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Abstract:Quantifying the complexity of ecological networks has remained elusive. Primar-
ily, complexity has been de�ned on the basis of the structural (or behavioural) complexity of
the system. These de�nitions ignore the notion of ‘physical complexity,’ which can measure
the amount of information contained in an ecological network, and how di�cult it would
be to compress. We present relative rank de�ciency and SVD entropy as measures of ‘exter-
nal’ and ‘internal’ complexity respectively. Using bipartite ecological networks, we �nd that
they all show a very high, almost maximal, physical complexity. Pollination networks, in
particular, are more complex when compared to other types of interactions. In addition, we
�nd that SVD entropy relates to other structural measures of complexity (nestedness, con-
nectance, and spectral radius), but does not inform about the resilience of a network when
using simulated extinction cascades, which has previously been reported for structural mea-
sures of complexity. We argue that SVD entropy provides a fundamentally more ‘correct’
measure of network complexity and should be added to the toolkit of descriptors of ecologi-
cal networks moving forward.

Ecologists have turned to network theory because it o�ers a powerful mathematical for-
malism to embrace the complexity of ecological communities (Jordi Bascompte and Jordano
2007). Indeed, analysing ecological systems as networks highlighted how their structure ties
into ecological properties and processes (Proulx, Promislow, and Phillips 2005; Poulin 2010),
and there has been a subsequent explosion of measures that purport to capture elements of
network structure, to be related to the ecology of the system they describe (Delmas et al.
2018). Since the early days of network ecology, ecological networks have been called “com-
plex.” This sustained interest for the notion of complexity stems, in part, from the strong ties
it has to stability (Landi et al. 2018). As such, many authors have looked for clues, in the
network structure, as to why the networks do not collapse (Borrelli 2015; Staniczenko, Kopp,
and Allesina 2013; Gravel, Massol, and Leibold 2016; Brose, Williams, and Martinez 2006).
Yet decades of theoretical re�nements on the relationship between complexity and stability
had a hard time when rigorously tested on empirical datasets (Jacquet et al. 2016); although
ecological networks may be complex, our current measures of complexity do not translate
into predictions about stability.

Surprisingly, complexity itself has proven an elusive concept to de�ne in a rigorous way. It
has over time been de�ned as connectance (Rozdilsky and Stone 2001), as measures of the
diversity of species or their interactions (Landi et al. 2018), or as a combination of species
richness and trophic diversity (Du�y et al. 2007). In short, network ecology as a �eld readily
assumes that because we have more information about a system, or because this system has
more components, or simply because this system can be expressed as a network, it follows
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that the system is complex. But such a diversity of de�nitions, for a concept that is so central
to our quest to understand network stability, decreases the clarity of what complexity means,
and what all of these alternative de�nitions do actually capture. This is a common thread
in some measures of ecological network structure, as has been discussed at length for the
various de�nitions of nestedness (Ulrich, Almeida-Neto, and Gotelli 2009).

None of the previous de�nitions of complexity are formally wrong, in that they do capture
an aspect of complexity that ultimately ties to the behaviour of the system, i.e. its low pre-
dictability over time. Yet Adami (2002) provides a compelling argument for why the com-
plexity of the behaviour does not necessarily re�ects the complexity of the system; in fact,
one would be very hard pressed to think of a more simple system than the logistic map used
by May (1976) to illustrate how easily complexity of behaviour emerges. Rather than yielding
to the easy assumption that a system will be complex because it has many parts, or because
it exhibits a complex behaviour, Adami (2002) suggests that we focus on measuring “physical
complexity,” i.e. the amount of information required to encode the system, and how much
signal this information contains. Complex systems, in this perspective, are those who can-
not easily be compressed - and this is a notion we can explore for the structure of ecological
networks.

Ecological networks are primarily represented by their adjacency matrices, i.e. a matrix in
which every entry represents a pair of species, which can take a value of 1 when the two
species interact, and a value of 0 when they do not. These matrices (as any matrices) can
easily be factorised using Singular Value Decomposition (Forsythe and Moler 1967; Gene
H. Golub and Reinsch 1971), which o�ers two interesting candidate measures of complexity
for ecological networks (both of which we describe at length in the methods). The �rst
measure is the rank of the matrix, which works as an estimate of “external complexity,” in
that it describes the dimension of the vector space of this matrix, and therefore the number of
linearly independent rows (or columns) of it. From an ecological standpoint, this quanti�es
the number of unique “strategies” represented in the network: a network with two modules
that are distinct complete graphs has a rank of 2. The second measure is an application of the
entropy measure of Shannon (1948) to the non-zero singular values of the matrix obtained
through SVD. This so-called SVD entropy measures the extent to which each rank encodes
an equal amount of information, as the singular values capture the importance of each rank
to reconstruct the original matrix; this approach therefore serves as a measure of “internal
complexity.”

