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Abstract 19 

1. Sustainable wildlife harvest is challenged by complex and uncertain social-ecological systems, and 20 

diverse stakeholder perspectives. Heuristics could provide one avenue to integrate scientific principles 21 

and understand potential conflict in data-poor harvest systems. Management Strategy Evaluation 22 

(MSE) can be a useful tool to explore harvest options and implications from diverse perspectives, and 23 

aid in heuristic development. 24 

2. We ran 176,910 stochastic simulation models to develop heuristics for sustainability in wildlife 25 

harvest systems. Environmental contexts included three simulated species distributed across the slow-26 

fast life-history gradient (the great-unicorn, lesser-unicorn, and phoenix), two variability/uncertainty 27 

levels, and three starting population sizes. Optimal outcomes from four harvest strategies (constant, 28 

proportional, threshold-proportional, and threshold-increasing-proportional) were assessed under 29 

evaluation contexts reflecting multiple environmental, harvester, manager and societal sustainability 30 

objectives and ethical perspectives. 31 

3. The results reveal fundamental challenges in obtaining sustainable outcomes in harvest systems: few 32 

scenarios produced good scores across all evaluation metrics and ethical perspectives. Composite 33 

evaluation metric sets and ethical perspectives strongly influenced perceived outcomes. Rawlsian 34 

ethical perspectives (considering the minimum score of multiple objectives) often revealed severe 35 

trade-offs between individual metrics, even when Utilitarian ethical perspectives (averaging scores of 36 

multiple objectives) view the same scenarios positively. Simple composite metrics popular in the 37 

theoretical literature often diverged from the holistic metrics that better reflect applied contexts. 38 

4. Threshold and proportional systems performed better than constant harvest under Utilitarian ethics in 39 

79-90% of cases, and 34-39% of cases with Rawlsian ethics. However, no strategy was optimal 40 

overall: each harvest system tested was near-optimal in at least one evaluation context in every 41 

environmental context. 42 

5. Synthesis and applications. Given a lack of a singular optimum strategy, we recommend harvest 43 

systems should be chosen with clear reference to contextually appropriate metrics and ethics of 44 

interest when optimizing harvest systems for sustainability. Importantly, management 45 



recommendations focused on maximizing harvest should be treated with scepticism if this is not 46 

explicitly identified as a key value for that socio-ecological system. 47 

Keywords 48 

wildlife harvest, harvest protocol, population simulation, management strategy evaluation, socio-ecological 49 

systems, sustainable management, multiple objectives, uncertainty 50 

Introduction 51 

Harvest is one of the most common forms of management for many wildlife species (DeVore, Butler, 52 

Wallace, & Liley, 2018; Riley et al., 2003), but achieving sustainability in wildlife harvest systems is 53 

challenging due to the complexity of social-ecological systems, with multiple uncertainties and diverse 54 

stakeholders (e.g. Mitchell et al., 2018; Gren, Häggmark-Svensson, Elofsson, & Engelmann, 2018). Wildlife 55 

harvest is important socially, culturally and economically for both direct benefits (e.g. meat, income, 56 

recreation, tradition) and avoiding costs and human-wildlife conflicts (e.g. vehicle collisions, predation on 57 

domestic animals, and competition or pathogen spread between wild and domestic stock; DeVore et al., 2018; 58 

Gren et al., 2018; Linnell et al., 2020, 2020; Mitchell et al., 2018). Wildlife-harvest systems are typically 59 

managed with an overarching aim of sustainability (Weinbaum, Brashares, Golden, & Getz, 2013), yet 60 

‘sustainability’ is a multi-faceted but ill-defined term (Quinn & Collie, 2005) often poorly applied in practice 61 

(Weinbaum et al., 2013). Definitions, while centring on ensuring persistence of the species and its harvest, 62 

contemporarily encompass diverse economic and social concepts, ecological, habitat, and ecosystem-based 63 

criteria, and precaution under uncertainty (Hilborn et al., 2015; Quinn & Collie, 2005). 64 

Despite established theory on optimal harvest strategy (e.g. Hilker & Liz, 2020; Lande, Engen, & Saether, 65 

1994, 1995; Lande, Sæther, & Engen, 1997; Sæther, Engen, & Lande, 1996), in practice determining quotas in 66 

terrestrial systems is often an inexact, adaptive science at best (Artelle et al., 2018). Due to limited resources 67 

and poorly developed institutional frameworks, many wildlife management systems lack all but the most 68 

rudimental parameters (van Vliet & Nasi, 2019; Weinbaum et al., 2013), and even in the best cases elements 69 

of social-ecological systems remain uncertain or contested (Bischof et al., 2012; Corlatti, Sanz-Aguilar, 70 

Tavecchia, Gugiatti, & Pedrotti, 2019; Nilsen, 2017; Pellikka, Kuikka, Lindén, & Varis, 2005; Stevens, 71 



Bence, Porter, & Parent, 2017). From fisheries management systems, literature syntheses suggest strong 72 

context-dependencies of optimal strategies (Deroba & Bence, 2008), but no such synthesis has been 73 

conducted for terrestrial systems. In many cases, terrestrial wildlife harvest management simply lacks science 74 

and transparency (Artelle et al., 2018; Weinbaum et al., 2013). This opens the door for political intervention in 75 

quota setting, exposing management to potential social and legal conflict (Artelle et al., 2018). 76 

Sustainability may be improved through the use of heuristics and simulation models. Heuristics are practical 77 

and accessible guidelines designed to give good ‘rules-of-thumb’ (i.e. good outcomes over a wide range of 78 

cases) in applied management scenarios where more detailed information is lacking (Leung, Finnoff, Shogren, 79 

& Lodge, 2005). Heuristics can be derived from empirical experience, or deduced from simulation models 80 

(Davis, Chadès, Rhodes, & Bode, 2019; Deroba & Bence, 2008). Simulation models help to formalise 81 

knowledge, and are well established in conservation and wildlife-management contexts. Typically these focus 82 

on stochastic population dynamics, for example in population viability analysis (Lacy, 1993; Miller, Furness, 83 

Trinder, & Matthiopoulos, 2019; Weinbaum et al., 2013), while traditional harvest models couple this with 84 

harvest (Hilker & Liz, 2019; Lande et al., 1995; Sæther et al., 1996). Management Strategy Evaluation (MSE) 85 

models expand from these, encompassing stochastic simulations of management in socio-ecological systems 86 

incorporating a more holistic set of ecological and social components (Bunnefeld, Hoshino, & Milner-87 

Gulland, 2011). MSE models are well established in fisheries (Punt, Butterworth, Moor, Oliveira, & Haddon, 88 

2016) and increasingly used in terrestrial management scenarios (e.g. Bled & Belant, 2019; Eriksen, Moa, & 89 

Nilsen, 2018; Manning, Stevens, & Williams, 2019; Miller et al., 2019; Mitchell et al., 2018; Riley et al., 90 

2003). MSE models address key knowledge gaps regarding the implications of uncertainty in the multiple 91 

socio-economic facets of wildlife harvest systems (Gren et al., 2018), and allow levels of systematic 92 

assessment impossible in real-world experiments. Heuristics developed from MSE models may be able to 93 

address the science-policy gap between theoretical harvest models and real-world application of harvest 94 

strategies, through 1) improving our understanding of more complex and uncertain socio-ecological systems, 95 

and 2) shifting the focus from what strategies are optimal in constrained theoretical settings to what is likely to 96 

be acceptable in a diverse range of environmental and social evaluation settings, including under different 97 

ethical perspectives. 98 



Consideration of diverse ethical perspectives as to what is valued, and how different values are appreciated, is 99 

a growing focus of environmental management (Friedman et al., 2018). This facilitates social equity by better 100 

representing diverse stakeholder values and perspectives – a virtuous social outcome in itself as well as 101 

contributing to the success and sustainability of management actions (Friedman et al., 2018; Law et al., 2018). 102 

Utilitarian ethics emphasise aggregate utility (‘the greatest good for the greatest number’), and are commonly 103 

applied via summation or averaging over a set of outcomes (for example, via cost-benefit evaluations; Law et 104 

al., 2018). However this ethic is not universally held and is criticised for allowing concerns of the majority to 105 

overwhelm concerns of minorities (Wilson & Law, 2016). In contrast, Rawlsian ethics focus on improving the 106 

outcomes for the stakeholders that fare the worst, typically represented through maximising the minimum 107 

score of a set of outcomes (i.e. a maxi-min function; Rawls, 1971). People display both Utilitarian and 108 

Rawlsian ethics when making personal decisions (Kameda et al., 2016). However, despite Rawlsian patterns 109 

being more common when these decisions affect others (Kappes, Kahane, & Crockett, 2016), the 110 

environmental decision-making literature has tended to be dominated by Utilitarian ‘cost-benefit’ or aggregate 111 

sum metrics (Friedman et al., 2018; Law et al., 2018). Further ethical perspectives (not well captured by either 112 

Utilitarian or Rawlsian functions) are gaining popularity in environmental management, for example concerns 113 

for animal welfare, animal rights, and ‘compassionate’ conservation (Hampton, Warburton, & Sandøe, 2019; 114 

Hayward et al., 2019). An understanding of alternative stakeholder perspectives is of practical importance for 115 

understanding the level of satisfaction that alternative stakeholders may have under different decisions, and 116 

consequently how contested or sustainable decisions may be. 117 

To develop heuristics for sustainable wildlife harvest, we construct MSE models within a consistent model 118 

framework, spanning diverse environmental contexts including a gradient of species life-history types, 119 

uncertainty, and starting conditions. We simulate a set of species from across the fast-slow life-history 120 

gradient, a commonly used motif for theory development in wildlife phenomena describing patterns of 121 

covariation in life-history traits across body size, longevity, and fecundity (Bielby et al., 2007; Williams, 122 

