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Abstract16

1. Meta-analyses in ecology and evolution require special attention due to certain study17

characteristics in these fields. First, the primary articles in these fields usually report results18

that are observed from studies conducted on different species, and the phylogeny among19

the species violates the independence assumption. Second, the primary articles frequently20

report multiple results which cannot be accounted for by conventional meta-analytic models.21

Although there is a model that accounts for these two problems in theory, its performance22

has not been examined extensively. In this article, we investigate the performance of this23

model in comparison with simpler models.24

2. We conducted an extensive simulation study where data with different levels of com-25

plexities were generated and then various models were fitted to examine their performance.26

The models we used include the conventional random-effects and multilevel random-effects27

models along with more complex multilevel models that account for species-level variance28

with different variance components. Furthermore, we present an illustrative application of29

these models based on the data from a meta-analysis on size-assortative mating and comment30

on the results in light of the findings from the simulation study.31

3. Our simulation results show that, when the phylogenetic relationships among the32

species are at least moderately strong, only the most complex model that decomposes the33

species-level variance into non-phylogenetic and phylogenetic components provides approxi-34

mately unbiased estimates of the overall mean and variance components and yields confidence35

intervals with an approximately nominal coverage rate. On the other hand, removing the36

phylogenetic or non-phylogenetic component leads to biased variance component estimates37

and an increased risk for incorrect inferences about the overall mean. These findings are38

supported by the results derived from the illustrative application.39

4. Based on our results, we suggest that meta-analyses in ecology and evolution should40

use the model that accounts for both the non-phylogenetic and phylogenetic species-level41

variance in addition to the multilevel structure of the data. Any attempts to simplify this42
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model, such as using only the phylogenetic variance component, may lead to erroneous43

inferences from the data.44

45

Keywords: comparative analysis, mixed-effects models, model efficiency, multilevel46

models, phylogenetic meta-analysis, random-effects variance estimation.47
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1 Introduction48

Meta-analysis encompasses an array of methods for synthesizing information from stud-49

ies examining some phenomenon of interest and evaluating the consistency of their results50

(Glass, 1976; Hedges and Olkin, 1985; Cooper et al., 2009; Senior et al., 2016). Although51

these methods have been mostly developed in the medical and social sciences (Egger et al.,52

2001; Sutton and Higgins, 2008; Cooper et al., 2009), ecologists and evolutionary biologists53

have successfully adopted these techniques for conducting research syntheses in their respec-54

tive fields (Gurevitch et al., 2001; Koricheva et al., 2013; Gurevitch et al., 2018). However,55

meta-analyses in ecology and evolution typically have several features that require special56

attention so that trustworthy evidence can be obtained.57

To start, meta-analyses in these fields often incorporate data from multiple species which58

share an evolutionary history, known as phylogeny (Arnqvist and Wooster, 1995; Gurevitch59

and Hedges, 1999; Chamberlain et al., 2012). As a result, the samples (and the effect60

sizes obtained from these samples) are not independent which violates the independence61

assumption underlying conventional meta-analytic models. For example, the standard fixed-62

and random-effects models (Hedges and Olkin, 1985; Hedges and Vevea, 1998), often used63

for ecological meta-analyses (Nakagawa and Santos, 2012), assume independence among the64

effect sizes and therefore do not account for phylogeny (Chamberlain et al., 2012; Noble65

et al., 2017). This issue was first addressed by Adams (2008) and Lajeunesse (2009) who66

incorporated phylogenies into the fixed- and random-effects models, respectively.67

Chamberlain et al. (2012) empirically investigated how the inclusion of phylogeny af-68

fects the estimate of the overall mean based on data from 30 meta-analyses in ecology and69

evolution. While the estimate of the overall mean did not change considerably in most70

cases (especially when using a random-effects model), a substantial portion of the meta-71

analyses, which reported significant results before, produced non-significant results when72

the phylogeny was incorporated into the model. Therefore, including phylogeny might be73

an important factor to reduce Type I error rates and to obtain an accurate reflection of the74
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uncertainty of meta-analytic estimates.75

Although Chamberlain et al. (2012) is the most extensive study to date examining the76

effects of phylogeny in meta-analysis, their work was based on available meta-analyses. To77

investigate the issue of phylogeny more broadly, we require a simulation study to explore a78

wider parameter space and under controlled conditions. Moreover, Chamberlain et al. (2012)79

did not address the fact that ecological and evolutionary studies usually report multiple effect80

sizes per study, which leads to another source of non-independence (Nakagawa and Santos,81

2012; Noble et al., 2017). Although past and current meta-analyses have sometimes avoided82

this issue by selecting a single effect size from each study or by collapsing multiple effect sizes83

into one, these procedures can lead to a severe loss of information (Nakagawa and Santos,84

2012).85

As an alternative, Hadfield and Nakagawa (2010) proposed a mixed-effects model that86

accounts for the multilevel structure via a study-level random effect (i.e., multiple effect87

sizes per study are nested within this random effect). In the same model, they include two88

additional random effects to estimate the non-phylogenetic and the phylogenetic variance.89