In this manuscript, we evaluate both the rank and the SVD entropy as measures of the com-
plexity of ecological networks, by using a collection of 220 bipartite networks from various
types of interaction, sizes, connectances, and environments. We show that while the rank
of the adjacency matrix holds little information, SVD entropy functions as an appropriate
quanti�cation of the complexity of ecological systems. Notably, SVD entropy is an intuitive,
robust, non-structural approach to de�ning the (surprisingly high) complexity of ecological
networks, by relating them to their ‘physical’ as opposed to ‘behavioural’ complexity. In this
process we showcase a breakdown in the assumption that all measures of complexity of net-
works are indicative of their robustness to extinctions. Finally, we show that, despite their
high complexity, observed networks are less complex when compared to pseudo-random
networks, especially for larger networks. We propose that taking a physical approach to
quantifying the complexity of ecological networks is a step in the right direction to unifying
how we de�ne complexity in the context of ecological networks, as it restores other measures
(like connectance and nestedness) to their original role and signi�cation.
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Data and methods

We used all bipartite networks from the web-of-life.es database, taken from the EcologicalNetworks.jl
package (Poisot et al. 2019) for the Julia (Bezanson et al. 2017) programming language. Us-
ing bipartite networks means that interacting species are split into two sets (or interacting
groups) and along di�erent dimensions in the interaction matrix. Thus, columns in the ma-
trix represent one group (or type) of species and rows represent the other group of species
involved in the interaction. Because SVD gives similar results on the matrix and its transpose,
it captures the complexity of both sides of the system at once.

Estimating complexity with rank de�ciency

The rank of A (noted as r = rk(A)) is the dimension of the vector space spanned by the
matrix and corresponds to the number of linearly independent rows or columns; therefore,
the maximum rank of a matrix (M = rkmax(A)) will always be equal to the length of the
shortest dimension of A, which ecologically speaking is the richness of the least species-rich
compartment of the bipartite network (or the richness in the case of unipartite networks). A
matrix is “full-ranked” when r = M , i.e. all of its rows/columns are unique. Matrices that are
not full-ranked are called rank de�cient, and we can measure rank de�ciency using d = M−r .
So as to control for the di�erence in species richness of the di�erent networks, we report the
relative rank de�ciency, i.e. expressed as a ratio between rank de�ciency and the maximal
rank:

D = 1 −

r

M

(1)

This measure returns values between 0 (the matrix is full ranked) and 1−M−1
≈ 1 (the matrix

has rank 1). This serves as a coarse estimate of complexity, as the more unique columns/rows
are in the matrix, the larger this value will be. Yet it may also lack sensitivity, because it im-
poses a stringent test on uniqueness, which calls for more quantitative approaches to com-
plexity.

Estimating complexity with SVD entropy

Singular Value Decomposition (SVD) is the factorisation of a matrix A (where Am,n ∈ B in
our case, but SVD works for matrices of real numbers as well) into the form U ⋅� ⋅V

T . U is an
m×m orthogonal matrix and V an n×n orthogonal matrix. The columns in these matrices are,
respectively, the left- and right-singular vectors of A. � is a diagonal matrix, where �i = Σii,
which contains the singular values of A. When the values of � are arranged in descending
order, the singular values are unique, though the singular vectors may not be.

After the Eckart-Young-Mirsky theorem (Eckart and Young 1936; G. H. Golub, Ho�man, and
Stewart 1987), the number of non-zero entries (after rounding of small values if required due
to numerical precision issues in computing the factorisation) in � is the rank of matrixA. For
the sake of simplicity in notation, we will use k = rk(A)) for the rank of the matrix. Because
only the �rst k elements of � are non-zero, and that the result of the SVD is a simple matrix
multiplication, one can de�ne a truncated SVD containing only the �rst k singular values.

Intuitively, the singular value i (�i) measures how much of the dataset is (proportionally)
explained by each vector - therefore, one can measure the entropy of � following Shannon
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Figure 1: The relationship between network richness and relative rank de�ciency, and SVD
entropy. The di�erent types of interactions are indicated by the colours.

