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Abstract 29 

1. Depredation hotspots are the main source of conflict between humans and large 30 

carnivores. When locating depredation hotspots, previous studies have not adjusted for 31 

livestock availability, making it impossible for managers to discriminate hotspots 32 

resulting from underlying livestock clustering from those due to other factors such as 33 

environmental factors.  34 

2. We studied hotspots of wolf depredation on sheep in France from the beginning of wolf 35 

recolonisation in 1994, up to 2018. For each year, we used spatial statistical analyses to 36 

determine the general depredation spatial pattern, then to locate depredation hotspots. 37 

We quantified the discrepancies between the analyses accounting or not for livestock 38 

availability.  39 

3. We showed that ignoring livestock availability led to flawed inference about the 40 

depredation pattern, and resulted in a substantial number of unidentified hotspots, 41 

generally encompassing pastoral surfaces with small sheep availability.  42 

4. Our results indicated that some large hotspots persisted in space and time whereas the 43 

distribution of depredations elsewhere in the study area tended to randomness and 44 

produced sporadic hotspots.  45 

5. Synthesis and applications. Our methodology provides reliable information for 46 

managers to grasp the depredation pattern, to allocate resources and to evaluate 47 

management efficiency. In areas where depredations significantly persist, investigation 48 

on vulnerability is recommended.  49 

 50 
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Introduction 54 

The predations on domestic preys by large carnivores, called “depredation”, are the main driver 55 

of conflicts between humans and large carnivores. The financial and social costs associated to 56 

depredations reduce acceptance of these species and lead to retaliatory killings (Abade, 57 

Macdonald, & Dickman, 2014). Understanding the spatial and temporal patterns of 58 

depredations is a major challenge in large carnivore conservation to mitigate current conflicts 59 

and prevent future ones (Miller, 2015). To do so, two complementary approaches can be 60 

applied, namely spatial autocorrelation and risk modelling. Spatial autocorrelation quantifies 61 

the level of clustering or regularity (i.e. repulsion) of a depredation pattern (Baddeley et al., 62 

2015; Hoffmann et al., 2019) and allows the identification of hotspots or coldspots, where 63 

events are unusually aggregating or scarce. Risk modelling aims to predict locations of future 64 

depredations, by quantifying the relationship between ecological or non-ecological features and 65 

depredation numbers or occurrences (Miller, 2015).  66 

Spatial autocorrelation is often presented as a preliminary step to risk modelling and as of 67 

limited interest if applied alone (Gastineau, Robert, Sarrazin, Mihoub, & Quenette, 2019; 68 

Hoffmann et al., 2019). This may explain why risk modelling is more popular (e.g. Bradley & 69 

Pletscher, 2005; Fowler, Belant, & Beyer, 2019) than spatial autocorrelation analyses in the 70 

literature. However, risk models only reflect the depredation-factor relationships at a given 71 

point in time and space. These relationships may evolve because predator-prey systems are 72 

dynamic and carnivores can adapt their predation behaviour according to environmental or 73 
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livestock management changes (Miller, 2015). This is especially true for (re)colonising large 74 

carnivore populations of plastic species such as the grey wolf (Canis lupus) which can embrace 75 

a large range of habitats. Risk models developed for this species were either restricted to a 76 

unique region and type of habitat (e.g. Clark et al., 2020) or showed a low predictive power 77 

when applied to habitats that differ from those originally used in the analysis (Hanley, Cooley, 78 

Maletzke, & Wielgus, 2018). Therefore, the outcomes of risk models are hardly transposable 79 

to other areas or on long-term periods, which makes their adoption by managers difficult 80 

(Miller, 2015). In contrast, information about current or past hotspot locations provided by 81 

spatial autocorrelation can directly help managers when allocating conservation resources such 82 

as subsidies of preventive measures. Prioritising on depredation hotspots is indeed 83 

recommended as recurrences of high levels of attacks in the same areas are likely to trigger 84 

negative attitudes and to undermine conservation efforts  (Stahl, Vandel, Herrenschmidt, & 85 

Migot, 2001).  86 

So far, several techniques of spatial autocorrelation for hotspot identification have been 87 

developed. The simplest one consists in defining an arbitrary threshold for a selected indicator 88 

such as the number of depredations which, if reached, turns the spatial unit into a hotspot. Units 89 

can be administrative areas (e.g. Dhungana et al., 2019) or simple shapes like circles (Stahl et 90 

al., 2001). To avoid arbitrary thresholds, some studies have applied spatial statistical analyses 91 

