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Abstract 9 

Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and 10 

diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation 11 

models can provide heuristics that bridge the gap between highly simplified theoretical models and highly 12 

context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge 13 

contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We 14 

develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in 15 

ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of 16 

contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. 17 

Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation 18 

contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest 19 

strategies. While adaptive harvest strategies were most frequently preferred, particularly for more complex 20 

environmental contexts (e.g. high uncertainty or variability), our simulations map out clear cases where these 21 

heuristics may not hold. Importantly, simple composite metrics popular in the theoretical literature often 22 

diverged from holistic metrics that better reflect the trade-offs in real world applied contexts. This 23 

demonstrates the potential value of heuristics for guiding applied management. 24 
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Background 28 

Harvest is one of the most common forms of management for many wildlife species [1,2]. Wildlife harvest is 29 

important socially, culturally and economically, both for creating direct benefits (e.g. meat, income, 30 

recreation, tradition) and to avoid costs due to human-wildlife conflicts (e.g. vehicle collisions, predation on 31 

domestic animals, and competition or pathogen spread between wild and domestic stock) [1,3–5]. Because of 32 

their socio-economic and ecological importance, wildlife-harvest systems are typically managed with an 33 

overarching aim of sustainability [6]. Yet ‘sustainability’ is a multi-faceted, ill-defined, and evolving term: 34 

whilst the early optimal harvest literature focused on ensuring persistence of the species and maximal 35 

harvests, contemporary perspectives on sustainability encompass diverse economic and social concepts, 36 

ecological, habitat, and ecosystem-based criteria, and precaution under uncertainty [7,8]. This includes an 37 

increasing appreciation of diverse stakeholder perspectives (i.e. social equity) [9,10], animal welfare, animal 38 

rights, and ‘compassionate’ conservation [11,12]. 39 

Under the lens of these complexities and stakeholder conflicts, it is no surprise that concepts of sustainability 40 

are often poorly applied in wildlife harvest systems [6]. Established theory on optimal harvest strategies can 41 

often seem highly abstract through a focus on limited objectives, typically maximization of harvest volumes 42 

without sacrificing population persistence [13–16]. More recently, the objectives have included variability of 43 

population sizes and harvest [17]. While some highly detailed applied models exist [e.g. 2,5,18–21], in many 44 



cases these are unavailable: many wildlife management systems lack all but the most rudimental parameters, 45 

due to limited resources and poorly developed institutional frameworks, [6,22]. In practice determining quotas 46 

in terrestrial systems is often an inexact, adaptive science at best [23]. Further, even in the best studied cases, 47 

important elements of the social-ecological system remain uncertain or contested [24–28]. 48 

Heuristics are practical and accessible guidelines designed to give good ‘rules-of-thumb’, e.g. management 49 

recommendations that lead to good outcomes over a wide range of cases and contexts [29]. In a wildlife 50 

management context, heuristics developed from semi-complex case studies can bridge the gap between highly 51 

simplified models developed to demonstrate theory, and highly context-specific case studies [30]. Benefits to 52 

addressing this space are three-fold. First, more nuanced heuristics can be developed for application in 53 

knowledge-poor contexts [29]. This is required in wildlife harvest because in most cases the socio-ecological 54 

contexts are more complex than those addressed by existing theoretical models. From an implementation 55 

perspective, managers are also more likely to accept and utilize evidence that is more specific to their context 56 

[31–33]. Second, heuristics can help to guide sensitivity analyses in knowledge-rich contexts, where complex 57 

case-study models can be developed, but the range of parameters is too great for a meaningful development or 58 

interpretation of a global sensitivity analysis [34]. Third, heuristics can improve the understanding of context 59 

comparability. Causal inference, i.e. where specific causal impacts can be robustly identified (e.g. through 60 

analysis of pairwise comparisons in which only the variable of interest changes) is challenged in complex 61 

socio-ecological contexts such as wildlife harvest due to the low number of comparable empirical examples to 62 

study [35], and this often results in comparisons across contexts [32]. Heuristics at semi-complex levels can 63 

give us knowledge on the potential comparability of different contexts, and thereby inform the appropriate 64 

transfer of causal inference estimates across different contexts [36]. 65 

Heuristics can be derived by induction from empirical experience, or by deduction from simulation models 66 

[37,38]. However, it is challenging to robustly derive general inferences from empirical case studies in 67 

wildlife harvest, because of the conceptual, logistical, and ethical difficulty in conducting experimentation at 68 

the scales required [35,39]. As a result, mathematical and stochastic simulation models are well established in 69 

the conservation and wildlife-management literature. Typical simulation models focus on stochastic 70 

population dynamics, for example applied in population viability analysis [6,21,40]. In traditional harvest 71 

models, population dynamics is coupled with harvest to assess how variation in harvest intensity affects 72 

population persistence and harvest off-take [14,16,17]. Management Strategy Evaluation (MSE) models 73 

expand from these, encompassing stochastic simulations of management in socio-ecological systems 74 

incorporating a more holistic set of ecological and social components [41]. MSE models are well established 75 

in fisheries [42] and increasingly used in terrestrial management scenarios, typically as highly detailed case 76 

study simulations [e.g. 2,5,18–21]. MSE models have been used to address key knowledge gaps regarding the 77 

implications of uncertainty in the multiple socio-economic facets of wildlife harvest systems [3], and allow 78 

levels of systematic assessment impossible in real-world experiments. From fisheries management systems, 79 

literature syntheses of MSE case studies that contrast different harvest strategies suggest strong context-80 

dependencies of optimal strategies [38]. No such synthesis has been conducted for terrestrial systems. 81 

