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Introduction

Meta-analysis encompasses an array of methods for synthesizing information from primary

studies and evaluating the consistency of their results (Glass, 1976; Hedges & Olkin, 1985;

Cooper et al., 2009; Senior et al., 2016). Although these methods have been mostly developed

in the medical and social sciences (Egger et al., 2001; Sutton & Higgins, 2008; Cooper et al.,

2009), ecologists and evolutionary biologists have successfully adopted these techniques for

conducting research syntheses in their respective fields (Gurevitch et al., 2001; Koricheva

et al., 2013; Gurevitch et al., 2018). However, meta-analyses in ecology and evolution typ-

ically have several features that require special attention so that trustworthy evidence can

be obtained.

To start, meta-analyses in these fields often incorporate data from multiple species which

share an evolutionary history, known as phylogeny (Arnqvist & Wooster, 1995; Gurevitch

& Hedges, 1999; Chamberlain et al., 2012). As a result, the samples (and the effect sizes

obtained from these samples) are not independent which violates the independence assump-

tion underlying conventional meta-analytic models. For example, the standard fixed- and

random-effects models (see Hedges & Olkin, 1985; Hedges & Vevea, 1998), often used for

ecological meta-analyses (Nakagawa & Santos, 2012), assume independence among the effect

sizes and therefore do not account for the phylogeny (Chamberlain et al., 2012; Noble et al.,

2017). This issue was first addressed by two meta-analytic methods proposed by Adams

(2008) and Lajeunesse (2009) which incorporate phylogeny into the fixed- and random-effects

models, respectively.

Chamberlain et al. (2012) empirically investigated how the inclusion of phylogeny affects

the estimate of the overall mean based on data from 30 meta-analyses in ecology and evo-

lution. They showed that the estimate of the overall mean did not change considerably in

most of the meta-analyses, especially when using a random-effects model for the analysis.

However, a substantial portion of the meta-analyses, which reported significant results be-

fore, produced non-significant results when the phylogeny was incorporated into the model.
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Therefore, including phylogeny might be an important factor to reduce Type I error rates

and to obtain an accurate reflection of the uncertainty of meta-analytic estimates.

Although Chamberlain et al. (2012) is the most extensive study to date to examine the

effects of phylogeny in meta-analysis, there are two potential limitations. First, their work

was based on available meta-analyses. To investigate the issue of phylogeny more broadly,

we require a simulation study to explore a wider parameter space and under controlled

conditions. Second, Chamberlain et al. (2012) did not address the fact that ecological and

evolutionary studies usually report multiple effect sizes per study, which leads to yet another

source of non-independence in a meta-analysis (Nakagawa & Santos, 2012; Noble et al., 2017).

Although past and current meta-analyses have sometimes avoided this issue by selecting

a single effect size from each study or by collapsing multiple effect sizes into one, these

procedures can lead to a severe loss of information (Nakagawa & Santos, 2012).

As an alternative, Hadfield & Nakagawa (2010) proposed a mixed-effects model that

accounts for the multilevel structure in the data via a study-level random effect (i.e., mul-

tiple effect sizes per study are nested within this random effect). In the same model, they

include two additional random effects to estimate the non-phylogenetic and the phyloge-

netic variance. This way, among-species variance can be decomposed into two components,

the one resulting from species similarities due to evolutionary history and the other from

species similarities due to shared ecology and other factors (Lynch, 1991). Although the

model by Hadfield & Nakagawa (2010) addresses two major statistical issues in ecological

and evolutionary meta-analyses, the complexity of the model poses certain challenges.

Partitioning the among-species variance into its two components is a challenging en-

deavor, because both components are modeled using random effects at the species level,

with the only difference that the phylogenetic component assumes that the random effects

for different species are correlated according to a phylogenetic correlation matrix – which

in turn is derived from a phylogenetic tree that is constructed based on the similarities

and differences of species in terms of their (usually) genetic (but sometimes also physical)
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characteristics (Felsenstein, 2004). This raises concerns about the identifiability of the cor-

responding variance components and potential bias in their estimates, issues that have also

been raised outside the meta-analytic context when analyzing the data of primary studies

that include multiple species (Paradis, 2012).