(e.g. Gastineau et al., 2019; Hoffmann et al., 2019; Packer et al., 2019). The spatial statistical 92 

analyses consider depredation events as a spatial point pattern, i.e. a dataset of observed spatial 93 

locations of a biological process (Baddeley et al., 2015). The areas exhibiting significantly more 94 

depredation events than expected under Complete Spatial Randomness (CSR) are statistically 95 

identified as hotspots. To gain understanding of the biological process, the spatial statistical 96 

analyses can also be conducted to determine the summarised spatial structure of the pattern, i.e. 97 
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the range of distances over which the pattern generally exhibits clustering, randomness or 98 

regularity (e.g. Kushnir et al., 2014 with lion attacks on humans). 99 

However, these quantitative studies have not controlled for spatio-temporal livestock 100 

availability because the statistical method they used did not allow it or because the relevant data 101 

were not available. Yet the spatial pattern of depredation is inherent to the distributions of both 102 

large carnivores and livestock. Not only are conflicts exclusive to areas where both distributions 103 

overlap, but they are also dependent on livestock availability, which is related to the livestock 104 

count and to the time livestock spends in a specific area. If livestock distribution is ignored, it 105 

is difficult to disentangle the hotspots which exhibit high levels of livestock availability, from 106 

those where livestock densities are low and conflicts are due to environmental, predator-linked, 107 

social or other factors that management could attempt to identify, and which constitute priority 108 

areas for actions.  109 

The grey wolf (Canis lupus) has been naturally recolonising France since the early 1990s in the 110 

south-eastern tip of the country, from the Italian Alps. Since then, wolves have been expanding 111 

and densifying in the south-east part of France (Louvrier et al., 2018). The recolonisation has 112 

come along with a gradually increasing number of depredations, with more than 3,000 attacks 113 

on livestock in this part of France in 2018, 90% of wolf attacks being on sheep (Ovis aries). 114 

French authorities have so far focused on hotspots to manage the conflict by subsidising 115 

preventive measures according to the level and recurrence of depredation events at the town 116 

level (Ministère de l’Agriculture et de l’Alimentation, 2019), but without accounting for sheep 117 

availability.  118 

Here, we aimed to conduct spatial statistical analyses on wolf depredations on sheep in 119 

southeast France. First, we aimed to determine the summarised spatial structure of the 120 

depredation pattern and second to locate the significant depredation hotspots if any, both with 121 
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methods controlling for sheep availability in space and time. We conducted year-to-year 122 

analyses, from 1994 to 2018, in order to study the temporal variations in the depredation 123 

patterns and in the hotspot locations throughout wolf recolonisation. We also explored the 124 

depredation patterns at a local scale, in the historic area of wolf recolonisation in France. The 125 

objectives of the local scale analysis were first to increase perceptibility of wolf territorial 126 

behaviour in the results if any, and second to observe if years of wolf presence changed the 127 

depredation pattern over time compared to the regional scale where colonisation fronts still 128 

persisted. Finally, we discussed the management implications of our results with regard to the 129 

decision-making process. 130 

Materials and methods 131 

Study area and study period  132 

The study area covers the two southeast regions of France, Provence-Alpes-Côte-d’Azur and 133 

Auvergne-Rhône-Alpes, and includes all the French Alps and the east part of Massif Central 134 

mountains (102,483 km², Fig. 1). Habitats range from bush and coniferous forest under 135 

Mediterranean climate in the south, to mixed forest in the north and the east which are 136 

mountainous at high altitudes.  137 

We defined the regional scale as the entire study area and the local scale as the Mercantour 138 

National Park and its surroundings (hereafter ‘MNP’), located in the very south-east of the study 139 

area (2146 km², Fig. 1). The MNP was characterised by a succession of alpine vegetation levels 140 

along a wide altitudinal range, from 600 to 3,200 m.  141 
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We settled the analyses for each wolf biological year y, starting from the 1st of April of year y-142 

1 to the 31th March of year y. The whole study period covers biological years (hereafter, ‘years’) 143 

from 1995 to 2018.  144 

Depredation records 145 

The large majority of depredations occurs between June and October, when most of sheep 146 

flocks are grazing in pastures. Up to 2019, the French Ministry of Ecology compensated for 147 

any killed farmed animal for which wolf responsibility could not be discarded, regardless of 148 

protective measures. Each claim was controlled and checked in the field by an accredited 149 

governmental agent who used a standardized protocol (Duchamp et al., 2012). Therefore, most 150 

depredations were reported if noticed, and the risk of false claims was low. We used the verified 151 

depredations on any type of livestock for which wolf responsibility could not be discarded to 152 

determine wolf distribution, and restricted the clustering analyses to depredations on sheep only 153 

as they constituted 90% of depredations. An event of depredation could correspond to one or 154 

several killed sheep. Because grazing activity may extend outside the official pastoral limits, or 155 

because of geolocation approximations, some depredation events were not located inside the 156 

geolocated pastoral surfaces (22% of the annual dataset on average). We assigned these 157 

