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Abstract:  10 

1. Advances in datalogging technologies have provided a way to monitor the movement of 11 

individual animals at unprecedented spatial and temporal scales, both large and small. 12 

When used in conjunction with social network analyses, these data can provide insight 13 

into fine scale associative behaviors.  The variety of technologies demand continuous 14 

progress in workflows to translate data streams from automated systems to social 15 

networks, based on biologically relevant metrics.  16 

2. Here we present a workflow for generating flexible association matrices from automated 17 

radio-telemetry data that can be parsed into both spatial and temporal dimensions. These 18 

can then be used to generate and compare social networks across space and time. 19 

3. We illustrate this workflow using data collected from an automated telemetry study of 20 

acorn woodpeckers (Melanerpes formicivorus), a cooperatively breeding bird. The data 21 

were collected continuously over two years at base stations placed within social group 22 

territories. We use this system to demonstrate how this flexible data structure can be used 23 

to answer a number of biological questions, specifically 1) how assortative are social 24 

associations at the population scale, 2) how do association patterns among territory 25 

visitors vary across territories, 3) and how does seasonality affect assortative affiliation 26 

within groups? 27 

4. This flexible method allows one to generate social networks that can be used to ask a 28 

variety of biological questions pertinent to a wide range of animal systems, exploiting the 29 

investigative power that can be gained by using automated radio-telemetry in conjunction 30 

with social network analyses. 31 
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Introduction: 35 

Social organization, the patterns of associations among individuals in a population, has 36 

important effects on individual fitness (Wolf, Brodie III, & Moore, 1999; Kappeler, 2019; 37 

Snyder-Mackler et al. 2020). A major challenge in the study of social organization has been the 38 

logistics of collecting data on social interactions and associations in situ. Rapid advances in 39 

automated datalogging technology, however, have recently ushered in an age of “reality mining” 40 

of animal sociality (Krause et al., 2013) with exponential decreases in the size of animal tracking 41 

devices. These advances have enabled pioneering studies measuring movement and associative 42 

patterns in increasingly smaller organisms at finer spatial and temporal scales over extended 43 

periods of time.  44 

Concomitant with technological advancements, the application of social network analyses 45 

to animal social behavior has progressed rapidly. Such approaches are now routinely used to 46 

quantify and analyze patterns and dynamics of social associations across space and time (Pinter-47 

Wollman et al., 2014; Farine & Whitehead, 2015). The integration of automated datalogging 48 

with more advanced approaches to social network analyses has led to key discoveries such as the 49 

rapid spread of experimentally introduced information through wild populations (Aplin et al., 50 

2015), the reorganization of social networks in response to a resource pulse (St Clair et al., 51 

2015), and fine-scale dynamics in social contagion of cooperation (Dakin & Ryder, 2018). 52 

Critical to these advances in our understanding of social dynamics in nature is the ability to 53 

flexibly slice and combine data on social associations and interactions collected at different sites 54 

across time.   55 

Because different technologies collect a variety of information, there is no one-size-fits-56 

all method for converting empirical data into social networks (Smith & Pinter-Wollman In 57 



Press). Types of automated datalogging systems that have been used to build social networks of 58 

free-living animals include: (1) geographic positioning system tags (Sih et al., 2018), (2) 59 

proximity loggers (St. Clair et al., 2015), (3) radio frequency identification (RFID) tags (Aplin et 60 

al., 2015), and (4) automated telemetry systems (Dakin & Ryder 2018, 2020). Methodological 61 

standards for inferring social networks from data have been established for some methods such 62 

as RFID (Psorakis et al., 2015) but not others. Here, we focus on the methodological challenges 63 

associated with automated telemetry systems and their use in social network analyses. 64 

Automated telemetry systems typically use tags that emit coded identifiers in parallel 65 

with receivers that record signals from multiple individuals simultaneously (Pegan et al., 2018). 66 

These tags are lightweight and have relatively long battery life, particularly when they integrate 67 

solar charging capacity. Such automated telemetry systems usually scan multiple individuals 68 

within short temporal spans (e.g., seconds) from fixed receivers, often referred to as “base 69 

stations”, that monitor tags over the landscape using either directional or omni-directional 70 

antennas. Automated telemetry typically generates large volumes of data based on proximity of 71 

individuals to base stations, thus significantly expanding the number of individuals that can be 72 

tracked, spatial extent of monitoring, and duration of data collection. Such automated telemetry 73 

systems have wide applications for monitoring vagile organisms, particularly for environments 74 

and contexts where direct observation is difficult (e.g., in marine environments [Finn et al., 75 