Even if the parameters can be estimated unbiasedly, the complexity of the model poses

a threat to the convergence of the optimization algorithms (Bates et al., 2015). Accord-

ingly, Nakagawa & Santos (2012) suggested that model fitting may only be feasible with

larger datasets, which would limit the applicability of the model in practice. To avoid these

problems, some ecological and evolutionary meta-analyses were carried out using a more par-

simonious model by removing the non-phylogenetic random effect and have therefore dealt

with the species variance only via the phylogenetic component (e.g., Garamszegi et al., 2012;

Moore et al., 2015). However, the consequences of doing so, and the performance of the

more complex model, has yet to be evaluated in a simulation study.

Here we aim to investigate the performance of models for conducting a phylogenetic

multilevel meta-analysis in a comprehensive simulation study. We simulate studies that

report multiple effect sizes and use several models that vary in their complexity, starting from

a simple model (including only a random effect at the effect-size level) to the most complex

model which incorporates a study-level random effect and two among-species random effects.

Further, we generate specific conditions to test the performance of the most complex model

when the phylogenetic relationships are weak and to examine the consequences of removing

the non-phylogenetic component. Before we fully explain our simulation design, we first

introduce the different meta-analytic models in further detail.
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Material and Methods

Meta-Analytic Models

To conduct a meta-analysis, the phenomenon of interest (e.g., the size of a treatment effect

or the strength of the association between two variables) needs to be quantified in terms of

an effect size estimate for each study to be included in the analysis. Note that we use the

term study broadly here, as a single study may contribute multiple effect size estimates (e.g.,

for multiple species, subgroups, different treatments), but for the moment we assume that

each study contributes a single estimate to the meta-analysis.

The specific effect size measure to be used in a meta-analysis depends on the phenomenon

of interest and the information reported in the primary studies (Nakagawa & Santos, 2012).

For example, raw or standardized mean differences and response ratios (Hedges et al., 1999)

are typically used to quantify group differences or treatment effects based on quantitative

variables, correlation coefficients (or Fisher r-to-z transformed values thereof) reflect the

(linear) relationship between two variables, while (log-transformed) odds/risk ratios and

risk differences (calculated from 2 × 2 contingency tables) indicate group differences (e.g.,

treated vs. untreated, exposed vs. non-exposed) with respect to dichotomous dependent

variables (e.g., cured vs. not cured, diseased vs. not diseased). For all of these measures,

we can also derive an equation that allows us to compute the sampling variances of the

effect size estimates, that is, the variability in each estimate that would be expected under

repeated sampling of new study units under identical circumstances (Nakagawa & Cuthill,

2007; Cooper et al., 2009; Borenstein et al., 2011).

Regardless of the specific measure used in a meta-analysis, let yi denote the effect size

estimate for the ith study (with i = 1, . . . , Nstudies) and vi the corresponding sampling

variance. The most basic model that can be considered for synthesizing the estimates is the
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fixed-effects model, which is given by

yi = µ+ ei, (1)

e ∼ N(0,V), (2)

where µ is the overall mean, ei is the sampling error for the ith study, e is a 1 × Nstudies

column vector with the ei values (which are assumed to be normally distributed with mean

0 and variance vi), 0 is a column vector of zeros, and V is an Nstudies ×Nstudies matrix with

the vi values along the diagonal.

The fixed-effects model assumes that the studies included in a meta-analysis share a single

common true effect. This assumption, however, is rarely met in multi-population and multi-

species meta-analyses of ecology and evolution studies (Gurevitch & Hedges, 1999; Higgins

et al., 2009). The random-effects model addresses this potential ‘heterogeneity’ among the

true effects by adding a random effect corresponding to each estimate and is given by

yi = µ+ ui + ei (3)

u ∼ N(0, σ2
uIu), (4)

where ui is the random effect corresponding to the ith estimate, u is a 1 × Nstudies column

vector with the ui values (which are assumed to be normally distributed with mean 0 and

variance σ2
u), and Iu is an Nstudies ×Nstudies identity matrix.