2013). We evaluate sustainability over a range of metrics and ethical perspectives relevant for terrestrial 123 

contexts, and include multiple types of variability representing both temporal stochasticity and parameter 124 

uncertainty (McGowan, Runge, & Larson, 2011), in resource, monitoring, management decision, and harvest 125 



implementation components. We compare the simulations to uncover: 1) which strategies are optimal in 126 

different contexts? 2) which strategies give acceptable outcomes across a diverse range of contexts? 3) what 127 

simple heuristics regarding environmental and evaluation contexts can be developed? 128 

Materials and methods 129 

We develop a MSE model that generalises a terrestrial wildlife-harvest system, with components of 1) 130 

resource dynamics, 2) monitoring observations, 3) quota setting, 4) harvest implementation, and 5) 131 

sustainability evaluation. Simulations occur in yearly time steps (t), across a time series of 20 years (broadly 132 

considered long term for applied management plans), with multiple iterations (i = 1000) per scenario. Full 133 

model description and parameter values are available in Supporting Information S1, and only summarised 134 

here. 135 

MSE framework 136 

The resource component simulates growth of a population Ni,t, using logistic growth determined by the 137 

population’s intrinsic growth rate, ri,t, and carrying capacity, K. The monitoring component is simulated by a 138 

single variation factor (mi,t) acting on Ni,t, to give an estimate of the population size (𝑁ప,௧
 ), to be used as the 139 

basis for management decisions. The management-decisions component comprises two parts. First, a 140 

harvest strategy is applied, converting 𝑁ప,௧
  into an initial quota, Qi,t, given a set of quota parameters. Qi,t is then 141 

subject to random variation (𝑞,௧) to simulate the political interference in the quota setting process, to give a 142 

modified quota 𝑄,௧
ᇱ . The harvest implementation component simulates imperfect harvest implementation, 143 

effected as a proportional variation (hi,t) around 𝑄,௧
ᇱ  to give the harvest (Hi,t). This amount is then removed 144 

from Ni,t, before continuing to the next timestep. Stochastic parameters include r, m, q, and h, which simulate 145 

environmental stochasticity, imperfect implementation, and parameter uncertainty, using normal distributions 146 

partitioned over years (t) and iterations (i). 147 

The evaluation component occurs after each simulation is complete, calculating performance metrics of each 148 

iteration over the entire timeframe, and summarising over iterations in the scenario run (see details below and 149 

in Supporting Information S1). Individual evaluation metrics reflect different stakeholder concerns over 150 



various socio-ecological and harvest-based sustainability objectives, and are summarised into composite 151 

metrics under alternative evaluation contexts (i.e. with different emphases and ethics; Table 1,2). 152 

[Figure 1: MSE framework] 153 

Figure 1: The Management Strategy Evaluation (MSE) model simulates a wildlife harvest system over a 20 154 

year timeframe, with each environmental and decision scenario including 1000 stochastic iterations. 155 

Evaluation combines individual metrics into composite scores, using different functions to simulate different 156 

evaluation contexts. Species types span a fast-slow life-history gradient, determining growth rates and 157 

carrying capacity, variation levels in growth rates and monitoring variability, and critical thresholds. 158 

Stochastic parameters simulate yearly stochasticity and iteration level uncertainty. A full description of the 159 

model and parameter values are specified in Supporting Information S1. 160 

 161 

Environmental context and decision variable parameters 162 

Species life-history, variability/uncertainty, and starting population scenarios collectively represent the 163 

environmental context. We simulate three virtual species spanning a slow-fast life-history gradient of 164 

common game species (Table S1.1), based on wildlife harvested in a Norwegian context but with global 165 



relevance. The great-unicorn resembles a large ungulate (e.g. moose, Alces alces), and is assumed to have a 166 

low growth rate, carrying capacity, monitoring variation, and critical thresholds for evaluating population size. 167 

The lesser-unicorn resembles a small ungulate (e.g. roe deer, Capreolus capreolus), with a moderate growth 168 

rate, carrying capacity, monitoring variation, and critical thresholds. The phoenix is reflective of a game bird 169 

(e.g. willow ptarmigan, Lagopus lagopus), with a large potential growth rate, carrying capacity, monitoring 170 

variation, and critical thresholds. 171 

For each species we simulated two variability scenarios, where variability in r, m, q, and h was low or high, 172 

and three starting populations: 1) the midpoint of low and high critical thresholds (moderate), 2) quasi-173 

extinction, and 3) overabundance. Alternative starting populations test the robustness of the harvest strategies 174 

to extreme perturbations in population size, as well as being relevant for special management cases (e.g. 175 

overabundant species, or recovery of endangered species into harvestable populations). Variability and 176 

starting population scenario combinations are identified numerically (1-6) defined in Figure 1. 177 

The harvest strategies and quota parameters represent decision variables. Harvest strategies analysed include 178 

‘constant’ (a set number of individuals harvested yearly), ‘proportional’ (a set proportion of the population 179 

harvested yearly), ‘threshold-proportional’ (a set proportion taken yearly, provided the population is above a 180 

certain threshold), and ‘threshold increasing-proportions’ (provided the population is above a certain 181 

threshold, the proportion taken increases as the population size increases). We assume that the harvest 182 

strategies and associated parameters (constants, thresholds, and proportions) remain consistent throughout the 183 

timeframe (note that the resulting quota adapts to the population size in all but the constant harvest). We 184 

employed a grid search method across a wide range of possible quota parameter options in order to identify 185 

and compare optimal strategies across a diversity of potential objectives (see Table S1.2). 186 

Evaluation contexts and comparisons 187 

Evaluation contexts are designed to reflect different stakeholder perspectives on outcomes from the 188 

simulations. These determine which individual metrics are of interest (i.e. the composite metric set; Table 189 

1,2), how they are summarised (i.e. the composite metric function, reflecting alternative ethical perspectives), 190 

and to which other outcomes a comparison is being made (i.e. the comparator). 191 



We assess six composite sets with varying emphasis and degrees of complexity (Table 2). These range from a 192 

complete set, including all metrics, to a classic set that are comprised of only those metrics commonly seen in 193 

the classic theoretical literature (namely maximize harvest and persistence). Others represent particular 194 

contexts, such as focus only on population or harvest related metrics, or all except overabundance as this may 195 

be of low concern in some contexts (e.g., for complete small-game). We combine the elements of each 196 

composite set using two composite functions: maximizing a weighted mean score representing a Utilitarian 197 

(aggregate benefit) ethic, and maximizing the minimum score from the set representing a Rawlsian (maxi-198 

min) ethic. Individual metric scores are first standardised (scaled so that 100 represents the most desirable 199 

expected outcome possible, e.g. the largest probability of non-extinction, or the largest mean harvest) over 200 

decision variables for each respective environmental context before combination. Because individual metric 201 

scores within iterations are not independent, composite metric scores were calculated for each iteration, before 202 

being summarised over the decision variables (Supporting Information S1). Composite metric scores therefore 203 

represent outcomes as perceived under specific ethical and stakeholder contexts. 204 

Comparative analysis focused on the optimal outcomes for each harvest strategy: each harvest strategy was 205 

represented by the score from the quota parameters that maximized the expected outcome (i.e. mean across 206 

the 1000 iterations) under each environmental and evaluation context. To reflect how satisfied stakeholders 207 

may be with optimized outcomes with respect to that harvest system only, we assessed raw scores for each 208 

composite metric (where 100 represents perfect scores across all individual metrics in the composite set). To 209 

show relative optimality of the harvest strategy in that environmental and evaluation context, we assessed 210 

relative scores (where 100 represents the best score achieved across decision variables, i.e. all harvest 211 

systems and quota parameters, within each respective environmental context). In scaling the relative scores, 212 

all harvest systems achieving the best score gained a score of 100, even if this ‘best’ score was zero. Rawlsian 213 

scores can also indicate the minimum potential for trade-offs to occur, in that they give the maximal minimum 214 

score from the set. However, trade-offs could be even worse than indicated by Rawlsian scores if optimization 215 

for this metric is not achieved, for example if a utilitarian ethic is used, actors are self-serving, power is 216 

unequal, or if actors are malevolent and actively seek to minimise the outcomes of others. 217 



Heuristics 218 

We defined ‘heuristics’ as a set of simple rules or guidelines for a) choosing an optimal harvest system, and b) 219 

when contextual factors are likely to give ‘good’ (but not necessarily optimal; arbitrarily defined as scoring 220 

85-100), or ‘better’ (in the case of pairwise comparisons) perceived outcomes. We sought heuristics via 221 

plotting outcome scores and ranking strategies for different contexts, and developing decision trees for 222 

optimal strategies and the likelihood of good outcomes being perceived. The factorial design of the 223 

simulations also allowed us to assess the pairwise differences by matching outcomes from the different 224 

contextual factors, all other variables held constant. We excluded the ‘no harvest’ strategy from these 225 

comparisons. 226 

We constructed decision trees based on conditional inference methods (Hothorn & Zeileis, 2015): binary 227 

recursive partitioning using regression relationships, first testing if there are any significant relationships of 228 

the predictors to the response variable, and then, if so, implementing the binary split with the strongest 229 

association with the response variable, and repeating until no further significant relationships are found. These 230 

have the benefit of being easily interpretable, limiting recursive partitioning at reasonable levels, and have 231 

reduced bias for mixed variables (Strasser & Weber, 1999). 232 

We constructed the model in R (R Core Team, 2020), using tidyverse (Wickham, Averick, et al., 2019) and 233 

truncnorm (Mersmann, Trautmann, Steuer, & Bornkamp, 2018), parallelized with doSNOW (Microsoft 234 

Corporation & Weston, 2019). For the decision trees, we used default methods under partykit::ctree (Hothorn, 235 

Hornik, & Zeileis, 2006; Hothorn & Zeileis, 2015). For graphics, we used ggplot2 (Wickham et al., 2020), 236 

ggtable (Wickham, Pedersen, & RStudio, 2019), ggparty (Borkovec et al., 2019), and cowplot (Wilke, 2019). 237 

  238 



[Table 1: Individual sustainability metrics] 239 

Table 1: Sustainability metrics represent a wide variety of common stakeholder concerns, and include 240 

fundamental sustainability objective of non-extinction, as well as other population-based and harvest-based 241 

metrics. Here they are constructed so that within each metric higher scores are more desirable. 242 

Objective 

group 

Objective Criteria Code 

P
er

si
st

en
ce

 Avoiding extinctions. 