2014], migratory species [Lefevre & Smith, 2020; Baldwin, Leap, Finn, & Smetzer, 2018; Bird 76 

Studies Canada, 2019], and for territorial organisms that live in spatially large and socially 77 

complex systems with substantial intra-day movement (Aplin et al., 2015; Barve et al., 2020a). 78 

Tags differ in their signal attenuation, and in some cases, strength of signal can be used to infer 79 

spatial proximity to detection stations (Barve, Lahey, Brunner, Koenig, & Walters, 2020b). 80 



While automated telemetry systems have great potential for the study of social networks 81 

in free-living animals, the ability to infer social patterns depends on key factors such as spatial 82 

proximity, tag detection distance (Mourier, Bass, Guttridge, Day, & Brown, 2017), and, 83 

critically, the spatial arrangement of base stations with respect to ecologically relevant features in 84 

the landscape. Moreover, an ideal workflow would facilitate flexible downstream analyses to 85 

examine complex spatial and temporal social dynamics. Here, we develop and implement a 86 

method for generating a flexible data structure from which one can construct and analyze social 87 

network dynamics based on detections of individuals at group-defended home territories. We 88 

describe how data on the duration of association at a particular territory can be converted to a 89 

temporal association index to be used in social network analyses. We use data from a 2-year 90 

automated telemetry study of social associations in a well-studied population of a cooperatively 91 

breeding bird, the acorn woodpecker (Melanerpes formicivorus). While these birds live in stable 92 

cooperatively breeding groups year-round, both breeders and helpers make multiple daily 93 

prospecting forays to other territories (Barve et al. 2020a), and thus social associations occur 94 

both at home territories and during forays. We demonstrate that this approach allows one to parse 95 

out patterns of association across a variety of social (e.g., within a home territory vs. prospecting 96 

for breeding vacancies), temporal (e.g., across days or seasons), and spatial (e.g., at different 97 

territories spread over the study area) contexts. Using this approach, we provide proof-of-concept 98 

analyses that consider these contexts in network structure.  99 

 100 

Study System 101 

Social behavior of acorn woodpeckers has been studied at Hastings Reservation (36.387° N, 102 

121.551° W) in central coastal California, USA since 1968 (MacRoberts & MacRoberts, 1976; 103 



Koenig & Mumme, 1987). Based on previous genetic work (Dickinson et al. 1995; Barve et al. 104 

2019), adults on their natal territory with their social / genetic parents are considered 105 

nonbreeding helpers, whereas group members living outside their natal territories, or living with 106 

non-related birds of the opposite sex, are considered putative breeders (Koenig, Haydock & 107 

Stanback, 1998). Since 1973, the majority of the woodpecker population has been color-banded 108 

(N = 6,404) and censused bimonthly to determine group composition (Koenig, Walters, & 109 

Haydock, 2016).  110 

Acorn woodpeckers live in polygynandrous social groups with nonbreeding helpers of 111 

both sexes (Koenig et al., 2016). Cobreeding males and females are closely related within sex, 112 

and mating outside the group or between breeders and helpers is exceptionally rare (Dickinson, 113 

Haydock, Koenig, Stanback, & Pitelka, 1995; Barve et al., 2019b). Helpers can become breeders 114 

by inheriting their natal territories after the death or disappearance of all opposite sex social 115 

parents, by dispersing to a territory with a breeding vacancy, or by dispersing and founding a 116 

new territory (Koenig, Hooge, Stanback, & Haydock, 2000). Females are the dispersive sex, 117 

dispersing farther than males (Koenig, Van Vuren, & Hooge, 1996); males are more likely to 118 

inherit natal territories than are females, and they remain philopatric for longer than females 119 

(Koenig, Haydock, & Stanback, 1998).  120 

Acorn woodpeckers are highly reliant on stored acorns for overwinter survival, and thus 121 

territory quality is typically quantified by the size of the “granary”, a specialized acorn-storage 122 

structure that may consist of thousands of individual holes in which acorns are placed (Koenig, 123 