To develop heuristics for sustainable terrestrial wildlife harvest, we constructed a semi-complex MSE 82 

framework that allowed us to assess sustainability under a range of environmental contexts and from diverse 83 

socio-ecological perspectives. We simulate a set of species from across the fast-slow life-history gradient, a 84 

commonly used heuristic for theory development in wildlife demography describing patterns of covariation in 85 

life-history traits across body size, longevity, and fecundity [43,44]. In contrast to most previous harvest 86 

system models that focus on a narrow set of objectives, we evaluate sustainability over 10 evaluation metrics 87 

combined into 6 stakeholder perspectives relevant for terrestrial contexts. To simulate the variability often 88 

inherent in socio-ecological systems, we include multiple types of variability [45] representing both temporal 89 

stochasticity, as well as parameter uncertainty related to monitoring, management decision, and harvest 90 

implementation components. This MSE framework bridges a gap between simplified harvest models with a 91 

narrow focus on harvest off-take and highly context-specific applied case studies, with the intention of 92 

producing heuristics that are directly applicable to real-world settings for which detailed case-specific models 93 



are unavailable. We compare the 289,848 simulation models to uncover: 1) How do wildlife harvest outcomes 94 

differ in different contexts? 2) How do different contexts influence optimal harvest parameters in the different 95 

systems? 3) Which harvest systems are optimal in different contexts? 4) How much can decision-making 96 

improve through integration of environmental and evaluation context-specific heuristics? 97 

Methods 98 

We develop a MSE model that generalises a terrestrial wildlife-harvest system, with components of 1) 99 

resource dynamics, 2) monitoring observations, 3) quota setting, 4) harvest implementation, and 5) 100 

sustainability evaluation. Simulations occur in yearly time steps (t), across a time series of 20 years (broadly 101 

considered long term for applied management plans), with multiple replications (i = 1000) per scenario. Full 102 

model description and parameter values are available in Supplementary S1, and summarised here. 103 

MSE framework 104 

The MSE framework developed here consists of five main components (Figure 1), representing the main 105 

components of a socio-ecological harvest system. The resource component simulates growth of a population 106 

Ni,t, using logistic growth determined by the population’s intrinsic growth rate, ri,t, and carrying capacity, K. 107 

The monitoring component is simulated by a single variation factor (mi,t) acting on Ni,t, to give an estimate of 108 

the population size (𝑁𝑖,𝑡̂), to be used as the basis for management decisions. The management-decisions 109 

component comprises two parts. First, a harvest strategy is applied, converting 𝑁𝑖,𝑡̂ into an initial quota, Qi,t, 110 

given a set of quota parameters. Qi,t is then subject to random variation (𝑞𝑖,𝑡) to simulate variability of 111 

stakeholder influence during the quota setting process, to give a modified quota 𝑄𝑖,𝑡
′ . The harvest 112 

implementation component simulates imperfect harvest implementation, effected as variation (hi,t) around 113 

𝑄𝑖,𝑡
′  to give the realised harvest (Hi,t). This amount is then removed from Ni,t, before continuing to the next 114 

timestep. Stochastic parameters include r, m, q, and h, which simulate environmental stochasticity, imperfect 115 

implementation, and parameter uncertainty. We assumed that the uncertainty followed a normal distribution, 116 

partitioned over years (t) and replications (i).The evaluation component occurs after each simulation is 117 

complete, calculating performance metrics of each iteration over the entire timeframe, and summarising over 118 

replications in the scenario run (see details below and in Supplementary S1). 119 

Environmental context and decision variable parameters 120 

In our modelling framework, species life-history, level of environmental variability and parameter uncertainty, 121 

and starting population scenarios collectively represent the environmental context within which the 122 

simulation takes place. We simulate three species spanning a slow-fast life-history gradient of common game 123 

species (Table S1.1). The species are based on wildlife harvested in a Norwegian context, but with global 124 

relevance. The moose (Alces alces) is a large ungulate, with a relatively low growth rate, carrying capacity, 125 

monitoring variation, and critical thresholds for evaluating population size. The roe deer (Capreolus 126 

capreolus) is a small ungulate with a moderate growth rate, carrying capacity, monitoring variation, and 127 

critical thresholds. The willow ptarmigan (Lagopus lagopus) is a game bird with a large potential growth rate, 128 

carrying capacity, monitoring variation, and critical thresholds. 129 

For each species we simulated two variability scenarios, where variability in r, m, q, and h was either low or 130 

high, to represent systems with different variability and/or parameter uncertainty. Each of these species -131 

variability scenarios were coupled with three distinct scenarios for the population size at the start of the 132 

simulation period: 1) the midpoint of low and high critical thresholds (moderate), 2) quasi-extinction, and 3) 133 

overabundance. Alternative starting populations test the robustness of the harvest strategies to extreme 134 