(1948). High values of SVD entropy re�ects that all vectors are equally important, i.e. that the
structure of the ecological network cannot e�ciently be compressed, and therefore indicates
high complexity (Gu and Shao 2016). Because networks have di�erent dimensions, we use
Pielou’s evenness (Pielou 1975) to ensure that values are lower than unity, and quantify SVD
entropy, using si = �i/sum(� ) as:

J = −

1

ln(k)

k

∑

i=1

si ⋅ ln(si) (2)

Results and discussion

Most ecological networks are close to full-rank

The majority (63% of our dataset) of bipartite ecological networks have a relative rank de�-
ciency of 0 (�g. 1), which indicates that all species have di�erent and unique interaction lists.
Interestingly, the networks that had a comparatively larger relative rank de�ciency tended
to be smaller ones. Yet because most of the networks return the same value, matrix rank does
not appear to be a useful or discriminant measure of network complexity. Another striking
result (from �g. 1) is that the SVD entropy of ecological networks is really large – although
the value can range from 0 to 1, all ecological networks had SVD entropy larger than 0.8,
which is indicative of a strong complexity.

As expected following the observation that ecological networks are overwhelmingly full
ranked, we do not see a relationship between SVD entropy and relative rank de�ciency,
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Figure 2: The relationship between SVD entropy and the relative rank de�ciency of di�erent
species interaction networks Colours indicate the di�erent interaction types of the networks.

neither do we observe di�erences between interaction types (�g. 2). Based on these results,
we feel con�dent that SVD entropy provides a more informative measure of the complexity
of ecological networks, and will use it moving forward.

Most elements of network structure capture network complexity

We compared SVD entropy to some of the more common measures of complexity, namely
nestedness (�, following Bastolla et al. (2009)), connectance (Co), and the spectral radius of
the network (�, following Staniczenko, Kopp, and Allesina (2013)). All of these measures
are positively correlated, especially over the range of connectances covered by empirical
bipartite ecological networks.

The nestedness of a network is a measure of the degree of overlap between species links
(or strategies), where larger assemblages are made up of a subset of smaller ones that share
common interactions. Networks with a higher degree of nestedness could be considered
simpler when compared to networks with a lower degree of nestedness. Connectance is
the realised number of interactions (links) in an ecological network and is calculated as the
fraction of the total number of realised interactions (or links) and the maximum number
of possible interactions in a network (Martinez 1992). This has been shown to be a good
estimate of a community’s resilience to perturbation (Dunne, Williams, and Martinez 2002).
The spectral radius of a matrix is the largest absolute value of its eigenvalues, which, in
addition to being presented as a measure of network complexity has also been suggested as
an indicator of the ability of a system to dampen disturbances (Phillips 2011).

We �nd that SVD entropy has a clear negative relationship with nestedness, spectral radius,
and connectance (�g. 3). As in �g. 5, mutualistic networks tend to be more complex, and they
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Figure 3: The relationship between SVD entropy and the nestedness (left panel), spectral
radius (central panel) and connectance (right panel) of ecological networks. Colours indicate
the di�erent interaction types of the networks.

also are both sparser and less nested than other types of networks. Bastolla et al. (2009) give
a convincing demonstration that mutualistic networks are shaped to minimise competition –
this can be done by avoiding to duplicate overlap in interactions, thereby resulting in a net-
work that is close to full rank, and with high SVD entropy. Interestingly, �g. 3 suggests that
both nestedness and connectance measure the lack of complexity in an ecological network,
which contrasts to how they may commonly be viewed (Landi et al. 2018).

Complex networks are not more robust to extinction

One approach to calculating the overall structural robustness of an ecological network is by
simulating extinction events through the sequential removal of species, which allows con-
structing an extinction curve that plots the relationship between species removed and cu-
mulative secondary extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser, and
Price 2004). Extinction events can be simulated in a manner of di�erent ways, either by re-
moving 1) a random individual, 2) systematically removing the most connected species (one
with the highest number of interactions with other species) and 3) the least connected species
(Dunne, Williams, and Martinez 2002). After each extinction event, we remove species from
the network that no longer have any interacting partners, thereby simulating secondary ex-
tinctions. This is then repeated until there are no species remaining in the network. Further-
more, we can restrict extinction events to only one dimension of the interaction matrix, i.e.
removing only top-level or bottom-level species, or alternatively removing a species from
any dimension of the matrix. Extinction curves are then constructed by plotting the propor-
tion of species remaining against those that have been removed; it stands to reason that a
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Figure 4: The relationship between SVD entropy and the area under an extinction curve (as
a proxy for resilience to extinction) for both di�erent extinction mechanisms (Random = the
removal of a random species, Decreasing = the removal of species in order of decreasing
number of interactions (i.e most to least number of interactions), Increasing = the removal of
species in order of increasing number of interactions) as well as along di�erent dimensions
(species groups) of the network (all = any species, 1 = only top-level species, and 2 = only
bottom- level species) Colours indicate the di�erent interaction types of the networks.