Walters, Stacey, Stanback, & Mumme, 2020). Acorns are stored in the autumn, mostly harvested 124 

from trees within a 150-m radius around the granary (Koenig, McEntee, & Walters, 2008). 125 

Because granaries provide survival and reproductive benefits to group members (Koenig, 126 



Walters, & Haydock, 2011), they are zealously guarded and fought over (Barve et al., 2020b). 127 

Granaries thus represent an ecologically important resource within defended territories where 128 

group members often spend a significant portion of time and where social interactions are most 129 

likely to occur (Mumme & de Queiroz 1985). The acorn woodpecker breeding season for the 130 

Hastings population is primarily from April to July but may extend into early November in years 131 

with warm summers and large acorn crops (Koenig et al., 2020). 132 

Acorn woodpeckers track associations between individuals outside their social groups 133 

(Pardo et al., 2018; Pardo, Hayes, Walters, & Koenig, 2020), and both breeders and helpers make 134 

multiple extra-territorial forays almost daily. Foray distance can be over 4 km and individuals 135 

may spend several hours, or even days, on forays (Barve et al., 2020a). This suggests that the 136 

motives behind foray behavior may go beyond merely finding dispersal opportunities but may 137 

also include information-gathering and maintaining social associations with other birds in the 138 

extended social “neighborhood” (Barve et al., 2020a).  139 

 140 

Materials and Methods: 141 

Automated radio-telemetry system 142 

A total of 132 acorn woodpeckers were caught opportunistically and fitted with dorsally 143 

mounted solar-powered nanotags (Fig. 1a; Pegan et al., 2018) with leg loop harnesses adjusted 144 

for body size (Fig. 1b; Rappole & Tipton, 1991). All tags weighed less than 1% of body mass 145 

and all birds tagged were of known sex and status within each social group. Thirty nine base 146 

stations (Fig. 1c, d) were placed at the center of active territories, generally near the granary. 147 

While four were placed within the centroid of a cluster of territories where territories were < 100 148 

m apart. Thus, we tracked woodpeckers at 51 territories using 43 base stations. Tags were 149 



programmed to produce an encoded 64-bit radio ping every 1.5 sec when exposed to sunlight, 150 

even in cloudy weather. Here, we use data collected at base stations between July 1, 2017 and 151 

March 19, 2019. 152 

 153 

Raw telemetry data collection, collation, and cleaning  154 

Raw data from each base station were stored in removable memory drives as data files (.txt 155 

format). Base stations were programmed to create a data file at every 15-min interval irrespective 156 

of detection of tagged birds. Each data file included all detections of tagged birds within the 157 

interval, along with the signal strength of each detection. Thus, for each day, the number of data 158 

files created by each base station varied relative to day length. Data from each base station were 159 

retrieved approximately every 7 days. Date-time synchrony among the entire array was checked 160 

Figure 1: Automated radio-telemetry was used to study acorn woodpecker behavior. Individuals were 
fitted with solar-powered radio tags (a) mounted dorsally (b). Autonomous base stations, usually placed 
near woodpecker granaries, detected all radio-tagged woodpeckers in the vicinity (c). Base stations were 
stratified across appropriate habitat within the study area at Hastings Natural History Reservation in 
Carmel Valley, California (d). Inset map shows approximate location of the study area in California. 
 



and maintained to within 30 sec each week. This system, thus, allowed for the simultaneous and 161 

continuous tracking of all tagged birds during daylight hours.  162 

Collating raw data files for analysis 163 

We used the R (R Core Team, 2020) package tidyverse (Wickham, 2017) to collate all detections 164 

from all base stations into a single large dataset (.csv). Each row in the dataset represented a 165 

single detection of a bird at a particular base station with its associated date, time, and high 166 

signal-strength stamp. This dataset was then manipulated to retain only those detections where 167 

the bird was detected with sufficient signal strength (equivalent to a distance ≤ 100 m from the 168 

base station, N=3116947 detections). This signal strength threshold determined with high 169 

certainty that an individual was closer to that particular base station than any other in the array 170 