A fundamental objective of ecological and 

economic sustainability. 

1 – Probability population 

goes extinct by year 20 

probability of 

non-extinction 

P
op

ul
at

io
n 

Population stability. 

Avoiding population extremes. 

Number of years 

population remains 

between high and low 

critical thresholds 

stable 

population 

Avoiding low or functionally extinct 

populations. 

To provide adequate populations for harvest, 

ecological functionality, and buffer against 

extinctions. 

Number of years 

population remains above 

the quasi-extinction 

critical threshold 

above quasi-

extinct 

Number of years 

population remains above 

the low critical threshold 

above low 

Avoiding high and overabundant 

populations.  

To minimize wildlife conflict and ecological 

damage from overabundant populations. 

Note, this may not be a concern for small 

game species. 

Number of years 

population remains below 

high critical threshold 

below high 

Number of years 

population remains below 

the overabundance critical 

threshold 

below 

overabundant 



H
ar

ve
st

 
Mean annual harvest. 

To provide the maximum opportunity for 

economic and social benefits of harvest.  

Mean yearly harvest  harvest mean 

Minimum harvest experienced across the 

timeframe. 

To maximize harvest opportunity over every 

point in the timeframe. 

Minimum harvest size 

across the timeframe 

harvest 

minimum 

Avoiding years experiencing zero harvest. 

To provide consistency of harvest experience 

and income for harvesters and associated 

economies. 

Number of years harvest 

is not zero 

harvest non-

zeros 

Limiting harvest variability. 

While some variability may be accepted as an 

inevitability in variable contexts, consistency 

of harvest improves predictability and the 

consistency of capital required for its 

implementation. 

0 – Standard deviation of 

harvests over the 

timeframe 

harvest 

consistency 

 243 
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[Table 2: Composite metrics] 245 

Table 2: Composite metrics are comprised of six different sets of individual metrics, combined using two different 246 

functions to reflect alternative ethical perspectives. Inclusion in sets is denoted by a tick (included) or cross (not 247 

included), and the assigned weights for Utilitarian function shown in brackets. 248 

Composite 
metric set 

Individual metric 

Persistence Population Harvest 

Pr
ob

ab
ili

ty
 o

f 
no

n-
ex

tin
ct

io
n 

A
bo

ve
 q

ua
si

-
ex

tin
ct

 

A
bo

ve
 lo

w
 

St
ab

le
 

po
pu

la
tio

n 

B
el

ow
 h

ig
h 

B
el

ow
 

ov
er

ab
un

da
nt

 

H
ar

ve
st

 m
ea

n 

H
ar

ve
st

 
m

in
im

um
 

H
ar

ve
st

 n
on

-
ze

ro
s 

H
ar

ve
st

 
co

ns
is

te
nc

y 

Complete ✓ (1) ✓ (0.2 each) ✓ (0.25 each) 

Population focus ✓ (1) ✓ (0.2 each) ✘ 

Harvest focus ✓ (1) ✘ ✓ (0.25 each) 

Complete (small 
game)  ✓ (1) ✓ (0.5 each) 

✘ (no concern for 
overabundance) 

✓ (0.25 each) 

Classic 
pop.+harv. ✓ (1) ✘ ✓ (1) ✘ ✓ (1) ✘ 

Classic harv. ✓ (1) ✘ ✓ (1) ✘ 

Composite metric function 

Ethic 

Utilitarian (maximize 
aggregate good) 

Weighted mean of included metric scores 
(assuming equivalent emphasis on persistence, population, and 
harvest groups) 

Rawlsian (maximize 
minimum outcome) 

Minimum score of included metric scores 
(all individual metrics weighted equally) 

 249 

Results 250 

Composite metric scores varied over quota parameter options within each harvest strategy. Suboptimal harvest 251 

strategies with optimized quota parameters performed better than optimal strategies with poorly selected quota 252 

parameters (Figure 2). Constant harvest strategies, ‘faster’ life-histories, and more variable environmental 253 

contexts had greater outcome uncertainties (Supporting Information S2.1). Steep declines in performance 254 

occurred with overharvesting under constant and proportional strategies without thresholds. While such risks 255 



are likely to be a consideration in applied decision contexts, the following results are based on expected 256 

(mean) outcomes from each set of iterations, and are therefore representative of risk-neutral decision-making 257 

only. 258 

Our simulations show that there was no single optimum harvest strategy across all environmental and 259 

evaluation contexts. No harvest strategy consistently dominated across all environmental or evaluation 260 

contexts, and each harvest strategy could be perceived as an optimal (or near optimal) choice in every 261 

environmental context (Figure 3, Supporting Information S2.2). Raw scores (Figure 3) show the challenges of 262 

achieving sustainability outcomes in harvest systems: there were few scores of 100, which represent a 263 

situation satisfying multiple objectives without compromise, exposing the system to the likelihood of different 264 

harvest strategy preferences depending on the evaluation context. Overall, threshold-increasing-proportions 265 

was an optimal (or jointly optimal) strategy in 50% of contexts, followed by proportional (44%), threshold-266 

proportional (35%) and constant (32%; Supporting Information S2.2). However threshold-proportional had a 267 

higher average ranking (73), followed by proportional (71), then threshold-increasing-proportions and 268 

constant (64 and 39 respectively). All adaptive strategies had higher relative and raw mean scores (87-90, and 269 

54-56 respectively) compared to constant harvest strategies (74 and 45 respectively for relative and raw 270 

scores; Supporting Information S2.2). Generally, in the cases where the biggest gains can be made by 271 

selecting the best strategy (including for composite sets of population-focus, classic, and classic pop.+harv., 272 

as well as for faster life history species), threshold and adaptive strategies are preferred over constant harvest. 273 

Similarly, in cases where proportional harvest performed optimally, threshold-based strategies were typically 274 

close behind, whereas there are several cases where threshold strategies outperform proportional harvest. 275 

Cases were constant harvests could perform well were often composite metric sets focussing on harvest or 276 

complete-small-game (i.e. with no concern about overpopulation), usually with Rawlsian ethics, and typically 277 

for cases with poor average raw scores (Supporting Information S2.2). 278 

The results from our decision tree analyses emphasised the influence of choice of composite metric sets and 279 

ethics in both determining optimal strategies, and perceived sustainability (Figure 4, Supporting Information 280 

S2.3). While use of the Utilitarian ethic often produced outcomes perceived as ‘good’ (72%) or ‘relatively 281 

good’ (85%), the use of a Rawlsian ethic was not likely to produce ‘good’ outcomes (3%) unless viewed 282 



relative to other potential strategies (i.e. as ‘relatively good’; 66%; Figure 5). The latter are mainly due to 283 

outcomes being considered as equally bad. Raw Rawlsian scores were most sensitive to the addition or 284 

removal of individual metrics, but differences were also observable in Utilitarian scores (Figure 6). Often the 285 

more holistic sets (i.e. those including metrics from both harvest and population domains, alongside non-286 

extinction) showed worse outcomes than simpler sets. These trends differed between harvest strategies: the 287 

performance gap between constant or proportional harvest strategies and the more complex harvest strategies 288 

was larger when evaluated using simplistic composite sets, relative to when more holistic composite sets are 289 

used. 290 

All harvest strategies were more likely to produce ‘relatively good’ outcomes when viewed under a Utilitarian 291 

perspective (54-99%), and the majority of these were outright good for all but the constant harvest strategy 292 

(78-88% for adaptive harvests, 44% for constant harvest; Figure 6). Under the Rawlsian perspective the 293 

majority in all strategies were ‘relatively good’ (59-68%), however only the minority of cases were outright 294 

‘good’ (<6%), and never under constant harvest. The probability of achieving at least a ‘relatively good’ score 295 

in the Utilitarian outcomes was significantly better when moving from a constant harvest strategy to an 296 

adaptive one (79-90%), however there were always exceptions (10-21% of cases; Supporting Information 297 

S2.4). Exceptions occurred mainly for the Great-unicorn (but existed at least once in every species), and were 298 

typically due to variability in harvest levels (Supporting Information S2.4). 299 

Higher environmental variability resulted in lower scores, and moderate starting populations performed better 300 

than overabundant starting populations, and both substantially better than quasi-extinct starting populations, in 301 

terms of raw scores for both ethics, and relative Utilitarian scores (Figure 6). These trends reversed when 302 

viewed from a relative Rawlsian perspective, due to a reduction in maximum observed scores. There were 303 

substantial exceptions, for example 38% of pairwise comparisons showed higher scores for higher variability 304 

scenarios under the raw Utilitarian perspective, and 17% of quasi-extinction cases and 38% of overpopulation 305 

cases performed better than their equivalent moderate starting populations (Supporting Information S2.4). 306 

This highlights the importance of interactions between individual metrics that make up composite indices. In 307 

the species comparisons these interactions were also apparent: for Rawlsian raw scores there was the expected 308 



trend of slower life-history species providing more sustainability than faster life history species, yet for 309 

Utilitarian raw score comparisons the intermediate life-history species performed (slightly) better than others. 310 

[Figure 2. Raw composite scores across quota parameters] 311 

Figure 2: Raw composite scores for great-unicorn, lesser-unicorn, and phoenix, under each harvest strategy. 312 

