elusive. Pri-
marily, complexity has been defined on the basis of the structural (or behavioural)
complexity of the system. These definitions ignore the notion of ‘physical com-
plexity’, which can measure the amount of information contained in an ecolog-
ical network, and how difficult it would be to compress. We present relative
rank deficiency and SVD entropy as measures of ‘external’ and ‘internal’ com-
plexity respectively. Using bipartite ecological networks, we find that they all
show a very high, almost maximal, physical complexity. Pollination networks, in
particular, are more complex when compared to other types of interactions. In
addition, we find that SVD entropy relates to other structural measures of com-
plexity (nestedness, connectance, and spectral radius), but does not inform about
the resilience of a network when using simulated extinction cascades, which has
previously been reported for structural measures of complexity. We argue that
SVD entropy provides a fundamentally more ‘correct’ measure of network com-
plexity and should be added to the toolkit of descriptors of ecological networks
moving forward.
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Introduction1

Ecologists have turned to network theory because it offers a powerful mathematical formal-2

ism to embrace the complexity of ecological communities (Bascompte and Jordano 2007).3

Indeed, analysing ecological systems as networks highlighted how their structure ties into4

ecological properties and processes (Proulx, Promislow, and Phillips 2005; Poulin 2010), and5

there has been a subsequent explosion of measures that purport to capture elements of net-6

work structure, to be related to the ecology of the system they describe (Delmas et al. 2018).7

Since the early days of network ecology, ecological networks have been called “complex”.8

This sustained interest for the notion of complexity stems, in part, from the strong ties it9

has to stability (Landi et al. 2018). As such, many authors have looked for clues, in the net-10

work structure, as to why the networks do not collapse (Borrelli 2015; Staniczenko, Kopp,11

and Allesina 2013; Gravel, Massol, and Leibold 2016; Brose, Williams, and Martinez 2006).12

Yet decades of theoretical refinements on the relationship between complexity and stability13

had a hard time when rigorously tested on empirical datasets (Jacquet et al. 2016); although14

ecological networks may be complex, our current measures of complexity do not translate15

into predictions about stability.16

Surprisingly, complexity itself has proven an elusive concept to define in a rigorous way. It17

has over time been defined as connectance (Rozdilsky and Stone 2001), as measures of the18

diversity of species or their interactions (Landi et al. 2018), or as a combination of species19

richness and trophic diversity (Duffy et al. 2007). In short, network ecology as a field readily20

assumes that because we have more information about a system, or because this system has21

more components, or simply because this system can be expressed as a network, it follows22

that the system is complex. But such a diversity of definitions, for a concept that is so central23

to our quest to understand network stability, decreases the clarity of what complexity means,24

and what all of these alternative definitions do actually capture. This is a common thread25

in some measures of ecological network structure, as has been discussed at length for the26

various definitions of nestedness (Ulrich, Almeida-Neto, and Gotelli 2009).27
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None of the previous definitions of complexity are formally wrong, in that they do cap-28

ture an aspect of complexity that ultimately ties to the behaviour of the system, i.e. its low29

predictability over time. Yet Adami (2002) provides a compelling argument for why the30

complexity of the behaviour does not necessarily reflects the complexity of the system; in31

fact, one would be very hard pressed to think of a more simple system than the logistic map32

used by May (1976) to illustrate how easily complexity of behaviour emerges. Rather than33

yielding to the easy assumption that a system will be complex because it has many parts, or34

because it exhibits a complex behaviour, Adami (2002) suggests that we focus on measuring35