(Barve et al., 2020b). Other demographic attributes such as sex and social status of each 171 

individual were also coded within the dataset for each detection. We provide an annotated R 172 

script (Supplementary Material S2) for the code associated with collating, cleaning, and 173 

manipulating the dataset.  174 

 175 

Converting point detections to time windows of presence 176 

The first hurdle to converting raw detection data to social association networks is to establish a 177 

criterion for inferring when any given individual is present within an ecologically relevant space 178 

where associations may occur. If tag detections were perfect, this would entail finding start and 179 

end times of each temporal window during which tags were detected, based on signal interval 180 

(i.e. the tag ping interval). Field conditions, however, introduce several sources of error in tag 181 

detection, such as signal obstructions, signal interference, or changes in ping rates because of 182 

inconsistent power issues (especially for solar powered tags that may not be exposed to the sun). 183 



Thus, the challenge is to define a threshold such that: (a) detection intervals (i.e., time interval 184 

between pings) below this threshold are considered false negatives (i.e., the individual was 185 

present in the territory but not detected) and (b) detection intervals above this threshold are 186 

considered true negatives (i.e., the individual was not in the territory). This threshold should be 187 

set based on the specification of the tags, known sources of detection error, the biology of the 188 

species being tracked, and the study question at hand. 189 

To determine the threshold criterion for our study, we first manually examined subsets of 190 

the raw detection data using accumulation curves of detection intervals (see Supplemental 191 

Materials). When tags were operating normally, most detection intervals occurred within a few 192 

seconds, indicating no or few detections were missed. However, some tags exhibited periods 193 

during which pings were detected at regular intervals longer than 1.5 sec, suggesting power 194 

issues, perhaps due to insufficient charging and / or low light levels that affected solar gathering 195 

ability. These delays in detection intervals never exceeded 40 sec. We conservatively set the 196 

detection interval threshold to 60 sec and considered lags longer than this to be evidence that an 197 

individual left the territory (see Supplemental Materials). In other words, we inferred presence 198 

whenever a tag was detected within 60 sec at a signal strength indicating the bird was within the 199 

100 m detection range. Conversely, if a detection interval was > 60 sec, we concluded that the 200 

bird was outside of the 100-m detection range during that time. With this criterion, there is a 201 

possibility that some short-distance movements away from the territory that lasted under 60 sec, 202 

such as a short foraging bout, were missed. Thus, while these detection criteria may not be 203 

appropriate for assessing such brief movements, we feel it is appropriate for estimating 204 

association between individuals at territories within the acorn woodpecker system. For other 205 

study systems, the appropriate threshold for inter-detection interval and spatial detection 206 



threshold will depend on the hardware, behavior of the organism, as well as the question of 207 

interest.  208 

Using the 60-sec threshold, we converted the raw point detections (Fig. 2a) to temporal 209 

windows of presence at a given territory (Fig. 2b). Thus, this dataset consisted of information on 210 

individual, territory location, date, and start time and end time (in seconds) for each temporal 211 

window. By using this approach, we were able to reduce the data from > 10 million raw 212 

detections to approximately 2.5 million lines of data.  213 

 214 

Figure 2: Visualization of the tag detection data at a given territory as point detections (a) to time 
windows of presence (b) at a single territory. The data are illustrated for all individuals (indicated along 
the y-axis) detected in a single 2-hour period. 
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Creating a four-dimensional array of co-presence for the entire dataset 215 

Using the temporal presence windows (Fig. 2b, Fig. 3a), we calculated the timing and duration of 216 

overlap between every bird dyad at each territory on a given date. To do this, we created a time 217 

(sec)-by-individual matrix of presence/absence of N individual for every second of each 218 

observation day at each territory (Fig. 3b). We then multiplied this matrix with its transpose to 219 

create an N x N co-presence matrix (Fig. 3c). The diagonal of this matrix was the total number of 220 

seconds each individual was present at the territory on that day, and the off-diagonal elements 221 

Figure 3: Visualization of the workflow. The time window data (a) shows the start and end times (in 
seconds in the day) of the periods when an individual was present near a given base station. We then 
converted this data for a given station on a given day into a fine-grained presence matrix where each 
row was a second in the day and each column an individual (b). Each cell was given a value of 1 if 
the individual was present at the station in that second, and 0 if not. We then converted this 
information into a co-presence matrix for a given station on a given day (c). Finally, we conducted 
the same routine for all stations on all days and arranged them to form a 4-dimensional array of co-
presence of individuals across all stations and all days (d). The final array had the dimensions N x N 
x S x T, where N = number of individuals, S = number of sites, and T = number of days. 