�atter curve ‘maintains’ its species pool for a longer number of cumulative extinctions, and
could be seen as more resilient, when compared to a curve that has a much steeper decline.
As per previous studies, we measure the robustness to extinction as the area under the ex-
tinction curve (AUC), calculated using the Trapezoidal rule. AUC values close to 0 means
that a single extinction is enough to collapse the network almost entirely, and values close
to 1 means that most species persist even when the number of extinctions is really high.

When looking at the relationship between SVD entropy and the area under an extinction
curve (as a proxy for resilience to extinction) we �nd di�erences depending on both the ex-
tinction mechanism as well as along which dimension the species removal occurred (�g. 4).
As a whole we do not observe any obvious relationships between SVD entropy and resilience,
nor for di�erent interaction types. We do however see di�erences in the resilience of net-
works depending on how the extinctions were simulated. Generally we see a higher resilience
in networks where species of only a speci�c group are removed or in networks where species
were either randomly removed or based on an increasing number of interactions.

As highlighted in �g. 3 SVD entropy can be used as an additional measure of network com-
plexity. However, as shown in �g. 4, the assumption that network complexity begets re-
silience to extinction begins to unravel when we use a measure of physical complexity. This
is in contrast to previous studies that have shown how connectance plays a role in the re-
silience of networks to extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser,
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Figure 5: The calculated SVD entropy of di�erent interaction networks of di�erent interac-
tion types

and Price 2004). This does not discount the role of using structural measures of network
complexity (e.g. connectance, nestedness or spectreal radius) as indicators of their resilience
(although possibly hinting as to why there is no strong emerging consensus as to how struc-
tural complexity relates to this), but rather points to an erroneous assumption as to what
aspects of a network we have previously used to de�ne its complexity.

Plant-pollinator networks are slightly more complex

Although we don’t observe clear di�erences in the relationship between di�erent interac-
tion types when comparing amongst various measures of complexity, we do �nd that di�er-
ent types of interaction networks have di�ering SVD entropies. When comparing calculated
SVD entropy between interaction types using an ANOVA (after excluding Plant-Ant and
Plant-Herbivore interactions due to their small sample size in our dataset) we �nd a signi�-
cant di�erence between group means (F = 47.047, p < 10−3). A Tukey’s HSD test reveals that
plant-pollinator networks (� = .924) are more complex than both host- parasite networks
(� = .885, p < 10

−3) and seed dispersal (� = .888, p < 10
−3). Host-parasite and seed disper-

sal networks had apparently no di�erence in average complexity (p = .889). These results
suggest that mutualistic networks may be more complex, which matches with previous lit-
terature: these networks have been shown to minimise competition (Bastolla et al. 2009) and
favour unique interactions, thereby increasing network complexity. This speci�c structure
can appear as a side-process of either ecological (Maynard, Serván, and Allesina 2018) or
evolutionary (Valverde et al. 2018) processes, but nevertheless leaves a profound imprint on
the complexity of the networks.
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Figure 6: The relationship between the maximum and minimum value of SVD entropy of
a collection of random interaction networks (using simulated annealing) for a given con-
nectance spanning from 0 to 1 (left panel) and how this relates to the relative rank de�ciency
of networks (right panel)

Connectance constrains complexity (but also rank de�ciency)

We used simulated annealing (Kirkpatrick 1984) to generate networks with the highest, or
lowest, possible SVD entropy values. From a set network size (30 species, 15 on each side)
with a random number of interactions (spanning the entire range from minimally to max-
imally connected), we reorganised interactions until the SVD entropy was as close to 0 or
1 as possible. We repeated the process 25 times for every number of interactions. We also
measured the relative rank de�ciency of the generated networks. This allows identifying the
boundaries of both measures of complexity.