depredations to the nearest pastoral surface and excluded depredations farther away than 500 158 

meters (10% of the annual dataset on average).  159 

Wolf distribution 160 

The Wolf-Lynx French Network managed by the French Biodiversity Agency is in charge of 161 

the wolf monitoring in France. Its trained field experts opportunistically collect presence signs 162 

all year along, such as biological samples (mainly faeces), tracks or direct observations, which 163 

are geolocated and validated according to a standardized protocol and combined to genetic 164 
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analysis when possible (Duchamp et al., 2012; Louvrier et al., 2018). To determine the annual 165 

wolf distribution, we combined the annual presence signs and the previously selected 166 

depredations within the study area. Wolf presence during year y was reported on a 10x10 km 167 

cell grid, and was defined as the collection of at least one presence sign or one depredation in 168 

the cell from y-1 to y-3 and from y-2 to y (see Marboutin et al., 2011). 169 

Spatio-temporal sheep availability 170 

Around 1,500,000 sheep are bred for meat or milk production each year in the study area 171 

(IDELE, 2018). During the summer period, a large part of these flocks becomes transhumant 172 

and moves to high-altitude pastures in the Alps. Otherwise, sheep are grazing in low- or mid-173 

altitude pastures around farms. Sheep are in stables during the whole winter except in the south 174 

where climate is softer (Gervasi et al., unpublished data).  175 

We used two georeferenced censuses of pastoral surfaces in the study area carried out in 1996-176 

1997 and in 2012-2014 by the National Research Institute of Science and Technology for the 177 

Environment and Agriculture (IRSTEA). For each pastoral surface, the two pastoral censuses 178 

included data about livestock species, livestock counts and grazing day numbers. The first 179 

census was incomplete in the low-altitudinal northern section. We therefore completed the 180 

missing parts with data from the second census. In the completed first census and the second 181 

census respectively, we selected the 6,241 and 5,099 pastoral surfaces with sheep. Mean 182 

pastoral surface area was 1.78 km² (sd=2.9) in the first census and 1.88 km² (sd=3.0) in the 183 

second census. In the first and second census respectively, mean pastoral surface sheep count 184 

was 474 (sd=543, range=1-9,200) and 516 (sd=547, range=1-6,000) and mean pastoral surface 185 

sheep grazing day number was 191 (sd=103, range=4-365) and 202 (sd=96, range=1-360). The 186 

spatio-temporal sheep availability was highly inhomogeneous across the study area at the 187 

regional or local scales (Fig. 2; Fig. S1).  188 
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For each biological year y, we identified the set of pastoral surfaces at depredation risk for both 189 

scales by selecting the pastoral surfaces which overlapped, even partially, with the wolf 190 

distribution. For years between 1995 to 2005, the pastoral surfaces came from the first census 191 

completed with the second one, and for years between 2006 to 2018, they exclusively came 192 

from the second census.  193 

Analysis 1: Spatial structure of wolf depredations  194 

For each year y, we analysed at the regional and local scales the spatial structure of the wolf 195 

depredation pattern considering sheep availability by using Kinhom (Baddeley et al., 2015).  196 

First, we simulated the expected depredation pattern under CSR considering sheep availability. 197 

The simulated pattern was composed of n points called ‘controls’, in opposition to the n annual 198 

observed depredations called ‘cases’. The distribution of controls was simulated over the 199 

pastoral surfaces at depredation risk according to an inhomogeneous Poisson Point Process 200 

(PPP). In this model, the number of controls falling into a pastoral surface u was expected to be 201 

equal to 𝜆(𝑢), called ‘intensity’, that we defined as: 202 

𝜆(𝑢) = 𝑒𝑥𝑝(𝑎 + 𝑏 × log(𝑝𝑜𝑝𝑢) + 𝑐 × log (𝑡𝑖𝑚𝑒𝑢)) 203 

where 𝑝𝑜𝑝𝑢 and 𝑡𝑖𝑚𝑒𝑢 were the numbers of sheep and of grazing days of the pastoral surface 204 

u, and a, b and c were parameters to be estimated. Covariates were log-transformed because of 205 

their skewed distributions. Therefore, the controls were more likely to fall into the pastoral 206 

surfaces with the highest combinations of sheep count and grazing days number. For each year, 207 

we simulated 499 control patterns through this model.  208 

Second, we computed Kinhom for the pattern of n cases. This function drew a circle of radius r 209 

around each depredation i covering more or less neighbouring depredations j. Then, the function 210 
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summed the values 
1