perturbations in population size, as well as being relevant for special management cases (e.g. overabundant 135 

species, or recovery of endangered species into harvestable populations). For each species, variability and 136 

starting population scenario combinations are identified numerically (SID 1-6) defined in Figure 1. In total, 137 

we evaluated 3 species × 2 variability × 3 starting population size scenarios, yielding a total of 18 138 

environmental contexts.  139 



For each of these environmental scenarios, we evaluated a range of harvest alternatives. The 4 harvest 140 

strategies and their respective range of harvest parameters together represent decision variables. We define 141 

the harvest strategy to include constant harvest (a set number of individuals harvested yearly), proportional 142 

harvest (a set proportion of the population harvested yearly), threshold-proportional harvest (a set proportion 143 

of the population taken yearly, provided the population is above a certain threshold), and a no harvest 144 

baseline. Harvest parameters define the intensity of harvesting under a given harvest strategy. For example, 145 

for constant harvest, the ‘constant’ parameter specifies the fixed annual quota size, and for proportional 146 

harvest the ‘proportion’ parameter specifies the harvest fractions. We searched across a wide range of 147 

constants, proportions, and thresholds in order to identify and compare optimal strategies across a diversity of 148 

potential objectives (see Table S1.2). Within one simulation, the harvest strategies and parameters remain 149 

consistent throughout the timeframe, although the simulated harvests themselves vary due to variability in 150 

quota setting, available population size, and harvest imperfections. 151 

Evaluation contexts 152 

In our MSE framework, evaluation contexts are designed to reflect different stakeholder values and 153 

perspectives relevant to terrestrial wildlife harvest scenarios. We first define 10 individual metrics 154 

representing different stakeholder objectives over various socio-ecological and harvest-based sustainability 155 

objectives (Table 1), and then combine them into six composite scores representing alternative evaluation 156 

contexts with different emphases (Table 2). We standardise each individual metric so that 0 represents the 157 

worst score (e.g. zero years of stable population, a mean harvest of zero, or the maximum observed harvest 158 

variability), and 100 represents the most desirable expected outcome possible (e.g. all years with stable 159 

population, zero harvest variability, or the largest observed harvest) over all replications and decision 160 

variables for each respective environmental context. Full details and summaries of raw and transformed scores 161 

are provided in Supplementary S1.  162 

Evaluation contexts are represented by the composite scores via the individual metrics contributing to the 163 

composite score. These range from a complete set including all metrics, to a classic set that includes metrics 164 

most commonly included in the classic theoretical literature, namely maximize harvest and population 165 

persistence. Other sets represent particular contexts, such as a focus only on population or harvest related 166 

metrics. Composite metrics are the mean score of the set of individual metrics from which it is comprised 167 

within the . Due to co-dependencies among individual metrics, composite scores are first calculated for each 168 

replicate, before averaging over each harvest scenario. As a side note, this is equivalent to a risk neutral 169 

expectation of a utilitarian ‘aggregate benefit’ ethic, and ensures composite scores remain on a similar scale 170 

when involving different numbers of individual metrics. Composite metric scores therefore represent 171 

outcomes as perceived under specific stakeholder contexts, but simplistically assume that these individual 172 

metrics represent stakeholder utility, that individual metric utilities are equivalent and substitutable, and that 173 

aggregate utility is reflected through the average of the individual metrics, and that stakeholders display linear 174 

preferences. 175 

Comparative analysis, heuristics, and potential improvement in decision-making 176 

We sought heuristics for a) determining the likely impacts of environmental and evaluation contextual factors, 177 

and b) choosing optimal harvest parameters or strategies, based on the expected (i.e. average) composite 178 

metric scores. This assumes a ‘benevolent decision-maker’ basing their decisions on a rational, risk-neutral 179 

optimization of the composite score. Assuming the composite score could be an accurate reflection of social 180 

utility, this reflects the potential for stakeholders to be satisfied with the respective outcome. Use of a semi-181 

complex MSE model with the same framework across multiple environmental and evaluation contexts allows 182 

a full factorial design in which pairwise comparisons can be made between models that are the same in every 183 

way except for the variable of interest. Overall, we compared 18 environmental contexts × 4 harvest strategies 184 

× a custom range of harvest parameters × 6 evaluation contexts, totalling 432 environmental × harvest-185 

strategy × evaluation contexts, 48,308 environmental context × decision variable scenarios, and 289,848 186 

environmental × decision variable × evaluation contexts. 187 



If more information is known (e.g. the environmental context, or the evaluation context), decision-makers are 188 

likely to be able to make more appropriate decisions within that context. This is not always the case, however, 189 

for example if the same strategy is chosen regardless of the availability of the information. We quantify 190 

potential improvement in decision making effected through the use of context-specific heuristics, versus a 191 

generalised heuristic, using both the relative frequency of the chosen strategies being optimal, as well as the 192 

average value forgone. Value forgone represents the difference in composite score value achieved when using 193 

a (potentially suboptimal) strategy within a specific context, compared to the optimal strategy for that 194 

respective environmental and evaluation context. If a strategy is suboptimal, potential value forgone can range 195 

from negligible, to 100% of the optimised value. 196 

Code and data availability 197 

We constructed the model in R [46], using tidyverse [47] and truncnorm [48], parallelized with doSNOW 198 