Columns represent harvest strategies, and rows represent composite sets used for evaluation. Species are 313 

indicated by line colour, and ethic by line type. Results are for scenario 2: high variability/uncertainty and 314 

moderate starting-population sizes. Results for other scenarios, including variability, are in Supporting 315 

Information S2. For constant and proportional harvest procedures (columns two and three), the x-axis shows 316 

the constant scaled by the maximum constant, or proportion respectively. For threshold proportional and 317 

threshold increasing-proportions strategies (fourth to seventh column), the x-axis shows the proportion 1, and 318 

the score on the y-axis is expected maximum or minimum for that proportion 1 (i.e. across multiple threshold 319 

values, and gaps between proportions 1 and 2). 320 

 321 



[Figure 3. Maximum composite score for each harvest strategy, across environmental and 322 

evaluation contexts] 323 

Figure 3: Maximum expected composite metric scores across environmental and evaluation contexts, under a 324 

Utilitarian or Rawlsian ethic. Scores are given as raw (absolute) in the left hand panels or relative (scaled 325 

relative to other harvest strategies) in the right hand panels. Raw scores reflect the likelihood an outcome is 326 

perceived as sustainable, whereas relative scores show optimality (a strategy is ‘optimal’ if it receives a solid 327 

blue circle, and it is ‘dominant’ over all the other strategies if no other strategy also received a score of 100 for 328 

that context). Scenario codes are given in Figure 1. Alternative group summaries of optimal scores are 329 

provided in Supporting Information S2.3. 330 
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[Figure 4: Conditional inference tree for optimal strategy] 333 

Figure 4: Conditional inference tree showing the choice of optimal harvest strategy (or multiple strategies if 334 

equal) under increasingly differentiated contexts. Branches diverge according to the most influential variable 335 

at that node, with branch labels indicating the distribution. Cut to depth of 3 branches for display: full tree 336 

available in Supporting Information S2. 337 
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[Figure 5: Ethical perspective comparisons] 340 

Figure 5: Distributions of scores by ethical perspective. Values in grey panels show proportions of ‘good’ and 341 

‘relatively good’ for individual factors. White lines within the violin plots mark the 5% and 95% quantiles, 342 

and boxplots within the violins show median and quartiles, with whiskers extending to 1.5 times the 343 

interquartile range. For pairwise comparisons, see Supporting Information S2. There are n = 432 cases in each 344 

violin. 345 

 346 
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[Figure 6: Composite set, harvest strategy, and environmental context comparisons] 349 

[next page] 350 

Figure 6: Distributions of scores by ethical perspective. Values in grey panels show proportions of ‘good’ and 351 

‘relatively good’ for individual factors. White lines within the violin plots mark the 5% and 95% quantiles, 352 

and boxplots within the violins show median and quartiles, with whiskers extending to 1.5 times the 353 

interquartile range. Cases in each violin: harvest strategy = 108, set comparisons = 72, environmental contexts 354 

variability = 216, species and starting population = 144. For pairwise comparisons, see Supporting 355 

Information S2. 356 
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Discussion 359 

Aiming to develop heuristics for sustainability in wildlife harvest systems, we ran 176,910 stochastic 360 

simulation models, and evaluated them against 12 composite sustainability indices representing different 361 

ethical perspectives and evaluation contexts. We found that no harvest strategy was optimal across all 362 

environmental and evaluation contexts tested, and every harvest strategy was at least near-optimal in at least 363 

one evaluation context in every environmental context (Figure 3). Harvest systems including thresholds or 364 

proportional harvest were more likely to deliver good outcomes, be perceived as sustainable in more varied 365 

contexts, and involved less precipitous risk of population declines compared to constant harvest, particularly 366 

when the gains possible from selecting the optimal strategy were the greatest. This supports prior analytical 367 

and review comparisons (Deroba & Bence, 2008; Engen, Lande, & Sæther, 1997; Hilker & Liz, 2020; Lande 368 

et al., 1997), and importantly, extends systematic assessment across a diversity of environmental and 369 

evaluation contexts more likely to be encountered in applied wildlife harvest management. 370 

Dominant factors influencing sustainability of harvest systems centred around stakeholder perspectives: 371 

ethical stance, objectives considered, and whether the strategy was being assessed absolutely or relative to 372 

others (Figures 3-6, Supporting Information S2.2-2.3), highlighting the non-triviality of accounting for diverse 373 

ethical perspectives when addressing trade-offs and social equity in environmental management (Friedman et 374 

al., 2018; Law et al., 2018). In general, a Utilitarian ‘aggregate good’ ethic was more likely to suggest 375 

outcomes as ‘good’, whereas a Rawlsian ‘maximise the minimum’ ethic highlighted that the majority of cases 376 

have unavoidable, and often severe, trade-offs between individual stakeholder metrics. This demonstrates the 377 

inherent complexity of achieving sustainability in terrestrial wildlife harvest systems with diverse stakeholders 378 

objectives (Gren et al., 2018; Linnell et al., 2020). The dominant influence of ethic and composite set suggests 379 

that prior theoretical analyses, by focussing on maximizing harvests and limited metrics of desirable 380 

population size, present a rather narrow and potentially misleading perspective on the conflicts and 381 

sustainability of terrestrial wildlife systems in present day social settings. 382 

Higher variability (due to stochasticity and uncertainty, including that associated with faster life-histories) was 383 

associated with reduced sustainability (Figure 6), in line with prior studies, however these trends were neither 384 

dominant nor universal. Much emphasis within the harvest literature has been on variability (stochasticity and 385 



uncertainty), typically revealing reduced sustainability with higher variability (Lande et al., 1994, 1995, 1997; 386 

Sæther et al., 1996). Our pairwise analysis showed many exceptions. In 38% of cases higher variability 387 

actually improved raw Utilitarian outcomes. Many of these exceptions are due to threshold based evaluation 388 

criteria: increased variability allows some iterations to cross desirable threshold criteria (a form of stochastic 389 

resonance; McDonnell & Abbott, 2009), without causing equivalent crossing of undesirable criteria 390 

thresholds. This result extends prior literature regarding the effectiveness of threshold-based strategies (Hilker 391 

& Liz, 2019, 2020; Lande et al., 1997) to consider impacts of threshold-based evaluation criteria. Other 392 

exceptions included 33-56% of raw Utilitarian pairwise comparisons where the intermediate life-history 393 

species, and non-ideal starting populations performed relatively well in our comparisons(Figure 6), due to 394 

reduced trade-offs between individual metrics. 395 

Our results suggest that management of slower life-history species should be particularly concerned about low 396 

population sizes: recovery from these could be lengthy (Kritzer, Costello, Mangin, & Smith, 2019). In ‘faster’ 397 

species recovering from extreme low populations, harvest strategy trades off speed, magnitude, and likelihood 398 

of recovery with harvest early in the time period, a trade-off likely to depend on the productivity of the 399 

population (Babcock, McAllister, & Pikitch, 2007). Overall, this supports adaptive harvest strategies 400 

(including proportional and/or thresholds) which provide economic and ecological resilience of harvest under 401 

both scientific and environmental uncertainty, and particularly uncertainty in the face of directional threats 402 

such as climate change (Kritzer et al., 2019). 403 

There are substantial applied management implications of trade-offs between individual metrics in different 404 

composite sets. Scores from simpler composite sets were typically higher (but not always) than more holistic 405 

sets (Figure 6, Supporting Information S2.4): perceived outcomes depended on which metrics were included, 406 

how they trade-off, and how they were combined. Two key implications can be drawn: 1) simpler ‘classic’ 407 

metrics commonly used in theoretical models may give a false perception of the magnitude of the benefits of 408 

more complex harvest strategies over constant harvests in some cases, and 2) the formulation of harvest 409 

objectives, particularly maximising harvests, have a strong influence in determining optimal harvest decisions. 410 

This is particularly important to consider in the context of terrestrial wildlife harvest, where there is seemingly 411 

a widespread tendency for the objective of maximizing yields to be included. It persists even in cases where 412 



extensive stakeholder and manager engagement do not indicate maximum yields as a universally valued 413 

objective, and even while recognising the strong trade-off between population stability and harvest goals 414 

(Johnson et al., 1997, 2019). In all of our simulated species the critical thresholds for management were often 415 

well below theoretical maximum sustainable yield levels (Supporting Information S1). Inclusion of yield 416 

maximization is likely due to the classic tradition of yield being the sole focus of ‘sustainability’ in wildlife 417 

harvest, despite development of more diverse definitions (Quinn & Collie, 2005). In fisheries contexts where 418 

yield is measured in tonnage this may be appropriate, but in contemporary, predominantly recreational 419 

terrestrial wildlife harvest there is no a priori reason to value maximizing mean harvests above or even 420 

equally to other objectives, especially given the diversity of human-wildlife conflicts associated with high 421 

density populations (Linnell et al. 2020). 422 

This large potential for conflicts and trade-offs emphasises that wildlife harvest decisions are likely to benefit 423 

from tools designed for decision-making under conflict and complexity. This includes MSE models to 424 

evaluate and compare outcomes for multiple models, actions, and metrics (Bunnefeld et al., 2011; Marasco et 425 

al., 2007; Punt et al., 2016), and Structured Decision Making (SDM) tools for management of conflicts 426 

through stakeholder negotiations (Mitchell et al., 2018; Robinson et al., 2016). Avoiding exacerbating 427 

conflicts is endorsed in environmental management (Redpath et al., 2013); our analysis demonstrates how 428 

MSE can map out potential for conflict, and thereby contribute to this approach. 429 