Although the models above are suitable for conducting a meta-analysis in many circum-

stances, they do not account for the multilevel structure that arises when (at least some

of) the studies provide multiple effect size estimates (e.g., when the same experiment was

conducted several times under varying circumstances within the same study) and they do

not account for phylogenetic dependence (when studies are conducted with multiple species

that differ in similarity due to differences in their shared evolutionary history).
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To address the first issue, we can use a multilevel meta-analytic model (Konstantopoulos,

2011; Nakagawa & Santos, 2012) which includes a random effect at the effect size level (as in

model 3), but which now captures variability in the true effects within studies, and a random

effect at the study level, which captures between-study variability. Let yij denote the jth

effect in the ith study (with j = 1, . . . , Ni, where Ni is the number of effect sizes reported in

the ith study), vij the corresponding sampling variance, and let Ntotal = ∑Nstudies
i=1 Ni denote

the total number of effects. The model is then given by

yij = µ+ uij + si + eij (5)

s ∼ N(0, σ2
sIs), (6)

where uij is a random effect corresponding to the jth effect size in the ith study, si is a

random effect at the study level, u is now a 1×Ntotal column vector with the uij values, s is

a 1×Nstudies column vector with the si values (which are assumed to be normally distributed

with mean 0 and variance σ2
s), and Iu and Is are Ntotal×Ntotal and Nstudies×Nstudies identity

matrices, respectively. Finally, e is now defined as a 1 × Ntotal column vector with the eij

values and V is the corresponding (diagonal) variance-covariance matrix with dimensions

Ntotal ×Ntotal.

To deal with multiple species (i.e., when the effect size estimates were computed based

on a set of Nspecies different species), we will need an additional index. Hence, let yijk denote

the jth effect in the ith study as before, but now let k = 1, . . . , Nspecies be the index that

indicates for which species a particular effect size estimate was computed. Model 5 can then

be extended to account for species-level variability as follows:

yijk = µ+ uij + si + nk + eij, (7)

n ∼ N(0, σ2
nIn), (8)
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where nk is a species-specific random effect, n is a 1 × Nspecies column vector with the nk

values (which are assumed to be normally distributed with mean 0 and between-species

variance σ2
n), and In has dimensions Nspecies × Nspecies. Note that nk is a crossed random

effect (e.g., Fernández-Castilla et al., 2019) and not nested within studies and we do not

need subscript k for uij or eij since subscripts i and j are sufficient to uniquely identify each

effect size estimate in the dataset.

Model 7, however, does not account for phylogeny. For this, we can further extend the

model by including an additional set of species-level random effects (Hadfield & Nakagawa,

2010), but instead of assuming independence for different species (as for the nk values), we

allow these random effects to be correlated according to a phylogenetic correlation matrix,

which in turn is derived from a phylogenetic tree based on some model of evolution (such

as Brownian motion) prior to the analysis (e.g., Lajeunesse, 2009; Felsenstein, 1985, 2004;

Freckleton et al., 2002). The model is then given by

yijk = µ+ uij + si + nk + pk + eij, (9)

p ∼ N(0, σ2
pA), (10)

where pk denotes the phylogenetic random effect for the kth species, p is a 1×Nspecies column

vector with the pk values (which are assumed to follow a multivariate normal distribution with

mean 0 and variance-covariance matrix σ2
pA, where A is the Nspecies ×Nspecies phylogenetic

correlation matrix). Hence, the model includes non-phylogenetic species-level random effects

(i.e., the nk values) to account for heterogeneity in the effects sizes due to differences between

species unrelated to phylogeny (e.g., the influence of differences in the environments they

live in) and the phylogenetic random effects (i.e., the pk values) that capture dependencies in

the effect sizes according to the similarities between species due to phylogenetic relatedness.

A concern with model 9 arises when the phylogenetic relationships are weak. In that

case A starts to resemble In, and hence σ2
p and σ2

n are confounded and may not be uniquely
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identifiable. This in turn may lead to bias in the estimates of the variance components.

This concern, or the complexity of model 9 in general, has led some researchers to adopt

a more parsimonious model in their ecological and evolutionary meta-analyses where the

non-phylogenetic variance component is removed. This leads to the model

yijk = µ+ uij + si + pk + eij, (11)

where all terms are as explained before. Whether such a simplified version is an adequate

substitute for model 9 is currently unknown.