By exploring the minimal and maximal values of SVD entropy for networks of a given size,
we can show that the range of complexity that a network can express varies as a function
of connectance (�g. 6). As reported by Poisot and Gravel (2014), there is no variation when
the networks are either minimally or maximally connected, but any connectance in between
can give rise to networks of varying complexities. This being said – minimally connected
networks always show the largest complexity, and an increase in connectance will always
decrease complexity. Interestingly, this relationship is monotonous, and there is no peak of
complexity where the maximal number of possible networks combination exists, i.e. around
Co ≈ 0.5 (Poisot and Gravel 2014). This is an intriguing result – ecological networks are
indeed extremely complex, but whereas ecologists have usually interpreted connectance as
a measure of complexity, it is in fact sparse networks that are the complex ones, and con-
nectance acts to decomplexify network structure.

The right panel of �g. 6 shows the average rank de�ciency of networks for which SVD en-
tropy was either maximised or minimised. Complex networks (meaning, maximally com-
plex given their connectance) had a lower de�ciency, indicating that except at extreme con-
nectances, there are combinations of networks for which all species can interact in unique
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ways – this is a natural consequence of the results reported by Poisot and Gravel (2014),
whereby the number of possible networks is only really constrained at the far ends of the
connectance gradient. Minimally complex networks, on the other hand, saw their rank de-
�ciency increase with connectance. This hints at the fact that the decrease in complexity
with connectance may be primarily driven by the infeasibility of having enough species for
them to all interact uniquely as connectance increases. Because non-unique interactions tend
to result in competition (Jordi Bascompte and Jordano 2007), this can “push” networks to-
wards the full-rank con�guration (as suggested by the results in �g. 1), thereby maximising
complexity regardless of connectance.

Larger networks are less complex than they could be

To assess whether ecological networks are more, or less, complex than expected, we applied
two null models that generate pseudo-random networks: Type I (Fortuna and Bascompte
2006), where interactions happen proportionally to connectance, and Type II (J. Bascompte
et al. 2003), where interactions happen proportionally to the joint degree of the two species
involved. The models are equivalent to, respectively, the Erdos-Renyi and Con�guration
models (Newman 2010), both of which are maximum entropy generative models that re�ect
global (Type I) or local (Type II) constraints (Park and Newman 2004). We generated 999
samples for every network in the dataset, and measured the z-score of the empirical network
as

zi =

xi − �i

�i

(3)

where xi is the SVD entropy of network i, and �i and �i are respectively the average and
standard deviation of the distribution of SVD entropy under the null model. Negative values
of zi re�ect a network that has lower entropy than expected under the assumptions of the
null model. In �g. 7, we show that despite high absolute values of SVD entropy, ecological
networks are not as complex as they could be. This is consistently true for both null models,
and for the three types of networks that had a su�cient sample size.

Previous work on random networks (using a model that is essentially the Type I null model)
shows that su�ciently large networks achieve maximal von Neuman entropy (Du et al. 2010;
Passerini and Severini 2011). In �g. 8, we compare the logistic of zi to the richness of the
network. Transforming to the logistic smooths out di�erences in absolute value that are
apparent in �g. 7, and projects the values in the unit range, with values above 0.5 being
more complex than expected. It is quite obvious that, across both models and the three
types of interactions, only smaller networks achieve higher entropy. Barbier et al. (2018) and
Saravia et al. (2018) have previously noted that the early stages of network assembly usually
result in severely constrained networks, due to the conditions required for multiple species
to persist; as networks grow larger, these constraints may “relax,” leading in networks with
more redundancy, and therefore a lower complexity.

Conclusion

We present SVD entropy as a starting point to unifying (and standardising) how we should
approach de�ning the complexity of ecological networks. The use of a uni�ed de�nition will

10



Figure 7: The counts of the zi-scores of di�erent types of networks for both Type I and Type
II null models. Negative zi-scores indicate networks with an SVD entropy that is lower i.e.
less complex than expected
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Figure 8: The logistic zi-scores of di�erent types of networks for both Type I and Type II null
models compared to the species richness of the network. Where zi-scores below 0.5 indicate
networks with an SVD entropy that is lower i.e. less complex than expected
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allow us to revisit how complexity relates to the ecological properties of networks using a
standardised method. One important result from using SVD entropy is that the complexity
of ecological networks is indeed immense, yet despite this high complexity networks are still
not reaching their maximum potential complexity. We suggest that the assembly dynamics
of networks may explain this observation but this still raises the question as to why larger (or
more mature) networks are not ‘maintaining’ their expected complexity and prompts further
exploration as to the role of ecological assembly in structuring networks.
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