Given our aim of developing heuristics across a range of species contexts for a set of harvest strategies, we 430 

developed our model using a consistent but relatively simple population dynamics framework: one closed-431 

population harvested species, undifferentiated by age, sex, or spatially, logistic growth and simple 432 

characterisations of uncertainty and variability, single decision rules being applied over the whole time frame, 433 

and no time-discounting or monetary valuation of costs and benefits. We discuss these issues as they pertain 434 

to this analysis more in the full model description in the Supporting Information S1. We also do not consider 435 

starting conditions for stakeholders (e.g. current entitlement), which can severely constrain management 436 

decisions in practice (Mitchell et al., 2018). While alternative assumptions may change the particulars of 437 

results, even the simple assumptions we employed resulted in many complex trade-offs among the diverse 438 



metrics evaluated, and we would expect the main conclusion of context dependency and importance of 439 

evaluation perspective to hold. 440 

Conclusions 441 

Sustainability is a central, but often elusive goal of wildlife harvest management, challenged by complex 442 

socio-ecological systems, with many potential conflicts and uncertainties. Our stochastic simulation analysis 443 

provides the first detailed and consistent comparison of multiple sustainability metrics, across a representative 444 

range of common terrestrial wildlife harvest systems. While we conclude, similarly to prior studies, that 445 

adaptive harvest systems including thresholds and proportional harvest were more likely to be perceived as 446 

sustainable in more varied contexts compared to constant harvest, our analysis reveals the many exceptions to 447 

such heuristics. We found that the strongest driver of perceived outcomes was the evaluation framing, rather 448 

than environmental contexts. Indeed, in every environmental context all strategies could be perceived as 449 

optimal in at least one evaluation framing. Two key results for applied management are, first, that outcomes 450 

based on simplified metrics (e.g. non-extinction and maximizing mean harvest only) popular in the theoretical 451 

literature may give misleading impressions of the relative benefits of different harvest systems in applied 452 

contexts, and second, that harvest maximization has strong and potentially undue influence on analyses of 453 

‘optimality’ in terrestrial wildlife harvest contexts. Our results highlight that trade-offs between sustainability 454 

objectives are largely inevitable, and, with no single optimum strategy, ‘optimal’ harvest systems need to be 455 

identified with careful consideration of the appropriateness of sustainability metrics and the ethical 456 

implications of their combination. 457 
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Supporting information S1: MSE Model details 638 
Accompanying manuscript: Sustainability of wildlife harvest in stochastic social-ecological systems. 639 

Authors: Elizabeth Law, John D. C. Linnell, Bram van Moorter, Erlend B. Nilsen. 640 

This supporting information repeats the methods presented in the main text, with additional detail where 641 
required, particularly regarding the assumptions and caveats. 642 

S1.1 Model framework 643 
We develop an MSE model that generalises a terrestrial wildlife harvest system, with components of 1) 644 
resource dynamics, 2) monitoring observations, 3) quota setting, 4) harvest implementation, and 5) 645 
sustainability evaluation. Simulations occur in discrete yearly time steps (t), across a time series of 20 years 646 
(broadly considered long term for applied management plans), with multiple stochastic iterations (i = 1000) 647 
per scenario. An overall perspective is provided in figure S1.1. 648 

The resource population component simulates growth of a population Ni,t, via a logistic growth function 649 
determined by the population intrinsic growth rate, ri,t, and the carrying capacity, K.  650 

(1) 𝑁,௧ାଵ = 𝑁,௧ + 𝑟,௧𝑁,௧
(ି ே,)


 (rounded to nearest positive integer) 651 

where: 652 

(2) 𝑟,௧  ≈ 𝑁(𝑟
,  𝑟

௦ௗ) 653 

(3)  𝑟
  ≈ 𝑁(𝑟 ,  𝑟௦ௗ) 654 

(4) 𝑟
௦ௗ  ≈ 𝑁(𝑟௦ௗ ,  𝑟௦ௗ௦ௗ)    655 

We assume that 𝑟 , 𝑟௦ௗ, 𝑟௦ௗ ,  𝑟௦ௗ௦ௗ, and K are constant for each species context and variation scenario. 656 
Parameters for these are given below. Thus, variation in r is simulated by a normal distribution, equally 657 
partitioned over years and iterations. Yearly variation is conceptualised to encompass the concepts of survival 658 
(due to all causes aside from hunting), reproduction, environmental variability, and demographic stochasticity; 659 
irresolvable variation, but can be low or high. Iteration variability simulates parameter uncertainty; resolvable 660 
through improved knowledge, and can be low or high. Lack of variation in K assumes that the fundamental 661 
carrying capacity of the system remains the same throughout the time period assessed.  662 

We note that the use of a standard model framework with logistic growth, applied across a fast – slow gradient 663 
of species is a simplification, as density dependent (and depensatory) effects are likely to correlate with 664 
species position along this gradient (Stevens, Bence, Porter, & Parent, 2017; Williams, 2013). A potential 665 
modification of this to better capture differences in the fast – slow species gradient might be to use a 666 
generalised theta-logistic model, with a theta < 1 for ‘fast’ r-selected species, and a theta > 1 for ‘slow’ K-667 
selected species. However while this is conceptually practical, such parameters are challenging to estimate in 668 
application, and there is likely to be evolutionary interactions on theta with experienced environmental 669 
variability (Williams, 2013). Furthermore, Sæther et al. (1996) show that environmental stochasticity can have 670 
a larger effect on optimal harvesting strategy than the form of density-dependence. Further caveats include 671 
that we do not explicitly consider Allee effects at low population sizes (Lacy & Pollak, J.P., 2020), the full 672 
range of possible population dynamics (Saunders, Cuthbert, & Zipkin, 2018; Stevens et al., 2017; Williams, 673 
2013). Different assumptions on the relationship between population growth rates and environmental 674 
variability are certainly possible (Colchero et al., 2019) and may induce feedbacks at a system level (Vilar & 675 
Rubi, 2018). We chose to use a simple logistic model also because of our focus on developing basic heuristics 676 
and cross-species comparisons: it provides comparability over our range of hypothetical species contexts 677 
using common, reasonable model assumptions. 678 

This model assumes unstructured population dynamics with no spatial dynamics. As such, it ignores the 679 
impacts of age, sex, connectivity, and spatial structure in harvest systems (Colchero et al., 2019; Miller et al., 680 



2019; Milner, Nilsen, & Andreassen, 2007). Susceptibility of different age classes to environmental variability 681 
can have significant feedbacks on population growth rates, likely to be particularly important in species where 682 
juvenile conditions correlate with adult fertility (such as the ungulates we model here) (Colchero et al 2019). 683 
Sex biases in harvest often, but not always, increase the negative impacts of hunting on a population (Milner, 684 
Nilsen, & Andreassen, 2007). We also assume that populations are closed, which can accentuate population 685 
declines, and are thus a more precautionary approach to employ (Miller, Furness, Trinder, & Matthiopoulos, 686 
2019), at least from the perspective of population persistence. 687 

The monitoring component is simulated by a single variation factor (mi,t) acting on Ni,t, to give an estimate of 688 
the population size (𝑁ప,௧

 ), to be used as the basis for management decisions.  689 

 (5)  𝑁ప,௧
 = 𝑁,௧  (1 + 𝑚,௧) 690 

where: 691 

(6)  𝑚,௧  ≈ 𝑁(𝑚
, 𝑚

௦ௗ) 692 

(7)  𝑚
  ≈ 𝑁(0,  𝑚௦ௗ) 693 

(8) 𝑚
௦ௗ  ≈ 𝑁(𝑚௦ௗ ,  𝑚௦ௗ௦ௗ)    694 

We assume that 𝑚௦ௗ, 𝑚௦ௗ , 𝑚௦ௗ௦ௗ are constant for each species context and variation scenario, and 695 
ultimately monitoring variation has no systematic bias overall. Monitoring variation is conceptualised to 696 
encompass all the processes of sampling and observation, monitoring data analyses, and belief formation. 697 
Variation across years simulates inaccuracy or imprecision in monitoring; potentially resolvable with 698 
improved effort or monitoring technique, and can be low or high. Variation of mean bias over replications 699 
simulates parameter uncertainty regarding bias in monitoring; resolvable with improved knowledge regarding 700 
the monitoring methodology, and can be low or high. In reality, monitoring effectiveness is likely to vary with 701 
respect to the population size: with larger populations, monitoring is likely to miss or double count more 702 
individuals, and counts potentially rounded. However, we do not consider that monitoring small populations 703 
might result in larger proportional errors. 704 

The management decisions component is partitioned into two parts. First, a harvest strategy is applied, 705 
converting 𝑁ప,௧

  into an initial quota, Qi,t, given a set of quota parameters (constants, C1, thresholds T1,T2, and 706 
proportions, P1, P2).  707 

(9)   𝑄,௧ =  

⎩
⎪
⎨

⎪
⎧

                                                                        
𝐶ଵ,                                                                         𝑁ప,௧

 ≤  𝑇ଵ

𝑁ప,௧
 (𝑃ଵ + (𝑃ଶ −  𝑃ଵ) ቀ

ேഢ, ି మ்

మ்ି భ்
ቁ,            𝑇ଵ ≤  𝑁ప,௧

 <  𝑇ଶ  

𝑃ଶ,                                                                           𝑇ଶ ≤  𝑁ప,௧


 708 

Using this definition, we construct harvest strategies defined for constant, proportional, threshold 709 
proportional, with harvest proportions either stable or increasing with population size (see parameter sets in 710 
Table S1.2). We assume that the harvest strategies and the associated parameters remain consistent through 711 
the timeframe. This equation simulates evidence-based scientific recommendations of quota size (and is 712 
therefore not rounded to an integer at this stage). 713 

Qi,t is then subject to random variation (𝑞,௧) to simulate the political interventions that often enter the quota 714 
setting process, to give a modified quota 𝑄,௧

ᇱ . 715 

(10)  𝑄,௧
ᇱ = 𝑄,௧ (1 + 𝑞,௧)          (rounded to nearest positive integer) 716 

(11)  𝑞,௧  ≈ 𝑁(0,  𝑞
௦ௗ) 717 



Variability in the quota is designed to simulate the impacts of political processes on quota development, and 718 
can either not exist (management exactly follows scientific evidence) or can introduce a ‘high’ level of 719 
variability. We assume there is no parameter uncertainty in this case, and only allow variation over years (not 720 
iterations), and we assume no overall systematic bias in quota variation. 721 