[49]. For graphics, we used ggplot2 [50], ggtable [51], cowplot [52], and magick [53]. For links to all data, 199 

code, and results, see data availability statement. 200 

Results 201 

Composite scores 202 

Composite scores show considerable overlaps in outcomes between the various harvest strategies and 203 

parameters (Figure 2). In general, suboptimal harvest strategies with optimised harvest parameters can often 204 

perform better than optimal harvest strategies with poorly selected harvest parameters (Figure 2). This was 205 

even more clear when considering potential variability (Supplementary S2.1). Overall, only 11% of the 432 206 

environmental and evaluation context combinations had composite metric scores of over 85%, highlighting 207 

that conflicts between individual metrics, and thus between stakeholder interests, are very likely in terrestrial 208 

harvest management. Better performing contexts were typically related to relatively stable environments, 209 

adaptive harvest strategies (i.e. proportional or threshold proportional), and for evaluation contexts with a 210 

population metric focus. Only 4 cases achieved expected maximum scores of 100% (Figure 3);  these included 211 

threshold proportional harvest for moose in SID1 and SID 2, and roe deer in SID 1, and proportional harvest 212 

for moose in SID 1, all based on the population focus evaluation context. 213 

To determine the impact of environmental (i.e. species, variability and starting population size) and evaluation 214 

context factors (composite metric types), we assessed the pairwise contrasts between simulations varying only 215 

in terms of each specific factor respectively (Figure 4). For the majority of the pairwise contrasts, faster life 216 

history species, extreme starting population sizes, and higher variability scenarios result in lower composite 217 

metric scores, indicating stronger conflicts between objectives. However, there are exceptions to these general 218 

patterns for most contrasts (Figure 4). Contrasts between evaluation contexts are less predictable, as these 219 

scores reflect the number of metrics included, as well as their themes. More complex composite metrics that 220 

include more individual metrics were often higher scoring than simpler metrics. For example, the Complete 221 

set typically scored higher than Classic pop.+harv. (true for 94% of the pairwise contrasts). This occurs 222 

because the majority of the additional metrics in more complete sets were often less conflicting than those 223 

included in the classical sets. Overall, the Population focus set was the highest scoring in the majority of 224 

pairwise contrasts, likely reflecting the lack of conflict with harvest objectives.  225 

Optimum harvest parameters 226 

Optimum harvest parameters (that maximize the composite metric score) varied across environmental and 227 

evaluation contexts (Supplementary S2). Within a given harvest strategy, different environmental and 228 

evaluation contexts had most influence on optimal parameter values (Figures 5). For instance, starting 229 

population size was the most universally important determinant for the score within constant harvest strategies 230 

(Figure 5a). Higher variability typically decreased the optimal constant harvest rate, whereas optimal constant 231 

harvest rates did not vary much between evaluation contexts. For proportional harvest strategies, differences 232 

in optimal harvest proportions were most definitively linked to species life history, with higher proportion 233 

optimal for faster species. While larger initial population sizes tended to allow larger proportions, this was not 234 

always the case (Figure 5b). In contrast to the constant harvest strategy, there were also clear differences 235 



between the different evaluation contexts in term of optimal harvest rates. For the threshold-proportional 236 

harvest strategy, optimal harvest parameters (both thresholds and proportions) showed substantial sensitivity 237 

to all environmental and evaluation factor contrasts (Figure 5c-d). This likely reflects the flexibility of this 238 

strategy to be tailored to different (conflicting) stakeholder interests, in contrast with the constant harvest 239 

strategy which has a relatively narrow sustainable operating range that is primarily environmentally 240 

determined, leaving low flexibility to cater for social preferences. 241 

Optimum harvest strategies 242 

After optimizing the harvest parameters for each strategy and context, our simulations show that there was no 243 

universally optimum harvest strategy across all environmental and evaluation contexts (Figure 6). In fact, all 244 

harvest strategies could be perceived as an optimal choice in at least one environmental and evaluation context 245 

(Figure 6). However, in the evaluation contexts Population focus, Classic pop.+harv., and Classic harv. a 246 

constant harvest strategy is never identified as optimal. In contrast, for Harvest focus, Complete (small game) 247 

and Complete composite set contexts, constant harvests are identified as optimal in 10 of the 18 environmental 248 

× evaluation contrasts for moose, as well as 2 cases in roe deer and once for ptarmigan (Figure 6, 7). 249 

Overall, the most optimal harvest strategy was threshold proportional, which was optimal in 55.6% of cases 250 

(and intermediate otherwise). Proportional strategies were most often intermediate (57.4% of cases, with the 251 

remainder as best). In contrast, constant harvest strategies were optimal in only 12% of cases, and worst in 252 

14.8%, while no harvest was an optimal choice in only 2 cases, and the poorest choice in 85.2% of cases. 253 