𝜆(𝑢𝑖)𝜆(𝑢𝑗)
  for all pairs of depredations i-j within this circle, 𝜆(𝑢𝑖) and 𝜆(𝑢𝑗) 211 

being the intensity values of the pastoral surface(s) containing i and j respectively. Therefore, 212 

for each tested r, Kinhom returned a surface. If the pattern was randomly distributed considering 213 

sheep availability, the surface should equal 𝜋𝑟2. Consequently, at a specific r, if the Kinhom value 214 

of the observed depredation pattern was higher or lower than 𝜋𝑟2, we could conclude that the 215 

depredations were respectively forming hotspots or coldspots of radius r.  216 

However, the smaller the dataset, the larger the differences from the expected number of points 217 

within a circle, especially for high values of r. Therefore, a Kinhom value which differed from 218 

𝜋𝑟2 was not necessarily the result of a non-randomly point pattern, but could be due to 219 

stochastic effects. To take this into account, we also computed Kinhom for the 499 control patterns 220 

and selected the 50th-lowest and 50th-highest values to build a control envelope. For a specific 221 

r, if the observed Kinhom was higher (or lower) than the upper (or lower) envelope limit, the 222 

depredations were significantly clustered (or regular, i.e. tended to avoid each other) at this 223 

distance considering sheep availability. The larger the differences, the more aggregated or 224 

regular the pattern. 225 

For comparative purposes, we also annually applied at the regional scale only, the K-function 226 

which considered sheep availability as homogeneous. Contrary to Kinhom, the K-function used a 227 

homogeneous PPP where the number of controls falling into the spatial units of the analysis 228 

was expected to be equal over the whole analysis area (Baddeley et al., 2015). We tested two 229 

possibilities to define the spatial units. First, we used the pastoral surfaces at depredation risk 230 

as in the Kinhom analysis, in order to simulate a situation for which sheep distribution was known, 231 

but sheep availability was not. Second, we used the estimated wolf distribution cells, to simulate 232 

a situation for which pastoral data were totally unavailable.  233 
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Analysis 2: Wolf depredation hotspot location 234 

For each year y, we located at the regional scale the significant wolf depredation hotspots by 235 

applying the first version of the Kulldorff statistic (Kulldorff, 1997) which adjusts for spatially 236 

inhomogeneous population at risk.  237 

First, we defined the spatial unit, i.e. the smallest area that can be identified as a hotspot. To be 238 

consistent with the current management scale in France, we defined the pastoral surface as the 239 

spatial unit. We defined sheep availability within each pastoral surface u as 𝜔(𝑢) =240 

 𝑝𝑜𝑝𝑢 × 𝑡𝑖𝑚𝑒𝑢. Then, the Kulldorff statistic defined the future zones that can be identified as 241 

hotspots, called zones Z. Each pastoral surface was defined as a zone Z. Other zones Z were 242 

defined by adding to these first zones the adjacent pastoral surfaces, and so on. We determined 243 

the limit size of a zone Z as following: a zone Z could not include more than 5% of the sum of 244 

𝜔(𝑢) of all pastoral surfaces. Otherwise, the hotspots were too vast to be informative. In 245 

addition, we restricted the analysis to the depredated pastoral surfaces. The inclusion of pastoral 246 

surfaces without depredation into the analysis indeed increased sheep availabilities of certain 247 

zones, especially zones where depredated pastoral surfaces were surrounded by pastoral 248 

surfaces without depredation. This reduced the capacity of the analysis to identify such zones 249 

as hotspots. 250 

Second, the Kulldorff statistic modelled the total number of observed depredations n as: 251 

𝑛 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝𝑍  ×  𝜔(𝑢 ∈ 𝑍) + 𝑞𝑍  × 𝜔(𝑢 ∉ 𝑍)) 252 

with the probabilities 𝑝𝑍 and 𝑞𝑍 that a depredation event occurred within or outside Z, 253 

respectively, and 𝜔(𝑢 ∈ 𝑍) and 𝜔(𝑢 ∉ 𝑍) the sum of 𝜔(𝑢) inside and outside Z, respectively. 254 

For each Z, the Kulldorff statistic tested a null hypothesis (M0) and an alternative hypothesis 255 
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(MA), respectively 𝑝𝑍 =  𝑞𝑍 and 𝑝𝑍 > 𝑞𝑍. It calculated the likelihood ratio 𝐿𝑅(𝑍) as  
𝐿(𝑍)

𝐿0
. 𝐿(𝑍) 256 

corresponded to the result of the likelihood function L of the model under MA for the zone Z. 257 

𝐿0 corresponded to the result of the likelihood function L of the model under M0, which was 258 

the same for all zones because under M0 the model can be reduced to 𝑛 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝 ×259 

∑ 𝜔(𝑢)). The zones Z for which MA was the most likely had the highest likelihood ratios.  260 