The harvest implementation component simulates imperfect harvest implementation, effected as a 722 
proportional variation (hi,t) around 𝑄,௧

ᇱ  to give the harvest (Hi,t). This amount is then removed from Ni,t.: 723 

(12)  𝐻,௧ = 𝑄,௧
ᇱ  (1 + ℎ,௧)          (rounded to nearest positive integer) 724 

(13)  ℎ,௧  ≈ 𝑁(ℎ
, ℎ

௦ௗ) 725 

(14)  ℎ
  ≈ 𝑁(0,  ℎ௦ௗ) 726 

(15) ℎ
௦ௗ  ≈ 𝑁(ℎ௦ௗ ,  ℎ௦ௗ௦ௗ)    727 

(16)  𝑁,௧ାଵ = 𝑁,௧ − 𝐻,௧  728 

Variation across years simulates stochasticity in the harvest, and can be low or high. This variation can be 729 
conceptualised as both environmental stochasticity (irreducible) and user-driven imperfections (reducible, for 730 
example through increased enforcement or other incentive to achieve the quota), and therefore partly reducible 731 
overall. Variation across replications simulates parameter uncertainty in regards to the bias in harvest relative 732 
to the quota; resolvable through increased knowledge of the harvesters, and trust of the harvesters in the quota, 733 
and can be low or high. We simplify this by assuming that there is an unbiased estimate of how much will be 734 
harvested given a quota. In reality, hunting efficiency may vary with respect to the quota. For example, in 735 
both moose (Hunt, 2013) and ptarmigan (Eriksen, Moa, & Nilsen, 2018) hunting effectiveness increases at 736 
low tag numbers. Our formulation of the harvest imperfection as a coefficient of variance factor means that 737 
the variance will be smaller at smaller quota sizes. 738 

A common conceptualisation of the functionality of a quota is to limit potential ‘tragedy of the commons’ by 739 
enforcing a limit on harvest, and this might be expected to produce a bias on harvest implementation such that 740 
it is more common for harvests to be below the quota than above. However, we note that in reality, quotas are 741 
often set in systems where the ‘total allowable catch’ or the maximum possible harvest legally possible under 742 
the set quota is much higher than the intended harvest (Bischof et al 2012). This is particularly common, for 743 
example, when quotas are specified with spatial or temporal specifications, or in terms of amounts per person. 744 
This means that decision makers need to estimate the relationship between the quota and the levels of harvest 745 
they intend to be taken (Moa, Eriksen, & Nilsen, 2017). Despite these critical assumptions, there are relatively 746 
few studies on imperfect harvest implementation in terrestrial wildlife systems (Bischof et al., 2012; Eriksen 747 
et al., 2018). In the current study, the quota and harvest components together define a system in which the 748 
quota is implemented with no systematic harvest bias. We conceptualize this quota as the ‘intended harvest’, 749 
or the amount expected to be harvested. We suggest that therefore the assumption that the simulated harvest 750 
may be normally distributed around the ‘intended harvest’ is reasonable, with the caveat it is unlikely to hold 751 
in all contexts. 752 

We do not account for feedbacks and directional bias likely in harvest implementation (Eriksen et al., 2018; 753 
Hunt, 2013), and more generally through the harvest system (Bieg, McCann, & Fryxell, 2017; Fryxell, Packer, 754 
McCann, Solberg, & Sæther, 2010). 755 

The evaluation component occurs after each simulation is complete, calculating the performance of each 756 
replicate over the entire timeframe, and summarising (means, medians and quantiles) over the scenario run. 757 
Evaluation metrics are designed to reflect different potential objectives and stakeholder concerns, and cover a 758 
number of socio-ecological (i.e. population-based) and harvest-based sustainability objectives (Table 1). 759 

As multiple sustainability metrics may be relevant to a context, we develop a number of composite metrics 760 
illustrating potentially common sets of metrics (Table 2). To simulate further different stakeholder 761 



perspectives, these composite sets may be summarised under several different ethics, and we compare two of 762 
these: Utilitarian (‘aggregate good; translatable as a sum or average of the set of metrics), and Rawlsian 763 
(‘maximin’; maximising the smallest benefit across the set of metrics). To ensure scores are comparable 764 
across harvest systems for each scenario, we scale individual metrics relative to the largest mean score 765 
achieved by any harvest system and parameter set across the environmental context. Composite metrics are 766 
compiled prior to summarization, due to non-independence of the individual metric scores (see figure S1.2). 767 

In summary, we assume that there can be yearly variation in r, m, q, and h, and variation over replications for 768 
r, m, and h. We assume variability in r, m, and h, can be low or high, simulating partial resolvability of these 769 
phenomena. We assume variability in q can be zero or high. In all the variable parameters, we assume normal 770 
distributions (as specified in the above equations, using the species specific parameters given in section S1.2), 771 
with no correlation of error. We select normal distributions as we assume the variability is due to a number of 772 
different sources, and the central limit theorem would suggest that these might coalesce to a normal 773 
distribution. In the monitoring, quota, and harvest variation, for simplicity we assume a coefficient of 774 
variation function proportional to the population or quota.  775 

We made no attempt to value the monetary aspects of harvest systems (Gren et al., 2018), nor implementation 776 
costs (Kritzer et al., 2019). We note that in our analysis, by limiting the time series to 20 years but otherwise 777 
not adjusting for time discounting, we effectively default to a zero discount until year 20, and full discount 778 
thereafter. The consequences of this are that maximizing harvest objectives can drive populations to 779 
undesirably low levels when not checked by other objectives or inherent risk of variability in the species 780 
context. This results in some scenarios – particularly noticeable in the constant harvest strategy for the ‘slow’ 781 
species – resulting in the objective of maximizing harvest (without any other constraints) causing a draw 782 
down on the population to the point at which harvests are limited by the population size (often extinction). 783 
While this is not an acceptable scenario in any definition of ‘sustainability’ we use it as a cautionary note as to 784 
what focus on certain metrics and ignorance of others may cause. Applying time discounting across the time 785 
series is likely to further increase this (undesirable) effect, even with infinite time horizons (Lande et al., 786 
1994), as they would place more value on larger harvests in the earlier points in the time frame, and discount 787 
smaller harvests caused by population decline in later years. There is no universally applicable method for 788 
defining appropriate discount rates for non-monetary values (Botzen & van den Bergh, 2014), but here we 789 
note that despite the absence of a time discounting procedure, the limited time frame of assessment effects this 790 
phenomenon in this case. 791 

As we are not searching for equilibria, we do not apply a ‘burn-in’ time period, but rather start the population 792 
from the initial population given by the species parameters. We also do not consider time lags in management 793 
decisions, which can be common particularly in low-knowledge scenarios (Manning, Stevens, & Williams, 794 
2019). 795 

We also assume no other temporal feedbacks aside from those effected by density dependence and application 796 
of the harvest strategy to generate the initial quota. However, these may be common features of management 797 
systems, for example populations may be more prone to environmental variability under high population 798 
densities, and harvesters and managers may react systematically to different population densities and quotas 799 
(Bieg, McCann, & Fryxell, 2017; Fryxell, Packer, McCann, Solberg, & Sæther, 2010).  800 



Figure S1.1: Overall MSE model framework 801 

 802 



Figure S1.2: Evaluation framework: scaling and calculation of composite metrics. 803 
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S1.2 Hypothetical species and parameters 807 
We develop cases based on three hypothetical species spanning a range of common game species: the great-808 
unicorn, the lesser-unicorn, and the phoenix (Table S1.1). We loosely base these hypothetical species on 809 
wildlife species harvested in a Norwegian context. To provide consistency between species, overall variation 810 
in the growth rate is specified to be equal to the species growth rate in the high variability scenario, and half of 811 
the species growth rate in the low variation scenario.  For each variable parameter (here generalised to x), total 812 
variation (xTSD) is split between replications and years, by partitioning the overall standard deviation equally 813 
into the iteration level standard deviation (that determines the vector of the parameter over the years, xsdm), and 814 
the scenario level mean standard deviation (that determines the parameter mean value over the iterations, 815 
xmsd).  816 

(17)  𝑥௦ௗ = 𝑥௦ௗ =
௫ೄವ

ଶ
  817 

The standard deviation of the iteration level standard deviation (xsdsd)was defined at 1/3 of the standard 818 
deviation of the mean standard deviation. Simulations of 𝑥

௦ௗ were truncated to remain positive, at a minimum 819 
of 0.0001. 820 

 (18)  𝑥௦ௗ௦ௗ =
௫ೞ

ଷ
  821 

The great-unicorn resembles a large ungulate (e.g. moose, Alces alces). It is assumed to have a relatively low 822 
growth rate, carrying capacity, monitoring variation, and critical thresholds (Table S1.1). A description of 823 
moose population and harvest dynamics in a Scandinavian context is available in Sæther et al. (2001). 824 

The lesser-unicorn resembles a small ungulate (e.g. roe deer, Capreolus capreolus), with a moderate growth 825 
rate, carrying capacity, monitoring variation, and critical thresholds. A description of roe deer population and 826 
harvest dynamics is available in Andersen et al. (1998). 827 

The phoenix is reflective of a game bird (e.g. willow ptarmigan, Lagopus lagopus), with a relatively large 828 
potential growth rate, carrying capacity, monitoring variation, and critical thresholds. A description of willow 829 
ptarmigan population and harvest dynamics in a Scandinavian context is available in Eriksen et al. (Eriksen et 830 
al., 2018). 831 