Pairwise contrasts in environmental factors show that more complex harvest strategies generally become more 254 

preferable with faster life history species and higher variability scenarios (Supplementary figure S2.4). For the 255 

more extreme starting populations, there were preferences towards both simpler and more complex harvest 256 

strategies, although most did not change. Pairwise contrasts between evaluation contexts show more definitive 257 

trends for many comparisons (Supplementary figure S2.4). 258 

Improvement in decision-making through use of environmental and evaluation context-259 

specific heuristics 260 

Without consideration of the environmental or evaluation contexts, the best choice for harvest strategy was 261 

threshold proportional. This would be the correct optimal choice in 55.6% of cases, and result in an expected 262 

value forgone of 1.19% (Figure 6-7). Proportional, constant, and no harvest strategies would result in a mean 263 

value forgone of 2.75%, 12.2%, and 27.0% respectively. 264 

Information on environmental contexts resulted in few improvements over the baseline of no contextual 265 

information. Use of species information resulted in an optimal decision in 59.3% of cases (with expected 266 

value forgone of 0.92%), selecting proportional for moose (optimal in 47.2% of cases, with expected value 267 

forgone of 1.64%), and threshold proportional for roe deer and ptarmigan (optimal in 61.1% and 69.4% of 268 

cases, with and expected value forgone of 0.58 and 0.54% respectively). Starting population information also 269 

improved decisions in 3.7% of cases compared to no information (expected value forgone 1.17%), and 270 

suggested proportional when population sizes are initially very low (at quasi-extinction; optimal in 52.8% of 271 

these cases, expected value forgone of 2.58%), and threshold proportional otherwise (optimal in 63.9% of 272 

cases with moderate starting population sizes, and 61.1% of cases with overabundant starting population 273 

sizes, with expected value forgone of 0.39% and 0.56% respectively). Information on variability level did not 274 

result in a change in strategy choice. Threshold proportional was optimal in 59.3% of low variability cases, 275 

and 51.9% of high variability cases, with expected value forgone of 1.53% and 0.86% respectively. 276 

If all environmental context information was considered, optimal decisions could be made in 63.9% of cases, 277 

with an expected value forgone of 0.57%. A constant strategy was selected for a third of the moose contexts 278 

(specifically, for moderate or overabundant starting populations, with low variability only), however this 279 

would be optimal in only half the cases within, and a threshold proportional strategy was preferable for the 280 

latter when aiming to minimise value forgone. Proportional was selected for moose contexts starting at quasi-281 

extinction (optimal in 66.7% and 83.3% of cases for the low and high variability scenarios, respectively), and 282 



was selected as jointly optimal for 2/6 of the roe deer contexts, and one ptarmigan context (and therefore 283 

optimal in only half the cases within). Threshold proportional was optimal in all cases for roe deer with 284 

moderate starting populations and low variability, and for ptarmigan with overabundant starting populations 285 

and low variability, but for the remaining cases would provide between 50-66.7% optimality. Decision-286 

making based on minimising value forgone dropped proportional and threshold proportional from being 287 

jointly preferable in three and two environmental contexts, respectively. 288 

In contrast, information on evaluation context could result in optimal decisions in 74.1% of cases (with an 289 

expected value forgone of 0.49%). This suggested a threshold proportional strategy for Population focus, 290 

Classic pop.+harv., and Classic harv. composite metric sets (100%, 88.9%, and 61.1% of the respective 291 

cases). For Complete (small game) and Harvest focus composite metric sets, a proportional strategy is 292 

preferred, optimal in 72.2% and 66.7% of respective cases. For the Complete composite metric, either a 293 

proportional or threshold proportional strategy would be optimal in 55.6% of cases, but the threshold 294 

proportional strategy would result in a lower expected value forgone. 295 

Discussion 296 

Aiming to develop heuristics for sustainability in wildlife harvest systems, we ran 289,848 stochastic models 297 

simulating harvest management under diverse environmental and evaluation contexts. The scarcity of contexts 298 

across our simulations resulting in high scores demonstrates the inherent complexity of achieving 299 

sustainability in terrestrial wildlife harvest systems with diverse stakeholders objectives [3,4]. This large 300 

potential for conflicts and trade-offs emphasises that wildlife harvest decisions are likely to benefit from tools 301 

designed for decision-making under conflict and complexity. These tools include MSE models that can be 302 

used to evaluate and compare outcomes for multiple models, actions, and metrics [41,42,54], and Structured 303 

Decision Making (SDM) tools for management of conflicts through stakeholder negotiations [5,55]. Avoiding 304 

exacerbating conflicts is endorsed in environmental management [56], and our analysis demonstrates how 305 

MSE can be used to map out conflict potential, and thereby contribute to conflict-sensitive stakeholder 306 

engagement. 307 

Overall, our results confirm that adaptive harvest systems such as proportional harvest, and particularly 308 

threshold-proportional harvests, were more likely to deliver good outcomes and be perceived as more 309 

sustainable. Adaptive harvest systems were higher scoring in more varied contexts, involved a less precipitous 310 

risk of population declines compared to constant harvest, and, result in the lowest levels of value forgone. 311 

This supports prior analytical and review comparisons showing general preference towards these adaptive 312 

strategies [15,38,57], and importantly, extends systematic assessment across a diversity of environmental and 313 

evaluation contexts likely to be encountered in applied wildlife harvest management. 314 

We found that no single harvest strategy was optimal across all environmental and evaluation contexts tested, 315 

however. Every harvest strategy was optimal in at least one case in every environmental context (Figure 6-7). 316 