Third, to test statistical significance, we simulated 499 sets of randomly distributed controls 261 

over the depredated pastoral surfaces, proportionally to sheep availability. The second step was 262 

repeated for each control set, to eventually compute the control distribution of the highest 263 

likelihood ratio 𝐿𝑅(𝑍). If the observed highest likelihood ratios were among the top 5% of this 264 

control distribution, then the corresponding zones were considered as significant hotspots.  265 

We repeated this analysis with a simulated homogeneous sheep availability to point out the 266 

discrepancies when ignoring prey availability. In this analysis, each depredated pastoral surface 267 

had a sheep availability equal to the average observed sheep availability per depredated pastoral 268 

surface.  269 

We performed the Kinhom and Kulldorff analyses with the packages spatstat (Baddeley & Turner, 270 

2005) and SpatialEpi (Kim & Wakefield, 2018), respectively, in R (version 3.6.1, R Core Team, 271 

2019).  272 

Results 273 

Trends in depredation risk and observed depredations 274 

We collected 25,220 presence signs and 22,262 verified depredations on any type of livestock 275 

for which wolf responsibility could not be discarded, reported from 1995 to 2018 in the study 276 

area. The resulting estimated annual wolf distribution expanded year after year, and reached 277 
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40% of the study area in 2018 (Fig. 3A; Fig. S2). The annual proportion of pastoral surfaces at 278 

depredation risk within the total set of pastoral surfaces increased year after year at the regional 279 

scale, reaching 72% in 2018. This situation generated more and more depredations on sheep 280 

per year over time, starting from 49 depredation events in 1995 to 2,289 in 2018. However, the 281 

annual proportion of depredated pastoral surfaces among the pastoral surfaces at risk remained 282 

quite stable over time at the regional scale, with a mean of 16%. Most pastoral surfaces at 283 

depredation risk did not experience depredations, or only one or two per year at the regional 284 

scale (Fig. S3). One depredation event corresponded on average to 3.78 wounded or killed 285 

sheep (sd=0.29) without including indirect mortalities (e.g. collective falls). 286 

The situation at the local scale differed from the regional scale. Because recolonisation started 287 

in the MNP, the majority of the local scale was recolonised by wolves by 2007. Almost all the 288 

pastoral surfaces were at depredation risk by 2003 and all of them by 2011 (Fig. 3B). Most 289 

depredated pastoral surfaces also experienced one or two depredations per year for the whole 290 

study period (Fig. S3). Because the number of pastoral surfaces at depredation risk quickly 291 

stabilised, the trend of the depredation numbers followed the trend of the proportion of 292 

depredated pastoral surfaces.  293 

Analysis 1: Spatial structure of wolf depredations  294 

The Kinhom function accounting for sheep-based intensity 𝜆(𝑢) identified significant aggregation 295 

of the depredations for all years, with Kinhom values higher than the control envelope (Fig. 4; 296 

Fig. S4). The latter was thinner with time as the depredation pattern included more and more 297 

events. However, depending on years, the range of radiuses r for which aggregation was 298 

significant varied, as well as the aggregation intensity (i.e. differences between the observed 299 

and control envelope values). We identified four time periods.  300 
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During the first period (1995-1999), aggregation was significant for the whole range of radiuses 301 

r, up to 20-30 km around depredations. Aggregation tended to intensify with r, especially in 302 

1996 and 1998. This was consistent with the depredation maps, where all depredations seemed 303 

conglomerated together without small-scaled structures (Fig. 5; Fig. S2).   304 

During the second period (2000-2003), aggregation intensified only over the lowest r values, 305 

then its intensity decreased over the largest r values. Apart from 2000, the Kinhom values merged 306 

with the control envelope between 40 and 50 km. This indicated that depredation hotspots 307 

tended to emerge with wolf expansion, as observable in Fig. 5. 308 

During the third period (2004-2012), a weak significant aggregation was only observed over 309 

the lowest r values, and turned into significant repulsion between 15 and 30 km. This was 310 

typical of a clustered pattern, with hotspots producing coldspot interzones (Hoffmann et al., 311 

2019). These hotspots could correspond to the south-east and south areas where depredations 312 

were particularly densely distributed (Fig. 5).  313 

Finally, the last period (2013-2018) showed significant aggregation over 25 to 50 km followed 314 

by randomness (except 2014 with continuous aggregation). In certain years, a weak repulsion 315 

was observed at the largest r values. Aggregation intensity was greater in 2013 compared to 316 

2012, but it tended to decrease the following years, which brought the depredation pattern closer 317 

to randomness with time. This suggested that the former south and south-east hotspots, still 318 

noticeable (Fig. 5), were overlooked by the apparent randomness of depredations in the rest of 319 

the study area. 320 

Using Kinhom or K provided comparable results only during the first period. But, from 1999-321 

2000, the differences between the three analyses of Kinhom or K deepened (Fig. 4; Fig. S4). The 322 