From these parameters, we can calculate the standard maximum sustainable yield (MSY) conditions given no 832 
stochasticity, occurring at K/2, and with an annual harvest of rK/4 under the logistic growth assumption (with 833 
values rounded to the nearest integer). For the great-unicorn, MSY is expected at a population of 1112 834 
(notably larger than the moderate starting population, the high critical threshold, and close to the overabundant 835 
critical threshold), allowing an annual harvest of 28 individuals. For the lesser-unicorn, MSY is expected at a 836 
population size of 13900 (also larger than the moderate starting population, and the high critical threshold), 837 
allowing a harvest of 1390 individuals. For the phoenix, MSY is expected at 30000 (also larger than the 838 
moderate starting population, and the high critical threshold) with a harvest of 7500. We provide these 839 
calculations for comparison only: MSY using these calculations is a theoretical construct under strict 840 
assumptions and will often overestimate the true maximum sustainable yield (Quinn & Collie, 2005). We also 841 
note that, given the parameters used, the MSY population level is often higher than desirable for other 842 
stakeholder concerns, particularly in the ungulate systems. 843 
 844 
  845 



Table S1.1: Species parameters and variable parameter assumptions 846 
We defined three species contexts, which specified the value of fixed constants for mean r, K, critical 847 
thresholds, and starting populations, and the level of variations deemed low and high for r and m. While these 848 
are loosely based on real species, the values are specified to facilitate scenario comparisons. We also provide 849 
here parameters used for quota and harvest variability, assumed to be equal across the species gradient. 850 
Variable parameters are given as the overall mean (xmm) and overall standard deviation (xTSD) for low and high 851 
variation scenarios; a description of how these are partitioned into yearly and iteration level distribution 852 
parameters is provided in section S1.2.  853 

Component Parameter – 
variation scenario 

 

Great-
unicorn 

Lesser-
unicorn 

Phoenix 

Mean 
xmm 

SD 
xTSD 

Mean 
xmm 

SD 
xTSD 

Mean 
xmm 

SD 
xTSD 

Resource 
r  

low 
high 

0.05 
0.025 
0. 05 

0.2 
0.1 
0.2 

0.5 
0.25 
0.5 

K 2225 27800 60000 

Monitoring 
m low 

high 
0 

0.05 
0.15 

0 
0.1 
0.3 

0 
0.15 
0.45 

Quota  q 
none 
high 

0 
0 
0.1 

0 
0 
0.1 

0 
0 
0.1 

Harvest h 
low 
high 

0 
0.05 
0.25 

0 
0.05 
0.25 

0 
0.05 
0.25 

Evaluation critical 
thresholds 

Extinction 
Quasi-extinction 
Low 
High 
Overabundant 

1 
60 
300 
900 
1200 

1 
167 
2780 
11120 
19460 

1 
5000 
10000 
25000 
40000 

Starting populations 
(respective to critical 
thresholds) 

Moderate start  
Quasi-extinct start   
Overabundant start 

600 
60 
1200 

6950 
167 
19460 

17500 
5000 
40000 

 854 

S1.3 Harvest strategies, quota parameters and optimization 855 
Harvest strategies analysed include ‘constant’ (a set number of individuals harvested yearly), ‘proportional’ 856 
(a set proportion of the population harvested yearly), ‘threshold proportional’ (a set proportion taken yearly, 857 
provided the population is above a certain threshold), and ‘threshold increasing proportions’ (provided the 858 
population is above a certain threshold, the proportion taken increases as the population size increases). These 859 
harvest strategies are defined by the quota parameters that define constants, thresholds, and proportions (Table 860 
S1.2).  861 

Harvest strategies (also known as harvest control rules) can be either strictly followed to develop quotas, or 862 
form the principles behind quota setting (Kvamsdal et al., 2016). Here we assume the former (through eq. 9) 863 
although allow some flexibility for adjustment (through eq. 10). These harvest strategies are variably termed 864 
in the literature. Some examples: 865 

 Constant: fixed-quota, constant catch (Deroba & Bence, 2008). 866 
 Proportional: constant mortality rate, constant-F, this is one of the most commonly used rules in 867 

fisheries, often suggested to be optimal with perfect information (Deroba & Bence, 2008). 868 
 Threshold-proportional: proportional threshold, developed specifically for stochastic & uncertain 869 

contexts (Engen, Lande, & Sæther, 1997); also called ‘threshold’ by some fisheries sources (Deroba 870 
& Bence, 2008). Note in this case, we apply the proportion with respect to the whole population, if 871 
above a threshold (c.f. applying it to the proportion of the population above the threshold). 872 



 Threshold-increasing-proportional: increasing rates above a threshold, biomass-based or adjustable 873 
rate rules (Deroba & Bence, 2008). Similarly to threshold proportional, we apply the proportion with 874 
respect to the whole population, if above the threshold. 875 

Other rules not examined here include other variations on threshold-based rules. Including constant 876 
escapement (100% take above a threshold), decreasing rates below a threshold, conditional constant catch 877 
(constant amount, unless removing that amount would exceed some predetermined maximum mortality rate) 878 
with variations on this including no take below the threshold, proportional take below the threshold. The 879 
intentions for the various rules including those not utilised here are summarised in (Deroba & Bence, 2008). 880 
Of note, the harvest strategies we analyse here are focused on the population dynamics within a system, as we 881 
do not consider the relative monetary costs and benefits of harvesting. Further harvest strategies including the 882 
monetary economics of harvesting are possible (Kvamsdal et al., 2016). 883 

Harvest rules implemented for small game birds (grouse species) in Europe and North America are reviewed 884 
in (Moa et al., 2017). They note that proportional and threshold-proportional principles are common, however 885 
in practice bag sizes are often relatively more limited at large population sizes, against recommendations 886 
(Moa et al., 2017). 887 

Each harvest strategy can be utilised with different quota parameters, and it is this combination (of harvest 888 
strategy and quota parameters) that forms the main ‘decision variables’ in the MSE model. To sample possible 889 
quota parameter options, we employed either a stopping rule or a grid search method, incrementally varying 890 
the parameters across the option space (Table S1.2). This search method does not cover the entire option space 891 
defined, but represents a pragmatic approach towards illustrating trade-offs across the parameter space, and 892 
optimization in relevant parameter space given the volume of parameter options available, and given the 893 
likelihood of multiple optima. While this might result in fine details of the comparisons being inaccurate, we 894 
expect the main conclusions to hold, as we saw no severe gaps in the trends across the parameter space (see 895 
Main text and Supporting Information S2). 896 

  897 



Table S1.2: Harvest strategies, quota parameters, and heuristics for searching the option 898 
space. 899 
Initial harvest quotas are developed such that (as defined in eq. 9) the constant, C1, applies from a population 900 
of 0 until the threshold T1. The proportion P1 then applies, linearly transitioning to P2 at the threshold T2. 901 
After this threshold, the proportion continues at P2. With this same set of equations, we can define the 902 
constant, proportional, threshold-proportional, and threshold-increasing-proportional harvest strategies. We 903 
simulate over a range (option space) of quota parameters for each harvest strategy, using the increments and 904 
stopping rule (or searching the full option space). 905 

Harvest 
procedure 

Quota parameters (option space) 

C1 P1 P2 T1 T2 

Constant 0 : stop 0 0 Inf Inf 
Proportiona
l 

0 0.01 : 
0.50 

= P1 0 Inf 

Threshold-
proportiona
l 

0 0.01 : 
0.50 

= P1 quasi-extinction : 
moderate starting 
population 

Inf 

Threshold-
increasing-
proportiona
l 

0 0 : 0.50 0.1 : 1 
subject to: 
P2 at 0.1-0.5 
above P1 

quasi-extinction : 
moderate starting 
population 

overabundant 
critical threshold 

 Increments Stopping rule 

Constant Increase C1 in increments of 1% of moderate staring 
population  
   

Stop if probability of 
non-extinction = 0 

Proportiona
l 

Increase P1 in increments of 0.01 
 

Stop if probability of 
non-extinction = 0 

Threshold-
proportiona
l 

T1 increments of 1% of (moderate starting population – 
quasi-extinction)  
P1 increments of 0.01 

Full grid search  
 

Threshold-
increasing-
proportiona
l 

From P1 = 0 to 0.26:  
 T1 increments of 2.5% of (moderate starting 

population – quasi-extinction) 
 P1 increments of 0.01 

From P1 = 0.28 to 0.58:  
 T1 increments of 5% of (moderate starting 

population – quasi-extinction) 
 P1 increments of 0.02 

Over all of these, increment the difference between P1 and 
P2 (the P2 gap) by 0.1 

Full grid search  
 

 906 

S1.4 Scenarios and comparisons 907 
To examine the performance of the harvest strategies, we first focused on comparing results for each species 908 
context and harvest strategy for scenarios where all variability in r, m, q, and h were either all low (low 909 
variability) or all high (high variability), and starting populations were at the midpoint of low and high critical 910 
thresholds (moderate starting population). This means that the magnitude of uncertainty was correlated 911 



between the components, however the pattern of uncertainty across years was random for all components. We 912 
then repeated the simulations with populations starting at quasi extinction (low starting population), and 913 
populations starting at overabundance (high starting population), to examine the robustness of the harvest 914 
strategies to extreme perturbations in population size and the recovery potential in such cases. Such 915 
simulations are also relevant for special management cases, for example harvest of an overabundant invasive 916 
species, or recovery of endangered species into harvestable populations. Simulations were run such that each 917 
harvest strategy and quota parameter variation is run with exactly the same starting and variable conditions (r, 918 
m, q, h) under each respective scenario (species context, variability level, and starting population size) 919 
combination. 920 

We tested both outcomes based on the ‘true’ simulated populations Ni,t, as well as metrics based on the 921 
simulated monitoring data (𝑁ప,௧

 ), but as the latter were virtually identical to the former in this case (as might 922 
be expected with normal distributions on errors) we report only on Ni,t. 923 