“physical complexity”, i.e. the amount of information required to encode the system, and36

how much signal this information contains. Complex systems, in this perspective, are those37

who cannot easily be compressed - and this is a notion we can explore for the structure of38

ecological networks.39

Ecological networks are primarily represented by their adjacency matrices, i.e. a matrix in40

which every entry represents a pair of species, which can take a value of 1 when the two41

species interact, and a value of 0 when they do not. These matrices (as any matrices) can42

easily be factorised using Singular Value Decomposition (Forsythe and Moler 1967; Golub43

and Reinsch 1971), which offers two interesting candidate measures of complexity for eco-44

logical networks (both of which we describe at length in the methods). The first measure45

is the rank of the matrix, which works as an estimate of “external complexity”, in that it46

describes the dimension of the vector space of this matrix, and therefore the number of lin-47

early independent rows (or columns) of it. From an ecological standpoint, this quantifies the48

number of unique “strategies” represented in the network: a network with two modules that49

are distinct complete graphs has a rank of 2. The second measure is an application of the50

entropy measure of Shannon (1948) to the non-zero singular values of the matrix obtained51

through SVD. This so-called SVD entropy measures the extent to which each rank encodes52

an equal amount of information, as the singular values capture the importance of each rank53

to reconstruct the original matrix; this approach therefore serves as a measure of “internal54

complexity”.55
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In this manuscript, we evaluate both the rank and the SVD entropy as measures of the com-56

plexity of ecological networks, by using a collection of 220 bipartite networks from various57

types of interaction, sizes, connectances, and environments. We show that while the rank58

of the adjacency matrix holds little information, SVD entropy functions as an appropriate59

quantification of the complexity of ecological systems. Notably, SVD entropy is an intuitive,60

robust, non-structural approach to defining the (surprisingly high) complexity of ecological61

networks, by relating them to their ‘physical’ as opposed to ‘behavioural’ complexity. In62

this process we showcase a breakdown in the assumption that all measures of complexity of63

networks are indicative of their robustness to extinctions. We propose that taking a physical64

approach to quantifying the complexity of ecological networks is a step in the right direc-65

tion to unifying how we define complexity in the context of ecological networks, as it restores66

other measures (like connectance and nestedness) to their original role and signification.67

Methods68

We used all bipartite networks from the web-of-life.es database, taken from the Ecolog-69

icalNetworks.jl package (Poisot et al. 2019) for the Julia (Bezanson et al. 2017) program-70

ming language. Using bipartite networks means that interacting species are split into two71

sets (or interacting groups) and along different dimensions in the interaction matrix. Thus,72

columns in the matrix represent one group (or type) of species and rows represent the other73

group of species involved in the interaction. Because SVD gives similar results on the matrix74

and its transpose, it captures the complexity of both sides of the system at once.75

Estimating complexity with rank deficiency76

The rank of A (noted as r = rk(A)) is the dimension of the vector space spanned by the77

matrix and corresponds to the number of linearly independent rows or columns; therefore,78

the maximum rank of a matrix (M = rkmax(A)) will always be equal to the length of the79

shortest dimension of A, which ecologically speaking is the richness of the least species-rich80
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compartment of the bipartite network (or the richness in the case of unipartite networks).81

A matrix is “full-ranked” when r = M, i.e. all of its rows/columns are unique. Matrices82

that are not full-ranked are called rank deficient, and we can measure rank deficiency using83

d =M − r. So as to control for the difference in species richness of the different networks, we84

report the relative rank deficiency, i.e. expressed as a ratio between rank deficiency and the85

maximal rank:86

D = 1− r
M

(1)

This measure returns values between 0 (the matrix is full ranked) and 1−M−1 ≈ 1 (the matrix87

has rank 1). This serves as a coarse estimate of complexity, as the more unique columns/rows88

are in the matrix, the larger this value will be. Yet it may also lack sensitivity, because89

it imposes a stringent test on uniqueness, which calls for more quantitative approaches to90

complexity.91

Estimating complexity with SVD entropy92

Singular Value Decomposition (SVD) is the factorisation of a matrix A (where Am,n ∈ B in93

our case, but SVD works for matrices of real numbers as well) into the form U ·Σ ·VT . U is an94

m×m orthogonal matrix and V an n×n orthogonal matrix. The columns in these matrices are,95

respectively, the left- and right-singular vectors of A. Σ is a diagonal matrix, where σi = Σii,96

which contains the singular values of A. When the values of σ are arranged in descending97

order, the singular values are unique, though the singular vectors may not be.98

After the Eckart-Young-Mirsky theorem (Eckart and Young 1936; Golub, Hoffman, and Stew-99

art 1987), the number of non-zero entries (after rounding of small values if required due to100

numerical precision issues in computing the factorisation) in σ is the rank of matrix A. For101

the sake of simplicity in notation, we will use k = rk(A)) for the rank of the matrix. Because102

only the first k elements of σ are non-zero, and that the result of the SVD is a simple matrix103

multiplication, one can define a truncated SVD containing only the first k singular values.104
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Intuitively, the singular value i (σi) measures how much of the dataset is (proportionally)105

explained by each vector - therefore, one can measure the entropy of σ following Shannon106