K-function which considered sheep availability as homogeneous across pastoral surfaces only 323 

identified the typical hotspot structure (i.e. aggregation followed by repulsion) in 2009 and 2010 324 
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with a radius of 30 and 40 km respectively. The other years, aggregation was significant for all 325 

values of r and always more intense than the one obtained through Kinhom. When using the wolf 326 

distribution cells as the spatial units, the K-function analysed the pattern over larger values of r 327 

than the two previous analyses, because isolated distribution cells in the west of the study area 328 

could sporadically appear without overlapping with pastoral surfaces. Apart from 1995, this 329 

analysis only provided a significant aggregation which intensified with r.    330 

At the local scale, the Kinhom function accounting for sheep availability provided two main 331 

findings. First, from 1998 to 2011, the analysis identified significant aggregation over 12 to 17 332 

km, followed by randomness in some but not all years (Fig. 6; Fig. S4). Repulsion was never 333 

observed, except in 2004. This year, depredations seemed conglomerated into three distinct 334 

groups (Fig. 7). Second, the aggregation intensity was generally decreasing with time from 335 

2008, even though the control envelopes were of equivalent thickness. Eventually, the pattern 336 

tended to randomness for all values of r from 2015, with almost complete randomness observed 337 

in 2016. 338 

Analysis 2: Wolf depredation hotspot location 339 

The number of hotspots identified by the Kulldorff statistic accounting for sheep availability 340 

increased over time in the study area, from one hotspot in 1995 to 20 in 2018 (Fig. 8A). 341 

However, the annual proportion of depredated pastoral surfaces into hotspots in the whole set 342 

of depredated pastoral surfaces remained stable (Fig. 8B), with an annual mean of 13%. Except 343 

during the first years, the hotspots were of various sizes but generally did not exceed 5,000 344 

pastoral ha (Fig. 8C). Annual means of sheep counts and grazing time were significantly lower 345 

for the pastoral surfaces within hotspots than for those outside hotspots (respectively, t-test: 346 

P<0.001, α=0.05; Wilcoxon test: P<0.05, α=0.05). Hotspots could be located at different places 347 

within the study area (Fig. 9A; Fig. S5). They were mostly sporadic, appearing for one year. 348 
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But some could persist over time, such as in the MNP where they were present during the whole 349 

study period, and in the south during the period 2010-2018. These long-lasting hotspots 350 

generally encompassed several adjacent pastoral surfaces.  351 

In contrast, the results of hotspot identification drastically changed when ignoring sheep 352 

availability heterogeneity. For most years, the number of hotspots was lower (Fig. 8A) but their 353 

sizes were generally higher (Fig. 8C) than in the previous results accounting for sheep 354 

availability heterogeneity. In 2017 for example, the south-east identified hotspot was made of 355 

the smaller hotspots that were identified in the analysis accounting for sheep heterogeneity (Fig. 356 

9). In addition, small hotspots, which encompassed only one or a few small depredated pastoral 357 

surfaces were not systematically identified in the analysis ignoring sheep heterogeneity (e.g. 358 

Fig. 9; Fig. S5). Annual means of sheep counts and grazing time of pastoral surfaces within 359 

hotspots were significantly larger in the analysis ignoring sheep heterogeneity than in the 360 

analysis accounting for sheep heterogeneity (t-tests: P<0.001, α=0.05).  361 

Discussion 362 

Wolves are opportunistic predators. The number of wolf attacks on a specific prey generally 363 

increases with prey availability, because of higher risks of encounters (Mech & Boitani, 2003). 364 

The same rule has been observed for depredations (e.g. Gula, 2008). Therefore, ignoring 365 

livestock availability in clustering analyses of depredations prevents the distinction between 366 

sheep and depredation clustering. We quantified the discrepancies between clustering analyses 367 

considering or not livestock availability and distribution. These discrepancies were minimal 368 

from 1995 to 1999, at the early stage of wolf colonisation, then became visible from 2000 once 369 

the wolf population increased and expanded. Firstly, ignoring sheep availability in the 370 

depredation pattern analysis mostly led to a pattern of complete aggregation at all distances for 371 

almost all years, rather representing the underlying heterogenous sheep availability than the 372 
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depredation clustering itself. These results were consistent with the hotspot identification 373 

analysis ignoring sheep availability, which tended to identify hotspots with larger flock size and 374 

grazing time, but not those with low sheep availabilities and numbers of depredations. 375 

Secondly, ignoring sheep distribution in the K-function intensified the aggregation observed 376 

when ignoring only sheep availability, because of the inclusion of area where depredations were 377 

not possible. In contrast, accounting for sheep availability (and therefore for sheep distribution 378 

too) was necessary to identify the typical clustered pattern (i.e. aggregation followed by 379 

repulsion; Hoffmann et al., 2019) through Kinhom and to provide a finer-grained analysis of 380 

hotspots through the Kulldorff statistic. This is of great interest for management when allocating 381 

prevention tools or derogations of wolf removals for the most pressing situations.   382 