All of the models described above can be fitted within a Bayesian or likelihood framework

(Hadfield & Nakagawa, 2010). For the latter, the metafor package (Viechtbauer, 2010) for R

(R Core Team, 2020) is particularly attractive as it is freely available and was written specif-

ically for the purposes of conducting meta-analyses. Maximum likelihood (ML) or restricted

maximum likelihood (REML) estimation can be used for model fitting (the latter usually

being the preferred choice; Patterson & Thompson, 1971), which will provide estimates of

the variance components included in a particular model, the estimate of µ (i.e., µ̂), and its

corresponding standard error (i.e., SE[µ̂]). Likelihood ratio tests and profile likelihood confi-

dence intervals provide inferences for the variance components. A Wald-type 95% confidence

interval for µ can be obtained with µ̂± 1.96SE[µ̂].

Simulation

We explored the consequences of using the various models described in the previous section

based on a simulation study.

Simulation Setup

In our setup, the primary studies considered in a meta-analysis could provide one or multiple

effect size estimates for one or multiple species. We set (Nstudies, Nspecies) either to (20, 40)
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or (50, 100) to examine the difference between a smaller versus larger meta-analysis. Fur-

thermore, we set σ2
u, σ2

s , σ2
n, and σ2

p to either 0, 0.05, or 0.3 (plus an additional parameter

α to be defined below to either 0.5, 1, or 2) to define a particular condition within the sim-

ulation study. Table 1 provides an overview of the 158 conditions that were studied in this

manner. Note that we used a ‘conditional factorization’ of the four variance components

to keep the number of conditions manageable and to generate scenarios where one of the

models described in Eqs. 3, 5, 7, and 9 corresponds to the true data generating mechanism.

Within a particular condition, the following steps were repeated 1000 times.

First, the number of effect sizes provided by the studies (i.e., theNi values) were simulated

from a right-skewed distribution, as typically observed in practice. For this, we generated

Nstudies random values from a Beta(1.5, 3) distribution, which were then multiplied by 39,

rounded to the closest integer, and increased by 1. Therefore, the number of estimates per

study could vary between 1 and 40 (with a mean, median, and mode of approximately 14,

13, and 9, respectively).

In the next step, we simulated the species indices (i.e., the k values) by generating Ntotal

random values from a Beta(2, 2) distribution, which were multiplied by Nspecies− 1, rounded

to the closest integer, and then increased by 1. Hence, the number of times that the various

species were studied followed a symmetric unimodal distribution (with mean/median/mode

equal to (Nspecies + 1)/2). In order to guarantee that all species appear at least once in the

meta-analysis, a randomly chosen Nspecies random numbers generated this way were replaced

with the integers from 1 to Nspecies.

Next, we generated a phylogenetic tree for the species using the rtree() function from

the R package ape (Paradis & Schliep, 2019), which uses a simple recursive random splitting

algorithm to simulate a phylogeny (Paradis, 2012). The branch lengths were then computed

using the compute.brlen() function from the same package based on the method by Grafen

(1989), using the power parameter α to essentially adjusts the ‘height’ of branch lengths

at the tips of the phylogenetic tree, leading to phylogenetic relationships that are generally
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stronger when branches are shorter at the tips or weaker when branches are longer at the tips.

Fig. 1 shows an example of such a simulated tree for 40 species modified by different α values.

Finally, the correlation matrix that represents the phylogenetic relationships (denoted by A

in Eq. 10) was calculated from the tree by using the vcv() function based on a Brownian

model of evolution (i.e., Ak,k′ = 1− bk,k′ , where bk,k′ is the branch length for a pair of species

to their most recent common ancestor).

We then generated the four sets of random effects, corresponding to the variance compo-

nents σ2
u, σ2

s , σ2
n, and σ2

p, either as independent draws from normal distributions for the first

three components or from a multivariate normal distribution for the last one. In conditions

where a particular variance component is equal to 0, the corresponding random effects are

then just a series of 0s of the appropriate length. To complete the data generating step,

the sampling variances (i.e., the vij values) were simulated from a right-skewed Beta(2, 20)

distribution (and hence had a value of .091 on average) which were then used to generate

the Ntotal sampling errors from a normal distribution with mean 0 and variance vij. We

then summed up the random effects and sampling errors as shown in Eqs. 9, setting µ = 0

without loss of generality.