The overall best strategy, threshold proportional harvest, was optimal in only 55.6% of cases evaluated. 317 

Information on environmental context (represented in this study as species, variability, and starting population 318 

size) could improve decision-making to be optimal in 63.9% of cases. Information on the evaluation context 319 

was more valuable, identifying optimal strategies in 74.1% of cases. There was large variation in outcomes of 320 

the harvest strategies when using different harvest parameters, however, and optimal parameters for 321 

suboptimal strategies can often score higher than suboptimal parameters for (potentially) optimal strategies 322 

(Figure 2). Information on environmental contexts was particularly influential in determining optimal harvest 323 

parameters in constant and proportional harvest strategies, while both environmental and evaluation context 324 

information were influential for determining thresholds and proportions in a threshold-proportional harvest 325 

strategy (Figure 5). This likely reflects the superior ability of threshold-proportional strategies to be tailored to 326 

stakeholder perspectives, but simultaneously highlights the non-triviality of accounting for stakeholder 327 

perspectives in environmental management [9,10]. 328 

The extent of the differences in outcomes across evaluation contexts suggests that, by focussing on limited 329 

evaluation metrics, prior theoretical analysis present a rather narrow and sometimes misleading perspective on 330 



the outcomes of harvest in socio-economically complex terrestrial wildlife systems. Differences due to 331 

composite metric sets were difficult to characterise, likely due to the interaction of the number and types of 332 

metrics included: more metrics can buffer each other and thus can increase scores, but can also increase the 333 

likelihood of trade-offs and thereby reduce mean scores. However, two key implications can be drawn from 334 

our results: 1) simpler ‘classic’ metrics commonly used in theoretical models may give a false perception of 335 

the magnitude of the benefits of more complex harvest strategies over constant harvests in some cases, and 2) 336 

the formulation of harvest objectives has a strong influence in determining optimal harvest strategies and 337 

parameters. This is particularly important to consider in the context of terrestrial wildlife harvest, where there 338 

is seemingly a widespread tendency for the objective of maximizing yields to be included, which persists even 339 

in cases where extensive stakeholder and manager engagement do not indicate maximum yields as a 340 

universally valued objective, and even while recognising the strong trade-off between population stability and 341 

harvest goals [58,59]. In all of our simulated species the critical thresholds for a socio-ecologically desirable 342 

population size specified for management evaluation during expert elicitation were often well below the 343 

corresponding theoretical maximum sustainable yield levels (Supplementary S1). Inclusion of yield 344 

maximization is likely due to the classic tradition of yield being the sole focus of ‘sustainability’ in wildlife 345 

harvest outside a complementary and low bar objective of persistence (for example in early fisheries 346 

‘maximum sustainable yield’ models), despite development of more diverse definitions [8]. Perhaps in 347 

fisheries contexts of the past this may have seemed appropriate, but in contemporary, predominantly 348 

recreational, terrestrial wildlife harvest there is no a priori reason to value maximizing mean harvests above or 349 

even equally to other objectives, especially given the diversity of human-wildlife conflicts associated with 350 

high density populations of some of the harvested species (Linnell et al. 2020). 351 

Faster life history species and higher variability contexts (due to stochasticity and uncertainty) were generally 352 

associated with reduced scores (Figure 3-4), and typically a greater preference towards more complex harvest 353 

strategies. Much emphasis within the harvest literature has been on variability (stochasticity and uncertainty), 354 

typically revealing reduced sustainability with higher variability [13–16]. In these cases, thresholds can be 355 

used as a buffer from extinction [15,17]. Our results are in line with these prior studies, but we also detected 356 

some noticeable exceptions. Many of the exceptions in our pairwise comparisons are due to threshold based 357 

evaluation criteria: for example when increased variability allows some replications to cross desirable 358 

threshold criteria (i.e. stochastic resonance; McDonnell & Abbott, 2009), without causing equivalent crossing 359 

of undesirable criteria thresholds. Other exceptions were likely due to closer alignment of ‘ideal’ population 360 

sizes (i.e. socially preferable levels) with populations sizes delivering maximum yields (as was the case for 361 

roe deer in our study), or due to a lack of difference in strategy outcomes under more extreme starting 362 

population sizes. 363 

Management of slower life-history species was typically easier, and generally yielded relatively high scores 364 

even under simpler harvest strategies. However, the risk of precipitous declines via choosing suboptimal 365 

constant harvest parameters was greater, and the potential to recover from such low populations should be 366 

considered. In faster life history species recovering from extreme low populations, harvest strategy trades off 367 

speed, magnitude, and likelihood of recovery with harvest early in the time period, a trade-off likely to depend 368 

on the productivity of the population [61]. In slower life history species recovery from low population sizes 369 

could be lengthy, with very low possibility of harvest [62]. Overall, this supports adaptive harvest strategies 370 