Wolves are territorial animals. They live in packs or alone within a delimited territory that they 383 

actively defend against conspecifics. This behaviour creates buffer zones between territories 384 

that wolves tend to avoid because of intraspecific strife risks. A lower risk of predation has been 385 

observed in buffer zone compared to the predation risk within territories (Mech & Boitani, 386 

2003). The typical clustered pattern observed in our Kinhom analysis could be the result of such 387 

spatial variation in predation risk, where the aggregation and repulsion would respectively 388 

correspond to core territories and buffer zones. However, at the regional scale, the hotspot 389 

radius was estimated between 15 and 50 km, which did not match with the 7-8 km wolf territory 390 

radius estimated in France through telemetry and genetic tracking (Duchamp et al., 2012). Even 391 

at the local scale, where we expected a better perceptibility of wolf territorial behaviour, the 392 

hotspot radiuses were still too high to match with field observations, the lowest estimation being 393 

12 km. Nevertheless, pack cohesion is low during summer and pack members may not forage 394 

together (Metz, Vucetich, Smith, Stahler, & Peterson, 2011), which can potentially increase the 395 

pack foraging surface. Moreover, lone wolves in dispersion may roam around pack territories 396 
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in these buffer zones, where they have less risk to encounter territorial wolves (Mech & Boitani, 397 

2003). These ecology features could contribute to smooth the clustering pattern.  398 

Wolves share parental care among pack members to increase pup survival, and have high 399 

dispersal abilities (Mech & Boitani, 2003). These features partially explain why wolves were 400 

able to recolonise almost half of mainland France in only two decades. Our 24-year depredation 401 

dataset allowed an original analysis of the trends in the depredation patterns through wolf 402 

recolonisation. During the first period of recolonisation (1995-1999), large spaces were vacant 403 

and pack territories were not adjacent to avoid competition (Louvrier et al., 2018). This could 404 

explain why only aggregation in the depredation pattern was observed during this period. Once 405 

wolf distribution homogenised across the study area from 2000, aggregation started to weaken 406 

at the largest analysed distances (2nd period, 2000-2003) and then turned into repulsion between 407 

15 and 30 km (3rd period, 2004-2012). The densification of wolf territories therefore seemed to 408 

create the typical clustering pattern (hotspots separated by coldspots). However, from 2013 to 409 

2018, the results at the regional scale showed that, apart from large hotspots which persisted in 410 

space and time, the distribution of depredations elsewhere in the study area tended to form 411 

sporadic small hotspots and overall tended to randomness. This result could be explained by 412 

the wolf expansion that produced very high rates of depredations spreading out all over the 413 

study area. The randomisation was also observed at the local scale once depredations reached 414 

around 500 from 2013. The randomisation could also be explained by the depredation risk 415 

homogenisation among pastoral surfaces, because of the increasing number of farmers who 416 

protected their flocks against wolf depredations (MTES & MAA, 2018). The sporadic hotspots 417 

could therefore result from occasional environmental or pastoral conditions favouring only 418 

briefly depredation (e.g. fog, protection fails). This was consistent with the right-skewed 419 

distribution of the number of attacks per pastoral surface: in a given year, most pastoral surfaces 420 

were not experiencing depredations, or only one or two. On the other hand, the long-lasting 421 
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hotspots encompassed a large number of depredations. They could result from environmental, 422 

topographic or pastoral vulnerability to depredation, or from wolf accommodation to livestock 423 

depredations and transmission of this behaviour through generations (Meuret, Lescureux, & 424 

Garde, 2018). The observed trends in the depredation patterns could also result from a temporal 425 

change in sheep availability, for which we only had two censuses (1996 and 2012). However, 426 

the data consistency between the censuses suggested that this risk was reduced. In any case, we 427 

demonstrated the underlying livestock availability was of particular importance to any study on 428 

depredation hotspots.  429 

Management implications 430 

Reliable estimates of hotspot locations can inform risk models (Hoffmann et al., 2019). 431 

However, they also constitute a full management tool, especially to allocate resources for 432 

protective measures. For example, year-to-year analysis of hotspot identification allows the 433 

localisation of long-lasting hotspots which crystallise conflicts (Stahl et al., 2001). The involved 434 

farmers could be helped in the understanding of the causes favouring depredations and in the 435 

implementation of appropriate preventive tools. This tool is already applied in France, but the 436 

descriptive statistics used by the French authorities could be improved by our methodology. 437 