tabulated the number of seconds that each pair of individuals in the population was present at a 222 

given territory / station together on a particular day.  223 

We calculated co-presence matrices for each base station and for each day and stacked 224 

these N x N matrices of co-presence for each of S stations into a three-dimensional array (N x N x 225 

S). These daily co-presence arrays were stacked for all T days of the study to create a four-226 

dimensional array (N x N x S x T; Fig. 3d). This array contained the number of seconds that 227 

every pair of individuals were together across the entire study period, organized by stations and 228 

days.  229 

Once the 4-dimensional array of co-presence was created, we sliced the data based on 230 

base station and day, allowing us to constrain the data to certain base stations or certain days. 231 

Thus, this data structure preserved flexibility for downstream analyses such that analyses could 232 

be conducted on data from any set of days and any set of base stations. 233 

 234 

Calculating a temporal association index to generate association networks 235 

From a given set of co-presence matrices across sites and days, we generated a temporal 236 

association index for each dyad. Based on a Simple Ratio Index (SRI: Cairns & Schwager, 237 

1987): 238 

𝑆𝑅𝐼 = !
!"#!""#!"#"	

 , 239 

where x is the number of sampling periods in which the dyad A and B were associated, yA is the 240 

number of sampling periods where A was observed but not B, yB is the number of sampling 241 

periods where B was observed but not A, and yAB is the number of sampling periods where both 242 

A and B were observed but not associated. We adapted this metric to an index of temporal 243 

duration of association at a given location, which we term temporal SRI: 244 



𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑆𝑅𝐼 = %#
%#"%$!"%$"

 , 245 

where Tx is the duration (sec) that the dyad (A and B) were both present at the same site, and TyA 246 

was the duration that A was present but not B, and TyB was the duration that B was present but 247 

not A. Thus, this temporal SRI represents the number of seconds two individuals co-occurred 248 

within the same territory, divided by the number of seconds that each individual was detected at 249 

any territory. This measure duly serves as edge weights in a social network.  250 

 251 

Generating separate social networks based on spatial context or seasons 252 

To make networks based on particular locations or dates, one can simply restrict the 4-253 

dimensional array to slices that correspond to locations or dates of interest. One can then sum the 254 

N x N co-presence matrices for the different stations (S) and times (T) to generate a co-presence 255 

matrix of interest. From this co-presence matrix, for each set of locations and time, one can 256 

calculate temporal-SRI indices to generate an adjacency matrix, which defines the nodes and 257 

edges of each social network.  258 

We tested three proof-of-concept questions to show how one can flexibly generate social 259 

networks at particular sets of locations or dates and demonstrate how these results can provide 260 

novel insights into context-specific social dynamics. We investigated 1) whether group members 261 

associated more strongly than non-group members overall, 2) whether patterns of associations 262 

among visitors varied by territory, and 3) whether patterns of association between breeders and 263 

helpers within groups changed across the annual cycle.  264 

To ask whether patterns of associations are dependent on group membership (Question 265 

1), we first compared the mean association index among members of the same group versus 266 



members of different groups. We then measured the assortment coefficient (Newman, 2002; 267 

Farine, 2014), using group membership as the node attribute and edge weights. The assortment 268 

coefficient, r, can range from -1 in which associations occur only between nodes that were 269 

different, such as members of different groups, to 1 in which associations occur only between 270 

nodes that were the same, such as members of the same group. The assortment coefficient is 0 271 

when associations occur randomly with respect to the trait of interest. Because acorn 272 

woodpeckers live in stable, cooperatively breeding groups, we expected that association indices 273 

would be greater among members of the same social group, and that the assortment coefficient 274 

would be >0.  275 

To ask whether patterns of associations between visitors depended on the territory being 276 

visited (Question 2), we restricted the data to detections of birds outside their own home territory 277 