(1948). High values of SVD entropy reflects that all vectors are equally important, i.e. that107

the structure of the ecological network cannot efficiently be compressed, and therefore indi-108

cates high complexity (Gu and Shao 2016). Because networks have different dimensions, we109

use Pielou’s evenness (Pielou 1975) to ensure that values are lower than unity, and quantify110

SVD entropy, using si = σi/sum(σ ) as:111

J = − 1
ln(k)

∑ k

i=1
si · ln(si) (2)

Uncovering the extreme complexity values at a given connectance112

We used simulated annealing (Kirkpatrick 1984) to generate networks with the highest, or113

lowest, possible SVD entropy values. From a set network size (30 species, 15 on each side)114

with a random number of interactions (spanning the entire range from minimally to max-115

imally connected), we reorganised interactions until the SVD entropy was as close to 0 or116

1 as possible. We repeated the process 25 times for every number of interactions. We also117

measured the relative rank deficiency of the generated networks. This allows identifying the118

boundaries of both measures of complexity.119

SVD entropy compared to traditional measures of network complexity120

We compared SVD entropy to some of the more common measures of complexity, namely121

nestedness (η, following Bastolla et al. (2009)), connectance (Co), and the spectral radius of122

the network (ρ, following Staniczenko, Kopp, and Allesina (2013)). All of these measures123

are positively correlated, especially over the range of connectances covered by empirical124

bipartite ecological networks.125

The nestedness of a network is a measure of the degree of overlap between species links126

(or strategies), where larger assemblages are made up of a subset of smaller ones that share127
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common interactions. Networks with a higher degree of nestedness could be considered128

simpler when compared to networks with a lower degree of nestedness. Connectance is129

the realised number of interactions (links) in an ecological network and is calculated as the130

fraction of the total number of realised interactions (or links) and the maximum number131

of possible interactions in a network (Martinez 1992). This has been shown to be a good132

estimate of a community’s resilience to perturbation (Dunne, Williams, and Martinez 2002).133

The spectral radius of a matrix is the largest absolute value of its eigenvalues, which, in134

addition to being presented as a measure of network complexity has also been suggested as135

an indicator of the ability of a system to dampen disturbances (Phillips 2011).136

Assessing robustness through targeted extinctions137

One approach to calculating the overall structural robustness of an ecological network is by138

simulating extinction events through the sequential removal of species, which allows con-139

structing an extinction curve that plots the relationship between species removed and cumu-140

lative secondary extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser, and141

Price 2004). Extinction events can be simulated in a manner of different ways, either by re-142

moving 1) a random individual, 2) systematically removing the most connected species (one143

with the highest number of interactions with other species) and 3) the least connected species144

(Dunne, Williams, and Martinez 2002). After each extinction event, we remove species from145

the network that no longer have any interacting partners, thereby simulating secondary ex-146

tinctions. This is then repeated until there are no species remaining in the network. Further-147

more, we can restrict extinction events to only one dimension of the interaction matrix, i.e.148

removing only top-level or bottom-level species, or alternatively removing a species from149

any dimension of the matrix. Extinction curves are then constructed by plotting the propor-150

tion of species remaining against those that have been removed; it stands to reason that a151

flatter curve ‘maintains’ its species pool for a longer number of cumulative extinctions, and152

could be seen as more resilient, when compared to a curve that has a much steeper decline.153

As per previous studies, we measure the robustness to extinction as the area under the ex-154
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tinction curve (AUC), calculated using the Trapezoidal rule. AUC values close to 0 means155

that a single extinction is enough to collapse the network almost entirely, and values close to156