After generating the data, we fitted the four models shown in equations 3, 5, 7, and 9,

using REML estimation as implemented in the rma.mv() function from the metafor package.

For model 3, we simply treated each estimate as a separate study (one can also think of this

as model 5 without the addition of the study-level random effect). For each model, we then

saved the estimate of µ, the variance component estimates, the bounds of the 95% Wald-type

confidence interval for µ, and the model fitting time. In case any one of the four models

did not converge within a particular iteration (with the default settings of the rma.mv()

function), the iteration was discarded and a new iteration was run to guarantee that a 1000

successful model fits were available for all four models.

After the 1000 iterations, we computed the mean of the µ̂ values for each model, the mean

of the variance component estimates, the proportion of iterations where 0 was included in the
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confidence interval (i.e., the empirical coverage rate), the mean confidence interval width, the

convergence rate, and the mean model fitting time. The simulation was run on a workstation

with an Intel Xeon E5-2630v4 processor utilizing 15 cores in parallel. Completion time for

the simulation was approximately 7 days (roughly 2520 core hours in total).

We generated two other sets of conditions to investigate specific questions. In the first set,

we examined conditions where the phylogenetic relationships could also be weaker than in the

main scenarios to test the performance of model 9 under such conditions. These conditions

were generated by setting α to (0.1, 0.2, 0.3, 0.4, 0.5, 1, 2) when (Nstudies, Nspecies) = (50, 100),

the estimate- and study-level variance components were both large (0.3), and the levels of

the remaining variance components were factorized with values of 0.05 and 0.3 (for a total of

28 different conditions). In the second set, we compared the performance of model 9 and the

simplified model 11 (that leaves out the non-phylogenetic species-level variance component).

For this, we set (Nstudies, Nspecies) = (50, 100), σ2
u = 0.05, σ2

s = 0.05, and α = 1, and then

generated different conditions by factorizing different values of only σ2
n and σ2

p, where the

former was set to values from 0 to 0.3 with increments of 0.05, whereas the latter was set to

either 0, 0.05, or 0.3 (for a total of 21 different conditions).

Results

Fig. 2a displays boxplots based on the mean µ̂ value for each of the four models across the 158

conditions, separated by which model was the true data generating mechanism. Generally,

the means were clustered tightly around 0, indicating little to no bias in µ̂, although in a small

set of conditions there was some slight positive bias in the estimates of the overall mean.

These conditions were characterized by non-zero values for all four variance components

(i.e., when model 9 was the true model), (Nstudies, Nspecies) = (20, 40), a weak phylogenetic

relationship (α = 0.5), and a large phylogenetic variance (σ2
p = 0.3).

In contrast to the results for the overall mean, the coverage rates of the 95% confidence
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interval for µ differed markedly across models (Fig. 2b). For conditions where model 3 was

the true data generating mechanism, all models achieved coverage rates close to or slightly

above the nominal 95% confidence level regardless of the specific conditions. As the other

variance components were introduced into the data, however, the coverage rates of models

that did not account for these additional sources of variability started to decrease, at times

severely so. Only model 9 was able to achieve rates close to the nominal level across the

majority of conditions, although the rates also fell somewhat below the nominal level for

certain conditions when all variance components were larger than zero.

Given that estimates of µ were relatively unbiased for all models, the closer to nominal

coverage rates of model 9 would be expected to be a consequence of wider confidence interval

(that consequently have a better chance of capturing the true value of µ). Fig. 2c confirms

this, showing the mean confidence interval widths for the various models across the various

conditions. However, what is particularly noteworthy is that the use of model 9 under

conditions where actually a simpler model is the true data generating mechanism only leads

to a relatively minor increase in the mean interval width.

Fig. 3 displays the bias in the variance component estimates of model 9 under the 28

different conditions generated by varying α, σ2
n, and σ2

p (while holding σ2
u and σ2

s constant

at 0.3). The results show no bias in the estimates of σ2
u and σ2

s . Furthermore, the model

is able to estimate σ2
n and σ2

p with little to no bias, except when the strength of the phylo-

genetic relationships decreased. As expected, under such conditions, the model struggles to

provide unbiased estimates of the non-phylogenetic and phylogenetic species-level variance

components.