(i.e., during forays). We then calculated associations between visitors at particular territories. We 278 

use spatially explicit network visualizations to illustrate variations in the patterns of connection 279 

between visitors from different home groups at each territory. We expected factors such as 280 

territory quality, home group size, or number of adjacent territories would cause social network 281 

structure to vary by focal territory location; however testing specific hypotheses about the cause 282 

of spatial variation was beyond the scope of this study and not pursued. 283 

To ask whether patterns of associations between breeders and helpers within groups 284 

changed across time over the annual cycle (Question 3), we restricted the data to associations 285 

that occurred between individuals only at their own home territories and partitioned the data into 286 

temporal windows that corresponded roughly with changes in breeding phenology of acorn 287 

woodpeckers in our study population. The breakdown of seasons were: January – March (early 288 

non-breeding season), April – July (main breeding season), August – September (secondary  289 



breeding season), and October – December (early non-breeding season). We then measured the 290 

assortment coefficient of the network (see above) with breeder status (breeder versus helper) as 291 

the node attribute. We expected that there would be stronger assortment by breeding status 292 

during the breeding seasons.  293 

 294 

RESULTS 295 

1. Patterns of associations based on group affiliation and breeding status 296 

Our results show that the acorn woodpecker social network was highly structured based on social 297 

group membership (Fig. 4), a finding consistent with their maintenance of year-round 298 

Figure 4: The total aggregated social network, displayed using a spatial layout (a) and a force-
directed network layout (b). In each figure, each node represents a tagged bird, and the edges connect 
individuals that were detected at the same territory at the same time. The edge widths are 
proportional to the association index, which represents the number of seconds that two birds were 
detected at a territory, divided by the number of seconds that either or both birds were detected at any 
territory. The nodes are colored to reflect distinct social groups, and groups that are spatially 
adjacent have similar colors. In the spatial layout (a), nodes (individuals) are arranged at their home 
territory. In the force-directed layout (b), nodes that are more tightly linked together are placed 
closer together using the algorithm by Fruchterman and Reingold (1991). In this layout, we discarded 
the lowest 10% of edges based on edge weights for illustration purposes. This layout shows that 
individuals from the same group (same color) or adjacent groups (similar colors) are often linked 
tightly, though it is clear that there are many connections between members of different groups. 
Individuals at the periphery of the network are connected by very weak edges. 



cooperative social groups (Koenig et al., 2016). We also found substantial associations between 299 

groups when individuals engaged in forays (Barve et al., 2020a) to other group territories (as 300 

evidenced by edges crossing territories in the network in the spatial layout (Fig. 4a), and by 301 

clustering of nodes of different colors when using a layout based on patterns of social 302 

connections (Fig. 4b). In the total aggregated network (i.e., including all associations at home 303 

and during forays), mean (± SD) edge weight among members of a social group (0.097 ± 0.105) 304 

was greater than mean edge weight among members of different social groups (0.007 ± 0.020). 305 

Accordingly, there was high assortment by home group (r = 0.321 ± 0.029), meaning individuals 306 

associated more with members of the same group.  307 

2. Patterns of associations during extra-territorial forays varies by territory 308 

 Acorn woodpeckers of both sexes and breeding status make multiple forays to other 309 

territories each day (Barve et al., 2020a). Fig. 5a-c shows the patterns of associations between 310 

woodpeckers during such forays, where individuals from up to two different home territories 311 

may associate at a third territory they were visiting. Moreover, these patterns of associations 312 

between visiting birds differ among territories, exemplifying how the spatial and ecological 313 

contexts associated with each territory can affect social network structure. In this example, we 314 

have chosen to display the patterns of associations at three adjacent territories (Fig. 5d). All three 315 

territories received visitors from both near and far territories (shown by colors of nodes, with 316 

spatial locations of the bird’s home territory shown in Fig. 5d). Some visitors formed tight 317 

clusters based on their group identity at some territories, as in Fig. 5a where members of the 318 

same group made forays to the focal territory together, while other dyads did not (Fig. 5b,c). 319 

Visitors seemed to attend some territories alone (i.e., many visitors were not associated with 320 

other visitors as in Fig. 5b), while some territories hosted clusters of visitors (i.e., visitors formed 321 



dense connections as in Fig. 5c). There are many other patterns that can be explored with such 322 

territory-specific social networks, but an exhaustive examination of all patterns is beyond the 323 

scope of this study.  324 

3. Patterns of associations within groups change across the annual cycle 325 

Figure 5: The social network of visitors differed dramatically by spatial context—i.e., the territory 
being visited. In each social network (a–c), each node represents a bird, with the color representing 
their social group membership. The color of each home group is represented on the spatial map of 
base stations (d) where the territories being considered are shown as asterisks (?). Individuals that 
belong to the home group of the territory being visited are represented as squares.  