1 means that most species persist even when the number of extinctions is really high.157

Results and discussion158

Most ecological networks are close to full-rank159

The majority (63% of our dataset) of bipartite ecological networks have a relative rank deffi-160

ciency of 0 (fig. 1), which indicates that all species have different and unique interaction lists.161

Interestingly, the networks that had a comparatively larger relative rank deficiency tended162

to be smaller ones. Yet because most of the networks return the same value, matrix rank does163

not appear to be a useful or discriminant measure of network complexity. Another striking164

result (from fig. 1) is that the SVD entropy of ecological networks is really large – although165

the value can range from 0 to 1, all ecological networks had SVD entropy larger than 0.8,166

which is indicative of a strong complexity.167

As expected following the observation that ecological networks are overwhelmingly full168

ranked, we do not see a relationship between SVD entropy and relative rank deficiency,169

neither do we observe differences between interaction types (fig. 2). Based on these results,170

we feel confident that SVD entropy provides a more informative measure of the complexity171

of ecological networks, and will use it moving forward.172

Plant-pollinator networks are slightly more complex173

Although we don’t observe clear differences in the relationship between different interaction174

types when comparing amongst various measures of complexity, we do find that different175

types of interaction networks have differing SVD entropies. When comparing calculated176

SVD entropy between interaction types using an ANOVA (after excluding Plant-Ant and177

Plant-Herbivore interactions due to their small sample size in our dataset) we find a signifi-178
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Figure 1: The relationship between network richness and relative rank deficiency, and SVD
entropy. The different types of interactions are indicated by the colours.
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Figure 2: The relationship between SVD entropy and the relative rank deficiency of different
species interaction networks Colours indicate the different interaction types of the
networks.
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Figure 3: The calculated SVD entropy of different interaction networks of different interac-
tion types

cant difference between group means (F = 47.047,p < 10−3). A Tukey’s HSD test reveals that179

plant-pollinator networks (µ = .924) are more complex than both host- parasite networks180

(µ = .885,p < 10−3) and seed dispersal (µ = .888,p < 10−3). Host-parasite and seed disper-181

sal networks had apparently no difference in average complexity (p = .889). These results182

suggest that mutualistic networks may be more complex, which matches with previous lit-183

terature: these networks have been shown to minimise competition (Bastolla et al. 2009) and184

favour unique interactions, thereby increasing network complexity. This specific structure185

can appear as a side-process of either ecological (Maynard, Serván, and Allesina 2018) or186

evolutionary (Valverde et al. 2018) processes, but nevertheless leaves a profound imprint on187

the complexity of the networks.188
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Connectance constrains complexity (but also rank deficiency)189

By exploring the minimal and maximal values of SVD entropy for networks of a given size,190

we can show that the range of complexity that a network can express varies as a function191

of connectance (fig. 4). As reported by Poisot and Gravel (2014), there is no variation when192

the networks are either minimally or maximally connected, but any connectance in between193

can give rise to networks of varying complexities. This being said – minimally connected194

networks always show the largest complexity, and an increase in connectance will always195

decrease complexity. Interestingly, this relationship is monotonous, and there is no peak of196

complexity where the maximal number of possible networks combination exists, i.e. around197

Co ≈ 0.5 (Poisot and Gravel 2014). This is an intriguing result – ecological networks are198

indeed extremely complex, but whereas ecologists have usually interpreted connectance as199

a measure of complexity, it is in fact sparse networks that are the complex ones, and con-200

nectance acts to decomplexify network structure.201

The right panel of fig. 4 shows the average rank deficiency of networks for which SVD en-202

tropy was either maximised or minimised. Complex networks (meaning, maximally com-203

plex given their connectance) had a lower deficiency, indicating that except at extreme con-204

nectances, there are combinations of networks for which all species can interact in unique205

ways – this is a natural consequence of the results reported by Poisot and Gravel (2014),206

whereby the number of possible networks is only really constrained at the far ends of the207