(including proportional and/or thresholds) which provide economic and ecological resilience of harvest under 371 

both scientific and environmental uncertainty, and particularly uncertainty in the face of directional threats 372 

such as climate change [62]. 373 

Given our aim of developing heuristics across a range of species contexts for a set of harvest strategies, we 374 

developed our model using a consistent but relatively simple population dynamics framework. We specified 375 

our MSE models as one closed-population harvested species, undifferentiated by age, sex, or spatially, logistic 376 

growth and simple characterisations of uncertainty and variability. We applied single decision rules over the 377 

whole time frame, and had no time-discounting or monetary valuation of costs and benefits, and a simplistic 378 

translation of outcomes into stakeholder values and utilities. We discuss these issues as they pertain to this 379 



analysis more in the full model description in the Supplementary S1. We also do not consider starting 380 

conditions for stakeholders, such as current entitlement to harvest, which serves to frame outcomes as losses 381 

or gains. Current entitlement levels can severely constrain management decisions in practice [5], for example 382 

if Pareto improvements (no loss for any stakeholder) are emphasised in decision-making. While alternative 383 

assumptions may change the particulars of results, even the simple assumptions we employed resulted in 384 

many complex trade-offs among the diverse metrics evaluated, and we would expect the main conclusion of 385 

context dependency and importance of evaluation perspective to hold. 386 

Conclusions 387 

Sustainability is a central, but often elusive goal of wildlife harvest management, challenged by complex 388 

socio-ecological systems, with many potential conflicts and uncertainties. Our stochastic simulation analysis 389 

provides the first detailed and consistent comparison of multiple sustainability metrics, across a representative 390 

range of common terrestrial wildlife game harvest systems. While we conclude, similarly to prior studies, that 391 

adaptive harvest systems including thresholds and proportional harvest were more likely to be perceived as 392 

sustainable in more variable contexts compared to constant harvest, our analysis reveals the many exceptions 393 

to this heuristic. Indeed, every harvest strategy was found to be optimal in every environmental context under 394 

at least one evaluation context. We found that the strongest driver of outcomes, optimal harvest parameters, 395 

and strategies was the evaluation context (i.e. the set of metrics used), rather than environmental contexts. 396 

However, adaptive strategies led to the least potential value forgone, and are likely a better risk-adverse 397 

strategy to employ to avoid low population sizes, which are likely to give poor outcomes for all stakeholders. 398 

Key implications for applied management are, first, that outcomes based on simplified metrics (e.g. 399 

persistence and maximizing mean harvest only) popular in the theoretical literature may give misleading 400 

impressions of the relative benefits of different harvest systems in complex socio-ecological systems. Second, 401 

while a threshold proportional strategy remains the optimal strategy across the majority of cases, both 402 

environmental and evaluation contexts have substantial influences on the optimal harvest parameters within 403 

this strategy. Our results highlight that trade-offs between sustainability objectives are largely inevitable, and, 404 

with no single optimum strategy, ‘optimal’ harvest systems need to be identified with careful consideration of 405 

the appropriateness of sustainability metrics. Overall, heuristics derived from semi-complex MSE models 406 

such as this provide a useful bridge between over-simplistic theoretical models and complex context-specific 407 

models. We showed the potential of such heuristics to improve applied decision-making in low information 408 

contexts, and they are also likely to prove useful for guiding context-dependent sensitivity analyses in high 409 

information contexts, and the appropriateness of cross-context empirical comparisons. 410 
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Figures 574 

 575 

 576 

Figure 1: MSE framework 577 

The Management Strategy Evaluation (MSE) model simulates a wildlife harvest system over a 20 year timeframe, with 578 
each environmental and decision context including 1000 stochastic replications. Evaluation contexts are simulated 579 
through combinations of different evaluation metric sets. Species types span a fast-slow life-history gradient, determining 580 
growth rates and carrying capacity, variation levels in growth rates and monitoring variability, and critical thresholds. 581 
Stochastic parameters simulate yearly stochasticity and iteration level uncertainty. A full description of the model and 582 
parameter values are specified in Supplementary S1. 583 



 584 

Figure 2. Composite scores across harvest strategies and parameters 585 

Composite scores (y-axis) for each composite metric set (panel rows), under each harvest strategy (panel column) and 586 
harvest parameter (x-axis). For the constant harvest strategy (second column), the x-axis shows the constant scaled by the 587 
maximum constant per species. For the threshold proportional strategy (fourth column), the x-axis shows the proportion, 588 
and multiple lines per species show selected thresholds from across the range of thresholds tested. Species are indicated 589 
by line colour, and are here shown for the environmental context with high variability/uncertainty and moderate starting-590 
population sizes (SID 2). Results for other scenarios and including variability are in Supplementary S2.1.  591 



 592 

Figure 3. Composite scores across harvest strategies and contexts 593 

Composite scores (colour) for each environmental (x-axis, and panel rows) and evaluation context (y-axis), under each 594 
harvest strategy (panel column), assuming harvest parameters are optimised under each harvest strategy. Environmental 595 
contexts (SID) codes are provided in Figure 1. Score classes (symbols) highlight where scores are maximal (i.e. 100).  596 



 597 

Figure 4. Influence of environmental and evaluation factors on composite scores 598 