In this analysis, we focus on the implications of alternative harvest strategies and sustainable metrics, and 924 
therefore only test the cases of ‘low’ and ‘high’ variability for each hypothetical species, and do not resolve 925 
here which sources of variability or uncertainty are most influential or valuable to address (Canessa et al., 926 
2015; Davis, Chadès, Rhodes, & Bode, 2019). 927 

Scenarios 3 and 4 simulate recovery of populations from quasi-extinction levels, at low and high variability 928 
scenarios respectively, via the use of a single harvest strategy set quota parameters across the entire time-929 
frame. The great-unicorn was largely unable to reach a stable population level, even with zero harvest, for any 930 
variability scenario. This is not unexpected given the mean population growth rate specified for this species (r 931 
= 0.05) under the given time frame (20 years), and the critical thresholds specified (from a starting point of 932 
quasi-extinction = 60, population growth without harvest would be expected to increase the population to 159 933 
(60 x (1 + 0.05)20 ), which remains below the low critical threshold = 300). There could be a higher level of 934 
recovery of great-unicorn above the quasi-extinction critical threshold for the more complex harvest 935 
strategies, and interestingly the high variation scenario performed considerably better than the low variation 936 
scenario in this regard, because more iterations received higher population growth rates, while thresholds 937 
minimized losses. The lesser-unicorn showed more recovery, holding stable population for around four years, 938 
across all harvest strategies and variation scenarios. The stable population outcomes were quite variable, 939 
however, and while the high variability scenario achieved all years at above the quasi-extinction critical 940 
threshold, the higher variability scenario achieved suboptimal scores with high levels of variability. The 941 
phoenix, with a much higher rate of population growth on average, would be expected to attain a better 942 
recovery, and had stable population scores only slightly lower than the baseline moderate start population 943 
scenario. The lower constant harvest rate needed to effect this increased the above quasi-extinct scores for this 944 
harvest strategy, but with a corresponding likely decline in below high. 945 

Scenarios 5 and 6 simulate harvesting of populations starting at overabundant levels, at low and high 946 
variability scenarios respectively, via the use of a single harvest strategy set quota parameters across the entire 947 
time-frame. Results were similar to the baseline scenarios, albeit with higher harvest mean and lower stable 948 
population scores, particularly for the slower-larger species with the effect declining for phoenix. Typically 949 
differences manifested in compatibility sets being classified as high populations rather than stable populations, 950 
in both the unicorn species. 951 
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Table S1.3: Scenarios, applied for each species and harvest procedure 953 
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– moderate 
starting 
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1 mid low low low low low none low 

High 
variation – 
moderate 
starting 
population 

2 mid high high high high high high high 

Low variation 
– low starting 
population 

3 low low low low low low none low 

High 
variation – 
low starting 
population 

4 low high high high high high high high 

Low variation 
– high 
starting 
population 

5 high low low low low low none low 

High 
variation – 
high starting 
population 

6 high high high high high high high high 
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 1020 

S2.1 Scores for composite sustainability metrics across decision variables 1021 
This supporting information provides variants of the Figure 2 results – composite scores across quota 1022 
parameter decision variables – for all scenarios, and includes measures of distribution (variability) across 1023 
iterations. 1024 

Composite metrics are shown across the quota parameter options available in each harvest strategy. For the 1025 
threshold-proportional and threshold-increasing proportions, the maximum and minimum expected values are 1026 
shown (i.e. the maximum and minimum mean values from all the alternative thresholds and gaps between 1027 
high and low proportions). These are shown individually for each species and start population/variability 1028 
scenario, including the mean, median, and quantile ranges. Because scores are scaled based on mean scores, 1029 
quantile ranges above mean scores can be above 100.  1030 



Figure S2.1.1 Sustainability metrics, Great-unicorn 1031 
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Figure S2.1.2 Sustainability metrics, Lesser-unicorn 1041 
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Figure S2.1.3 Sustainability metrics, Phoenix 1049 
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S2.2 Percentage optimal, and mean rank and scores, by strategy 1056 

Figure S2.2.1 Percentage optimal, rank, and mean scores 1057 
These figures show, within the different context groups, the percentage of cases a strategy is considered optimal (i.e. having the highest score; note these will 1058 
not add to 100 as multiple strategies can have the same score and thus be jointly optimal), the mean rank (i.e. ranked by score, rescaled to 0:100, with 100 1059 
being best), the mean relative score (out of a maximum of 100, showing relative performance against other strategies), and mean raw score (showing 1060 
perceived performance of the strategy). The first set of panels show overall and single factor groups, the second set selected two-factor groups, and the third 1061 
set select three-factor groups. Selected groups focus on Species, Ethic and Set. See below for a breakdown of multi-strategy optimality. 1062 
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This is the same as above, with different ordering of the three panel factors. 1065 

 1066 

  1067 



Figure S2.2.2 Percentage optimal strategy or strategies 1068 
These figures show, within the different context groups, the percentage of cases a strategy (or multiple strategies) is considered optimal. Two summary 1069 
columns are included: ‘is Adaptive’, the percentage of cases where the optimal strategy is one or more of the adaptive strategies (i.e. proportional, threshold-1070 
proportional, or threshold-increasing-proportions), and ‘is Threshold’, the percentage of cases where the optimal strategy is one or more of the threshold-1071 
based strategies (i.e. threshold-proportional or threshold-increasing-proportions). The first set of panels show overall and single factor groups, the second set 1072 
selected two-factor groups, and the third set select three-factor groups. Here, instances where a strategy group is not ever optimal are allocated NA (grey) 1073 
whereas other scores are rounded to the nearest integer. 1074 

 1075 
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And again with different ordering of the three-factor categories: 1077 

 1078 

 1079 
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Figure S2.2.3 Environmental contexts by evaluation context 1081 
Individual scores with rank (panel set columns), for each harvest strategy (panel columns), for each environmental context (species scenario, panel set rows) 1082 
and evaluation contexts (panel rows). This shows how, in every environmental context, every harvest strategy could be viewed as optimal, or very close to. 1083 
However, for constant harvests, optimality is only found in the Rawlsian ethics for the faster life history species (and very low starting populations with high 1084 
variability in the Great-unicorn) – and often a result of an uninformative metric (i.e. all strategies score a zero in this metric). 1085 

 1086 



S2.3 Conditional inference trees for optimal harvest strategy and perceived sustainability 1087 
Conditional inference trees for optimal harvest strategy and perceived sustainability. In optimal harvest trees, where multiple strategies give equally good (or 1088 
bad) outcomes, these are allocated to multi-strategy classes. 1089 

Codes: 1090 

Ethic: Utilitarian = Utilitarian, Rawlsian = Rawlsian 1091 

Set: Complete = Comp, Complete (SmallGame) = Complete-sg = Comp-s, Harvest focus = Harvest = Harv, Population focus = Popn, Classic pop.+harv. = 1092 
Classic+p = Clp+h, Classic harv. = Classic = Clh 1093 

Outcome: Raw = Raw, Relative = Relative 1094 

Species: Great-unicorn = G-unicorn = GU, Lesser-unicorn = L-unicorn = LU, Phoenix = Phoenix = Phx 1095 

Variability: High = High, Low = Low 1096 

Starting population (StartPop): Moderate = Mod, Quasi-extinct = Low, Overabundant = High 1097 

Strategy: Constant = Const. = Cnst, Proportional = Prop. = Prop, Threshold-proportional = Thr.prop. = TP, Threshold-increasing-proportions = Thr.inc.prop. 1098 
= TIP 1099 

Perceived outcome: Good = score of 85 ≤ 100, Bad = score of 0 ≤ 85. 1100 
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Figure S2.3.1 Optimal harvest strategy, all species 1102 
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Figure S2.3.2 Optimal harvest strategy, Great-unicorn 1104 
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Figure S2.3.3 Optimal harvest strategy, Lesser-unicorn 1106 
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Figure S2.3.3 Optimal harvest strategy, Phoenix 1108 

 1109 

 1110 



Figure S2.3.4 Perceived sustainability, all species 1111 
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Figure S2.3.5 Perceived sustainability, Great-unicorn 1113 
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Figure S2.3.6 Perceived sustainability, Lesser-unicorn 1115 
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Figure S2.3.5 Perceived sustainability, Phoenix 1117 
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S2.4 Pairwise comparisons 1119 
As our framework systematically modelled all contextual factors in a factorial design, we are able to contrast 1120 
factors based on the pairwise differences, i.e. when all other factors are held constant. This allows us to 1121 
determine the independent influence of different contextual factors. Here we plot the distributions of the 1122 
pairwise comparisons as comparator 1 – comparator 2, thus, when the score is negative, comparator 2 is 1123 
better, and when the score is positive, comparator 1 is better.  1124 

Figure S2.4.1: Ethical perspective pairwise comparisons 1125 
Distributions of pairwise differences between ethical perspectives. Values in grey panels show proportions of 1126 
‘better’ and ‘worse’ outcomes for the comparisons. Note these may not sum to 1 as a percentage may not 1127 
change. Violin plots are coloured by the median score. White lines within the violin plots mark the 5% and 1128 
95% quantiles, and the boxplots the median and quartiles, with whiskers extending to 1.5 times the 1129 
interquartile range. There are n = 432 cases in each violin. 1130 

 1131 

Figure S2.4.2: Harvest strategy pairwise comparisons 1132 
Distributions of scores by, and pairwise differences between harvest strategies, differentiated by ethic and 1133 
comparator. See Figure S2.2.1 for full description of plot details. There are n = 108 cases in each violin. 1134 

 1135 
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Figure S2.4.3: Composite set pairwise comparisons  1138 
Distributions of scores by, and pairwise differences between composite sets, differentiated by ethic and 1139 
comparator. See Figure S2.2.1 for full description of plot details. There are 72 cases in each violin. 1140 
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Figure S2.4.4: Environmental context comparisons 1143 
Distributions of scores by, and pairwise differences between, environmental context factors, differentiated by 1144 
ethic and comparator. See Figure S2.2.1 for full description of plot details. 1145 
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