connectance gradient. Minimally complex networks, on the other hand, saw their rank defi-208

ciency increase with connectance. This hints at the fact that the decrease in complexity with209

connectance may be primarily driven by the infeasibility of having enough species for them210

to all interact uniquely as connectance increases. Because non-unique interactions tend to211

result in competition (Bascompte and Jordano 2007), this can “push” networks towards the212

full-rank configuration (as suggested by the results in fig. 1), thereby maximising complexity213

regardless of connectance.214
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Figure 4: The relationship between the maximum and minimum value of SVD entropy of a
collection of random interaction networks (using simulated annealing) for a given
connectance spanning from 0 to 1 (left panel) and how this relates to the relative
rank deficiency of networks (right panel)
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Figure 5: The relationship between SVD entropy and the nestedness (left panel), spectral ra-
dius (central panel) and connectance (right panel) of ecological networks. Colours
indicate the different interaction types of the networks.

Most elements of network structure capture network complexity215

We find that SVD entropy has a clear negative relationship with nestedness, spectral radius,216

and connectance (fig. 5). As in fig. 3, mutualistic networks tend to be more complex, and217

they also are both sparser and less nested than other types of networks. Bastolla et al. (2009)218

give a convincing demonstration that mutualistic networks are shaped to minimise compe-219

tition – this can be done by avoiding to duplicate overlap in interactions, thereby resulting220

in a network that is close to full rank, and with high SVD entropy. Interestingly, fig. 5 sug-221

gests that both nestedness and connectance measure the lack of complexity in an ecological222

network, which contrasts to how they may commonly be viewed (Landi et al. 2018).223
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Complex networks are not more robust to extinction224

When looking at the relationship between SVD entropy and the area under an extinction225

curve (as a proxy for resilience to extinction) we find differences depending on both the ex-226

tinction mechanism as well as along which dimension the species removal occurred (fig. 6).227

As a whole we do not observe any obvious relationships between SVD entropy and resilience,228

nor for different interaction types. We do however see differences in the resilience of net-229

works depending on how the extinctions were simulated. Generally we see a higher re-230

silience in networks where species of only a specific group are removed or in networks where231

species were either randomly removed or based on an increasing number of interactions.232

As highlighted in fig. 5 SVD entropy can be used as an additional measure of network com-233

plexity. However, as shown in fig. 6, the assumption that network complexity begets re-234

silience to extinction begins to unravel when we use a measure of physical complexity. This235

is in contrast to previous studies that have shown how connectance plays a role in the re-236

silience of networks to extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser,237

and Price 2004). This does not discount the role of using structural measures of network238

complexity (e.g. connectance, nestedness or spectreal radius) as indicators of their resilience239

(although possibly hinting as to why there is no strong emerging consensus as to how struc-240

tural complexity relates to this), but rather points to an erroneous assumption as to what241

aspects of a network we have previously used to define its complexity.242

Conclusion243

We present SVD entropy as a starting point to unifying (and standardising) how we should244

approach defining the complexity of ecological networks. The use of a unified definition will245

allow us to revisit how complexity relates to the ecological properties of networks using a246

standardised method, or further exploring why, despite the strong relationship between the247

physical and behavioural complexity of networks, they seem to be underpinning different248

aspects of network properties. One important result from using SVD entropy is that the249
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Figure 6: The relationship between SVD entropy and the area under an extinction curve (as
a proxy for resilience to extinction) for both different extinction mechanisms (Ran-
dom = the removal of a random species, Decreasing = the removal of species in
order of decreasing number of interactions (i.e most to least number of interac-
tions), Increasing = the removal of species in order of increasing number of inter-
actions) as well as along different dimensions (species groups) of the network (all =
any species, 1 = only top-level species, and 2 = only bottom- level species) Colours
indicate the different interaction types of the networks.
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complexity of ecological networks is indeed immense. This hints at the existence of mech-250

anisms minimizing the overlap in interaction partners within networks, thereby increasing251

complementarity; for this reason, we are hopeful that the analysis of physical complexity252

will lead to emerging questions about what shapes ecological networks.253
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