Fig. 4a shows the coverage rates of the confidence interval for µ for models 9 and 11 as the

size of the non-phylogenetic species-level variance component (i.e., σ2
n) was systematically

increased. While model 9 provided rates close to or somewhat below the nominal level,

the rates for model 11 were often equal to 100% and hence the confidence interval for the

overall mean tended to be too wide (i.e., was overly conservative). Furthermore, Fig. 4b
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demonstrates that the bias in the phylogenetic variance component of model 11 inflated

rapidly as the true value of σ2
n increased (the value of σ2

p had no noteworthy influence on the

size of the bias and hence we averaged these results over the three possible values of σ2
p). In

contrast, model 9 estimated these two variance components essentially without bias under

these scenarios.

Model fitting times differed between the various models (Table 2), with model 9 requiring

the most amount of time on average, regardless of the true data generating mechanism.

The most challenging conditions for the more complex models were those scenarios where

model 3 corresponded to the true data generating mechanism. In this case, a single fit of

model 9 took around 26 seconds on average when (Nstudies, Nspecies) = (50, 100). In these

conditions, convergence rates were also the lowest, although even model 9 then converged in

approximately 96% of the iterations.

Discussion

Meta-analyses in the fields of ecology and evolution typically need to address the fact that

multiple effect size estimates can be extracted from at least some of the studies and that

the estimates are based on various species that are related to each other due to their shared

evolutionary history. In this paper, we investigated the performance of the phylogenetic

multilevel meta-analytic model proposed by Hadfield & Nakagawa (2010) and Nakagawa &

Santos (2012) that captures these intricacies along with some simpler models. Despite the

concerns we raised in the introduction, the model can successfully estimate the overall mean

and its uncertainty. It also provides approximately unbiased estimates of all variance com-

ponents, including the non-phylogenetic and phylogenetic species-level variances, as long as

there are at least moderately strong phylogenetic relationships among the species. In addi-

tion, despite its complexity, the model does not appear to suffer from convergence problems

and model fitting does not require excessive computational times.
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Estimating the Overall Mean and its Uncertainty

Not only the phylogenetic multilevel meta-analytic model, but also the simpler models that

leave out certain variance components provide essentially unbiased estimates of the overall

mean, regardless of the nature of the true model that underlies the data (Fig. 2a). However,

the uncertainty in the overall mean will only be estimated accurately when the fitted model

includes the variance components that do contribute to the heterogeneity and dependencies

among the underlying true effects. Fitting underspecified models typically led to severe

undercoverage of the confidence interval for the overall mean and hence anticonservative

inferences. In fact, subtracting the coverage rates shown in Fig. 2b from 1 yields the Type

I error rates for the test of the overall mean, which could go as high as 91% when using

a simple random-effects model that ignores the multilevel structure and the species-level

variance components.

These findings are in line with those by Chamberlain et al. (2012), who demonstrated,

based on 30 published meta-analyses, that the inclusion of phylogeny into a random-effects

model usually only led to minor changes in the pooled effect size, but had a more substantial

impact on the statistical significance of the finding (turning significant findings into non-

significant ones in the majority of cases where changes occurred).

Our findings can also be used to alleviate concerns with using the phylogenetic multilevel

meta-analytic model when it is actually an overspecified model (i.e., when the actual data

generating mechanism is simpler). In those cases, the mean confidence interval width of the

model was just barely wider than that of the simpler models, indicating little to no loss in

efficiency by fitting an overly complex model (Fig. 2c). The superfluous variance components

then converge towards 0 (or close to it), which appears to be slightly more challenging for

the optimization algorithm, leading to longer model fitting times and occasional convergence

problems, but not to any worrisome degree (Table 2). Moreover, in practice, for any particu-

lar dataset, convergence problems can typically be resolved by selecting a different optimizer

or making changes to the settings for the optimization routine, so the convergence rates as
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given only apply to the default settings.

At the same time, we should point out that the coverage rate of the model did fall slightly

below the nominal 95% level in the majority of conditions when all variance components

were in fact non-zero (see Fig. 2b, rightmost panel). This undercoverage stems from using

an overly simple Wald-type confidence interval using critical values based on a standard

normal distribution that ignores the uncertainty in the estimates of the variance components

(especially in the study and the two species-level components when Nstudies and Nspecies are

low). A similar issue, but for a simpler model with only between- and within-study variance

components (i.e., model 5 in our simulation) was also recently pointed out by Song et al.