 



As an illustration of how one can use automated radio-telemetry data to explore temporal 326 

dynamics of social networks, we examined how patterns of associations between breeders and 327 

helpers within social groups changed between seasons. Restricting the data to only associations 328 

between individuals while they were at their home group, we found substantial association by 329 

social status, and further, that this pattern fluctuated across the annual cycle, with lower 330 

assortment among breeders in the non-breeding season (Oct–Dec and Jan–Mar: Fig. 6). Again, 331 

there are many specific hypotheses we could pursue here (e.g., sex differences in assortment 332 

patterns), but testing of specific hypotheses were beyond the scope of this study. 333 

 334 

Figure 6: Assortment of associations at home territory by breeding status across seasons. 
The y-axis shows the coefficient of assortment by breeder status, which can vary from -1 
(associations occur exclusively between individuals of different status) to 1 (associations 
occur exclusively between individuals of the same status). Assortment of 0 indicates 
associations are random with respect to breeder status. One can see that assortment patterns 
are always positive, and the degree of assortment fluctuates across the year, peaking during 
the breeding season (April–July and August–September) and dropping during the non-
breeding season (October–December, January–March). Error bars indicate standard error 
estimated using the jackknife method. 
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Discussion: 335 

Here we present a method for collating data from automated telemetry systems into a 336 

flexible format for generating spatially and temporally explicit social networks using an 337 

association index that measures the number of seconds that two individuals spent together at a 338 

location, while accounting for the total time either individual was detected anywhere within the 339 

base station array. Our approach assumes that base stations are placed within ecologically 340 

relevant locations such as within defended territories, at display or lekking sites, or other 341 

locations where individuals will frequently encounter one another, such as feeders, watering 342 

holes, or foraging patches.  343 

Using an array of base stations that are embedded in ecologically important locations for 344 

a focal species is critical for understanding the behavioral context of the social network. By 345 

placing base stations at relevant locations within the landscape, hypotheses for when, why, and 346 

with whom animals associate can be formulated and tested. Without this meaningful link 347 

between co-occurrence and location, the ecological contexts of social networks cannot be 348 

established, and the benefits gained from high resolution data are lost. In this study, we used the 349 

example of a social system of cooperatively breeding acorn woodpeckers, with base stations 350 

placed within defended group territories. Because this work was part of an ongoing long-term 351 

study of this population, we also had independent longitudinal data on social group composition, 352 

including breeder / helper status. This framework allowed us to use the automated telemetry data 353 

to separate associations between group members of different social status and sex at their home 354 

territory from associations that occurred during frequent forays where individuals visited other 355 

territories (Barve et al. 2020a). Thus, we could show that the social network of acorn 356 

woodpeckers was characterized by both strong associations within social groups, but also an 357 



extensive set of associations between members of different groups that co-occur during forays to 358 

visit other territories. Our approach also allowed us to examine the structure of associations 359 

between visitors across different territories, and the temporal changes in social dynamics within 360 

social groups across the annual cycle. Other researchers could adapt this same approach to ask 361 

questions specific to a particular system. For example, Dakin & Ryder (2018, 2020) used a 362 

similar automated telemetry system to study the social network dynamics of cooperatively 363 

displaying wire-tailed manakins (Pipra filicauda). In those studies, the base stations were placed 364 

within display sites, and signal strength was calibrated to a much smaller spatial scale than used 365 

in our study, allowing them to infer instances of cooperative displays that occurred on a single 366 

branch.   367 

We were able to collate >10 million rows of data, collected continuously over nearly 2 368 

years, to construct a dataset that allowed us to incorporate flexible and dynamic analyses of 369 

social networks across both space and time. Despite the size of this dataset, the workflow for 370 

network construction we describe was conducted on a laptop computer (Macbook Pro 3.1GHz, 371 