The latter indeed guarantees that the identified hotspots are not the result of livestock 438 

availability but only of other factors favouring depredations, such as environmental, pastoral or 439 

predator-linked factors. Moreover, our methodology allows the localisation of hotspots with 440 

small flocks or with flocks grazing for a short period of time. If the Kinhom analysis is not 441 

necessary for locating hotspots, it allows a general understanding of the depredation pattern at 442 

the regional and local scales and its evolution through time, which can help managers to grasp 443 

the situation.   444 
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Figures 549 

Figure 1: Location of the study area (white) within France, and of the MNP (hatched) within 550 

the study area, from which wolves from Italy recolonised France (black arrows).  551 

 552 

Figure 2: Pastoral information from the 2012-2014 census of the study area, including the MNP 553 

(hatched). See Fig. S1 for the 1996-1997 census completed with information from the second 554 

census. 555 

 556 

Figure 3: Proportion of 10x10km cells within wolf distribution (yellow), proportion of pastoral 557 

surfaces under wolf depredation risk in the whole set of pastoral surfaces (light green), 558 

proportion of pastoral surfaces with at least one reported wolf depredation on sheep in the set 559 
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of pastoral surfaces at depredation risk (dark green), and number of wolf depredations on sheep 560 

(solid red) per year in the area. At the A) regional scale, B) local scale.  561 

 562 

 563 

Figure 4: Results at the regional scale of the Kinhom function (solid yellow line) and of the K-564 

function where the analysis area was defined as the pastoral surfaces at depredation risk (dotted 565 

dark blue line) or as the wolf distribution cells (dotted light blue line), against their 566 

corresponding control envelopes, for the years 1995, 2001, 2010 and 2018. The shown distances 567 

of r were delimited to those computed by the Kinhom function. See Fig. S4 for all years. 568 



 27 

 569 

Figure 5: Annual distributions of pastoral surfaces at depredation risk and of verified wolf 570 

depredations on sheep at the regional scale for the years 1995, 2001, 2010 and 2018. See Fig. 571 

S2 for all years. 572 
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 573 

Figure 6: Results at the local scale of the Kinhom function for the years 1999, 2004, 2010 and 574 

2018. See Fig. S4 for all years. 575 
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 576 

Figure 7: Annual distributions of pastoral surfaces at depredation risk and of verified wolf 577 

depredations on sheep at the local scale for the years 1999, 2004, 2010 and 2018. See Fig. S2 578 

for all years. 579 
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 580 

Figure 8: Descriptive results of the Kulldorff statistic used with the observed heterogeneous 581 

(yellow) or simulated homogeneous (blue) sheep availability, for each year within the study 582 

area. (A) Number of significant hotspots, (B) Proportion of depredated pastoral surfaces into 583 

significant hotspots in the whole set of depredated pastoral surfaces, (C) Distribution of the sum 584 

of the areas of the pastoral surfaces included into each hotspot (with outliers as black dots).  585 
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 586 

Figure 9: Locations of depredated pastoral surfaces identified as hotspots (dark colour) or not 587 

(light colour) in the study area in 2017 according to the Kulldorff statistic results using the 588 

observed heterogeneous (A) or simulated homogeneous (B) sheep availability. Pastoral surfaces 589 

within the same circles belonged to the same hotspot. Pastoral surfaces which were not 590 

depredated (grey) were shown for information but were not used in the statistical analysis. See 591 

Fig. S5 for all years. 592 
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 593 

Supporting Information 594 

Fig. S1  ̶  Pastoral information of the study area, from the census of 1996-1997 (completed with 595 

information from the 2012-2014 census) or from the census of 2012-2014. 596 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig1/  597 

Fig. S2  ̶  Annual distributions of wolf presence, pastoral surfaces and verified wolf 598 

depredations on sheep in the study area between 1995 and 2018. 599 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig2/ 600 

Fig. S3  ̶  Annual distributions of the number of wolf depredations on sheep per pastoral surface 601 

at depredation risk, at the regional and local scales between 1995 and 2018. 602 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig3/  603 

Fig. S4  ̶  Annual results between 1995 and 2018 from the Kinhom function from the K-function 604 

with the analysis units defined as the pastoral surfaces at depredation risk or as the wolf 605 

distribution cells. https://oksanagrente.shinyapps.io/Hotspots-SuppFig4/  606 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig1/
https://oksanagrente.shinyapps.io/Hotspots-SuppFig2/
https://oksanagrente.shinyapps.io/Hotspots-SuppFig3/
https://oksanagrente.shinyapps.io/Hotspots-SuppFig4/
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Fig. S5  ̶  Annual locations between 1995 and 2018 of depredated pastoral surfaces identified 607 

or not as hotspots, according to the Kulldorff statistic used with the observed heterogeneous or 608 

simulated homogeneous sheep availability at the regional scale. 609 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig5/  610 

https://oksanagrente.shinyapps.io/Hotspots-SuppFig5/