(in press). Improved methods based on the t-distribution, with various approximations for

the degrees of freedom, have been proposed and studied extensively in the context of the

standard random-effects model (e.g., Sanchez-Meca & Marin-Martinez, 2008) and mixed-

effects models in general (e.g., Luke, 2017), but these methods have not been generalized

to the present context. As a simple approximation, using the smaller of Nstudies − 1 and

Nspecies − 1 as the degrees of freedom for a confidence interval based on a t-distribution is

likely to bring the coverage rate quite close to the nominal rate in the majority of conditions.

Including and Testing the Phylogenetic Effect

Phylogenies play a central role in the context of phylogenetic comparative studies (Freckleton

et al., 2002; Blomberg et al., 2003; Ives et al., 2007). An important step in such studies is

testing the significance of the ‘phylogenetic signal’ in some trait of interest. This test is

often performed through a statistic such as λ (Pagel, 1999) or K (Blomberg et al., 2003).

Although model 9 does not parameterize the phylogenetic effect in this manner, one can

derive information from its output that shows its relationship to the λ statistic. In particular,

Pagel’s λ is a multiplicative factor that is applied to the off-diagonal values of the correlation

matrix that represents the phylogenetic relationships (i.e., the A matrix). For example, the
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variance-covariance matrix for three species would be given by

σ2


1 λa12 λa13

1 λa23

1



while the decomposition of the species-level heterogeneity in model 9 implies the variance-

covariance matrix

σ2
n


1

1

1

+ σ2
p


1 a12 a13

1 a23

1

 = (σ2
n + σ2

p)


1

(
σ2

p

σ2
n+σ2

p

)
a12

(
σ2

p

σ2
n+σ2

p

)
a13

1
(

σ2
p

σ2
n+σ2

p

)
a23

1



and hence σ2 = σ2
n + σ2

p and λ = σ2
p/(σ2

n + σ2
p) (see also Lynch, 1991; Freckleton et al.,

2002). Hence, σ2
p/(σ2

n+σ2
p) indicates the degree of phylogenetic signal in the overall variance

sourced from the species. A likelihood ratio test of H0:σ2
p = 0 can be easily performed by

comparing X2 = −2(ll7− ll9) against a chi-squared distribution with one degree of freedom,

where ll7 and ll9 are the (restricted) log likelihoods of models 7 and 9, respectively.

Estimating the Non-Phylogenetic and Phylogenetic Variance Com-

ponents

Given the informative nature of these two variance components, it is essential to estimate

their true values accurately. We found that model 9 was usually able to estimate these

variance components unbiasedly, but should note that the model struggles to separate the

non-phylogenetic and phylogenetic species effects when phylogenetic relationships are weak.

In essence, the two sources of variability then start to collapse into one, with a total variance

of σ2
n + σ2

p. This total variance is then distributed in approximately equal parts into the

two estimates, which explains the apparent low bias when (coincidentally) σ2
n = σ2

p (Fig. 3a
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and d). However, when σ2
n 6= σ2

p, the bias in the two estimates becomes quite apparent

(Fig. 3b and c). Therefore, we would caution against the use of model 9 when phylogenetic

relationships are weak. As a rough guideline, for α = 0.5, the mean correlation in the A

matrix (excluding the diagonal) is around 0.2 and hence a lower mean correlation would call

into question the trustworthiness of the estimates of σ2
n and σ2

p.

Some meta-analyses in ecology and evolution have used model 11 to reduce model com-

plexity (e.g., Garamszegi et al., 2012; Moore et al., 2015). Our results indicate that this

approach cannot be recommended. As we increased the value of σ2
n in the actual data, the

bias in the phylogenetic variance component inflated massively as a result of leaving the

non-phylogenetic variance component out of the model (Fig. 4b). As a result, the relevance

of the phylogeny could be greatly overestimated. In addition, the confidence interval for the

overall mean then becomes extremely conservative with coverage rates at or very close to

100%. This in turn implies a loss of efficiency for estimating the size of the overall mean and

a loss of power for testing H0:µ = 0.