8GB RAM; see Supplemental Material for code scripts). The key features of our data structuring 372 

approach included: (1) the reduction of raw detection data into temporal windows of presence of 373 

an individual at a location, (2) the use of a simple 4-dimensional array of association (in seconds) 374 

between individuals for a given date and location, and (3) the use of the temporal SRI association 375 

index, which described the cumulative strength of association between individuals, while 376 

accounting for the amount of time each individual was detected. Each of these key features has 377 

both pros and cons, and the details of these features can and should be customized for each 378 

study. 379 



The first feature of our data structuring approach, the reduction of detection data into 380 

temporal windows relies on a threshold method for inferring when an individual is present or 381 

absent from within a given detection region. This method is simple to implement and has the 382 

major benefit of dramatically reducing the size of the dataset to make downstream analyses more 383 

manageable—an important consideration with automated telemetry systems that generate very 384 

large datasets. Such an approach, however, is also prone to both false negatives (e.g., classifying 385 

an individual as absent from the detection region when inter-detection interval is increased due to 386 

obstruction of signal or tag error) and false positives (e.g., inferring an individual was present in 387 

the detection region when it had briefly left the area). While more sophisticated methods that 388 

avoid arbitrary thresholds to infer social behavior are available for some automated datalogging 389 

approaches, such as Gaussian mixture models available for RFID studies (Psoriakis et al. 2015), 390 

the volume of data generated by long-term automated telemetry makes such approaches 391 

challenging to implement without incurring large investments of time. Careful selection of 392 

appropriate threshold values to manage potential false negative or false positive rates need to be 393 

balanced, given the animal system, the distribution of base stations, and the research questions 394 

being addressed, factors which will alter the relevant duration of the threshold.  395 

Our method for collating data on the presence of individuals at territories into a 4-396 

dimensional array of co-presence across space and time provides flexibility for examining 397 

temporal and spatial dynamics of social network structure. Maintaining this flexibility is 398 

important because (i) social associations occur in space, and thus the spatial context of 399 

associations (i.e., where the associations occur) is critical to understanding the ecological 400 

underpinning of social networks (Wolf & Trillmich, 2018; Spiegel, Sih, Leu, & Bull, 2018), (ii) 401 

social networks are inherently dynamic, with ever-changing patterns of social connections across 402 



time (Blonder, Wey, Dornhaus, James, & Sih, 2012; Pinter-Wollman et al., 2014; Shizuka & 403 

Johnson, 2020). Combined with a long-term dataset on ecological and social attributes of group 404 

territories such as territory quality, group size, and group membership, there is great scope for 405 

exploring the ecological underpinnings of how social interactions are distributed in space. 406 

Likewise, our study demonstrates how temporally explicit data structure facilitates the study of 407 

temporal dynamics of associations, fine-tuned to the biology of the study system. Depending on 408 

the system and question at hand, the information can be parsed into different spatial and temporal 409 

scales using the same basic data structure. 410 

 In this study, our association index described the probability that two individuals were 411 

detected at the same territory while accounting for each individual’s tendency to spend time 412 

within detectable range of base stations. However, one could use alternative metrics to measure 413 

strengths of associations appropriate to particular research questions. For example, one could 414 

simply measure the absolute number of seconds that two birds spent at the same territory. 415 

Alternatively, one could count the number of time windows during which two birds were 416 

detected together (the number of association “bouts”; Dakin & Ryder, 2018, 2020). There are 417 

many other ways that one can infer strengths of associations, and we encourage researchers to 418 

explore these possibilities. For example, it may be possible to calculate association indices that 419 

account for concordance in associations across time and space, which may help separate social 420 

associations between individuals that are attracted to the same ecological resource from social 421 

relationships that transcend particular ecological contexts (Spiegel et al., 2018).  422 

 423 

Conclusions: 424 



 We expect that automated telemetry systems will be increasingly used in combination 425 

with social network analyses to study social dynamics in a wide variety of animal systems. 426 

However, there are many factors that must be considered to generate biologically relevant social 427 

networks from these powerful data collection systems, including tag design, detection range, and 428 

spatial arrangement of base stations (Mourier et al., 2017), as well as data structures that 429 

facilitate analysis of fine-scaled spatial and temporal dynamics. Here, we presented a worked 430 

example of a relatively simple and computationally tractable approach to constructing social 431 

networks in flexible ways that we hope will be used by other researchers to facilitate rapid and 432 

widespread advancements in our understanding of the ecology and evolution of complex social 433 

structures within natural systems. 434 
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