Differences in composite score outcomes (x-axis) due to differences in environmental and evaluation factors (y-axis), 599 
with all other factors held at equivalent levels for each pairwise contrast. Contrasts are given change in outcome when 600 
moving from the left-hand level to the right-hand level, for example, moose typically result in a higher composite metric 601 
score than roe deer, all other factors equivalent. Violins show the data distributions, with the colour indicating the 602 
median. Boxplots show the median, the first and third quartiles, and the whiskers extend to the smallest or largest value 603 
no further than 1.5 times the inter-quartile range from the hinge, with outliers plotted as points. Proportions of the 604 
observations below or above zero difference are given on the left and right grey panels respectively (and may not sum to 605 
one if some cases do not differ). 606 



 607 

Figure 5. Influence of environmental and evaluation factors on optimal harvest parameters 608 
Thumbnail figure (full figures given in the Supplementary S2.3) showing pairwise differences in optimal harvest 609 
parameters given environmental and evaluation factor contrasts, for a) constant, b) proportional, and c) and d) threshold 610 
proportional harvest strategies (proportion in c) and threshold in d) respectively). For further plot description, see Figure 611 
4. * indicates that the constant and threshold are scaled by the number of individuals considered as a ‘moderate’ 612 
population size for each of the species (i.e Moose = 600, RoeDeer = 6950, Ptarmigan = 17500). 613 



 614 

Figure 6. Optimal strategy, and value forgone through choice of harvest strategy, across 615 

environmental and evaluation contexts 616 

Harvest strategy optimality (symbol), and value forgone (tile colour) by using the harvest strategy in each environmental 617 
and evaluation context, instead of the optimal strategy for the respective environmental and evaluation context. Harvest 618 
strategies (panel columns) are represented by their optimal harvest parameter outcomes. Environmental contexts are 619 
combinations of species type (panel rows), and starting population and variability (SID codes are described in Figure 1; 620 
x-axis). Proportional and threshold proportional strategies are typically the most optimal, and typically result in lower 621 
value forgone when not. 622 



 623 

Figure 7. Optimal strategy across environmental and evaluation contexts 624 

Relative frequency of optimal harvest strategy (or jointly optimal strategies) by environmental and evaluation context 625 
factors (y-axis). Each bar summarises the simulations including the factor specified on the y-axis. Optimal strategies are 626 
determined by ranking their respective best performing harvest parameter levels across harvest strategies. Pairwise 627 
comparisons between contexts are given in Supplementary S2.4. 628 
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Tables 630 

Table 1: Individual sustainability metrics.  631 

Sustainability metrics represent a wide variety of common stakeholder concerns, and include fundamental sustainability 632 
objective of persistence, as well as other population-based and harvest-based metrics. Here they are defined so that, 633 
within each metric, higher scores are more desirable.  634 

Objective 

group 

Objective Criteria Code 

Persistence Avoiding extinctions. 

A fundamental objective of 

ecological and economic 

sustainability. 

For individual replications, this is 

a binary score (0 = extinction, 1 = 

persistence of the population over 

the time frame). This is averaged 

over replications as a probability. 

persistence 

P
o
p
u
la

ti
o
n
 

Population stability. 

Avoiding population extremes. 

Number of years population 

remains between high and low 

critical thresholds 

stable 

population 

Avoiding low or functionally 

extinct populations. 

To provide adequate populations for 

harvest, ecological functionality, and 

buffer against extinctions. 

Number of years population 

remains above the quasi-

extinction critical threshold 

above quasi-

extinct 

Number of years population 

remains above the low critical 

threshold 

above low 

Avoiding high and overabundant 

populations.  

To minimize wildlife conflict and 

ecological damage from 

overabundant populations. Note, this 

may not be a concern for small game 

species. 

Number of years population 

remains below high critical 

threshold 

below high 

Number of years population 

remains below the overabundance 

critical threshold 

below 

overabundant 

H
a

rv
es

t 

Mean annual harvest. 

To provide the maximum opportunity 

for economic and social benefits of 

harvest.  

Mean yearly harvest  harvest mean 

Minimum harvest experienced 

across the timeframe. 

To maximize harvest opportunity 

over every point in the timeframe. 

Minimum harvest size across the 

timeframe 

harvest 

minimum 

Avoiding years experiencing zero 

harvest. 

To provide consistency of harvest 

experience and income for harvesters 

and associated economies. 

Number of years harvest is not 

zero 

harvest non-

zeros 

Limiting harvest variability. 

While some variability may be 

accepted as an inevitability in 

variable contexts, consistency of 

harvest improves predictability and 

the consistency of capital required for 

its implementation. 

0 – Standard deviation of harvests 

over the timeframe 

harvest 

consistency 



Table 2: Composite metrics 635 

Composite metrics are comprised of six different sets of individual metrics designed to reflect alternative evaluation 636 
perspectives. Inclusion in sets is denoted by a tick (included) or cross (not included); included metrics are averaged to 637 
give the composite score. 638 

Composite metric set 

Individual metric 
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st
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ce
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H
ar
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t 

m
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H
ar

v
es

t 
n

o
n
-

ze
ro

s 

H
ar

v
es

t 

co
n

si
st

en
cy

 

Classic harv. ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘ 

Classic pop.+harv. ✓ ✘ ✘ ✓ ✘ ✘ ✓ ✘ ✘ ✘ 

Population focus ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✘ ✘ ✘ 

Harvest focus ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✓ 

Complete (small game)  ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✓ ✓ 

Complete ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 639 