Caveats and Conclusions

For the simulation study, we used a ‘generic’ effect size measure, that is, we directly sim-

ulated the sampling errors from a normal distribution and treated the sampling variances

(i.e., the vij values) as exactly known. These conditions only apply asymptotically to mea-

sures typically used in practice (e.g., standardized mean differences, response ratios, r-to-z

transformed correlation coefficients, log-transformed risk/odds ratios). The present results

therefore reflect the performance of the various models under idealized conditions (i.e., as-

suming that the sample sizes of the individual studies are sufficiently large, such that the

sampling distributions of the estimates are indeed approximately normal and that any inac-

curacies in the estimated sampling variances are negligible). The advantage of using a generic

measure is that we were able to identify problems that are inherent to certain models and

not (potentially) a consequence of violations to the model assumptions. On the other hand,
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it remains to be determined how well the phylogenetic multilevel model performs when the

effect sizes are generated based on the exact distributional assumptions underlying specific

measures.

Hence, at least for the moment, the present results suggest that model 9 is the most

appropriate tool for conducting a multi-species meta-analysis in ecology and evolution. For

the vast majority of conditions examined, it provides approximately unbiased estimates of

the variance components and the overall mean and a confidence interval for the latter that

has a close to nominal coverage rate. Therefore, we recommend that meta-analysts in ecology

and evolution use the phylogenetic multilevel model as the de facto standard when analyzing

multi-species datasets.
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Nstudies Nspecies σ2
u σ2

s σ2
n σ2

p α Conditions True model

20 40 0, 0.05, 0.30 0 0 0 1 3 Model 3

20 40 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

50 100 0, 0.05, 0.30 0 0 0 1 3 Model 3

50 100 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

Table 1: Overview of the conditions examined in the simulation study. The first two columns
show the number of studies and species, respectively. The next four columns indicate the
true values of the variance components. The α column represent the power parameter. All
values were crossed within a particular row of the table. The last two columns respectively
represent the number of conditions generated in each row and the model that corresponds
to the true data generating mechanism for the conditions in a particular row.

(a) (Nstudies, NSpecies) = (20, 40) (b) (Nstudies, NSpecies) = (50, 100)

True Model True Model

Model Fit Model 3 Model 5 Model 7 Model 9 Model Fit Model 3 Model 5 Model 7 Model 9

Model 3
0.939

(100.00%)

0.668

(100.00%)

0.700

(100.00%)

0.700

(100.00%)
Model 3

1.589

(100.00%)

1.313

(100.00%)

1.307

(100.00%)

1.294

(100.00%)

Model 5
2.653

(99.81%)

1.104

(100.00%)

1.151

(100.00%)

1.162

(100.00%)
Model 5

3.934

(99.78%)

1.986

(100.00%)

1.999

(100.00%)

1.959

(100.00%)

Model 7
2.484

(97.53%)

1.876

(100.00%)

0.868

(100.00%)

0.858

(100.00%)
Model 7

19.823

(96.86%)

14.752

(100.00%)

7.364

(100.00%)

7.393

(100.00%)

Model 9
3.316

(96.56%)

3.053

(99.73%)

2.288

(99.99%)

1.463

(99.99%)
Model 9

25.980

(95.63%)

23.540

(99.60%)

18.641

(100.00%)

11.005

(100.00%)

Table 2: Average model fitting times in seconds and convergence rates (in parentheses) of
all models under the different data generating mechanisms.
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Figure 1: An example of a simulated phylogenetic tree for 40 species modified with different
values of the power parameter α (i.e., 0.5, 1, and 2).
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Figure 2: Boxplots based on the (a) mean µ̂ value, (b) coverage rates of the 95% confidence
interval for µ, and (c) mean confidence interval widths for each of the four models across the
158 conditions, separated by which model was the true data generating mechanism.
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Figure 3: Mean bias of the variance component estimates of model 9 under different com-
binations of the power parameter (α) and the non-phylogenetic and phylogenetic variance
components (σ2

n and σ2
p, respectively).
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Figure 4: Comparison of models 9 and 11 as the size of the non-phylogenetic species-level
variance component (i.e., σ2

n) was systematically increased. (a) Coverage rates of the 95%
confidence intervals for µ, (b) bias in the non-phylogenetic and phylogenetic variance com-
ponents.
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