This way, among-species variance is decomposed into two components, the one resulting90

from species similarities due to evolutionary history and the other from species similarities91

due to shared ecology and other factors (Lynch, 1991). Although the model by Hadfield92

and Nakagawa (2010) addresses two major statistical issues in ecological and evolutionary93

meta-analyses, the complexity of the model poses certain challenges.94

Partitioning the species variance into its two components is a challenging endeavor, be-95

cause both components are modeled using random effects at the species level, with the only96

difference that the phylogenetic component assumes that the random effects are correlated97

according to a phylogenetic correlation matrix – which is derived from a phylogenetic tree98

constructed based on the similarities and differences of species in terms of their (usually) ge-99

netic (but sometimes also physical) characteristics (Felsenstein, 2004). This raises concerns100

about the identifiability of the variance components and potential bias in their estimates,101
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issues that have also been raised outside the meta-analytic context when analyzing the data102

of primary studies including multiple species (Paradis, 2012).103

Moreover, the complexity of the model poses a threat to the convergence of optimization104

algorithms (Bates et al., 2015). Accordingly, Nakagawa and Santos (2012) suggested that105

model fitting may only be feasible with larger datasets, which would limit the applicability106

of the model in practice. To avoid these problems, some ecological and evolutionary meta-107

analyses have been carried out using a simplified model without the non-phylogenetic random108

effect and that therefore accounts for species variance only via the phylogenetic component109

(e.g., Garamszegi et al., 2012; Moore et al., 2016). However, the consequences of doing so,110

and the performance of the more complex model, has yet to be evaluated in a simulation111

study.112

We therefore investigated the performance of models for conducting a phylogenetic mul-113

tilevel meta-analysis in a comprehensive simulation study. We simulate studies that report114

multiple effect sizes and use several models that vary in their complexity, starting from a115

simple model (including only a random effect at the effect sizes level) to the most complex116

model which incorporates a study-level and two among-species random effects. Further, we117

generate specific conditions to examine the performance of the most complex model when118

phylogenetic relationships are weak and the consequences of removing the non-phylogenetic119

component. Finally, we present an illustrative application of these models based on the data120

from a meta-analysis on size-assortative mating and comment on the results in light of the121

findings from the simulation study.122

2 Materials and Methods123

2.1 Meta-Analytic Models124

To conduct a meta-analysis, the phenomenon of interest (e.g., the size of a treatment effect125

or the strength of the association between two variables) needs to be quantified in terms of126
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an effect size estimate for each study to be included in the analysis. We use the term ‘study’127

broadly here, as a single study may contribute multiple estimates (e.g., for multiple species,128

subgroups, treatments), but for the moment we assume that each study contributes a single129

estimate to the meta-analysis.130

The specific effect size measure to be used in a meta-analysis depends on the phenomenon131

of interest and the information reported in the studies (Nakagawa and Santos, 2012). For132

example, raw or standardized mean differences and response ratios (Hedges et al., 1999)133

are typically used to quantify group differences or treatment effects based on quantitative134

variables, correlation coefficients (or Fisher r-to-z transformed values thereof) reflect the135

(linear) relationship between two variables, while (log-transformed) odds/risk ratios and136

risk differences (calculated from 2 × 2 contingency tables) indicate group differences (e.g.,137

treated vs. untreated, exposed vs. non-exposed) with respect to dichotomous dependent138

variables (e.g., cured vs. not cured, diseased vs. not diseased). For all of these measures,139

we can also compute the sampling variances of the estimates, that is, the variability in each140

estimate that would be expected under repeated sampling of new study units under identical141

circumstances (Nakagawa and Cuthill, 2007; Cooper et al., 2009; Borenstein et al., 2011).142

Regardless of the specific measure used in a meta-analysis, let yi denote the effect size143

estimate for the ith study (with i = 1, . . . , Nstudies) and vi the corresponding sampling144

variance. The most basic model that can be considered for synthesizing the estimates is the145

fixed-effects model, which is given by146

yi = µ+ ei, (1)

147

e ∼ N(0,V), (2)

where µ is the overall mean, ei is the sampling error for the ith study, e is a 1 × Nstudies148

column vector with the ei values (which are assumed to be normally distributed with mean149

0 and variance vi), 0 is a column vector of zeros, and V is an Nstudies ×Nstudies matrix with150
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the vi values along the diagonal.151

The fixed-effects model assumes that the included studies share a single common true152

effect. This assumption, however, is rarely met in multi-population and multi-species meta-153

analyses of ecology and evolution studies (Gurevitch and Hedges, 1999; Higgins et al., 2009).154

The random-effects model addresses this potential ‘heterogeneity’ among the true effects by155

adding a random effect corresponding to each estimate and is given by156

yi = µ+ ui + ei (3)

157

u ∼ N(0, σ2
uIu), (4)

where ui is the random effect corresponding to the ith estimate, u is a 1 × Nstudies column158

vector with the ui values (which are assumed to be normally distributed with mean 0 and159

variance σ2
u), and Iu is an Nstudies ×Nstudies identity matrix.160

Although the models above are suitable for conducting a meta-analysis in many cir-161

cumstances, they do not account for the multilevel structure that arises when at least some162

studies provide multiple effect size estimates (e.g., when the same experiment was conducted163

under varying circumstances within the same study) and they do not account for phyloge-164

netic dependence (when studies are conducted with multiple species that differ in similarity165

due to differences in their shared evolutionary history).166

To address the first issue, we can use a multilevel meta-analytic model (Konstantopoulos,167

2011; Nakagawa and Santos, 2012) which includes a random effect at the effect size level (as in168

model 3), but which now captures variability in the true effects within studies, and a random169

effect at the study level, which captures between-study variability. Let yij denote the jth170

effect in the ith study (with j = 1, . . . , Ni, where Ni is the number of effect sizes reported in171

the ith study), vij the corresponding sampling variance, and let Ntotal = ∑Nstudies
i=1 Ni denote172
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the total number of effects. The model is then given by173

yij = µ+ uij + si + eij (5)

174

s ∼ N(0, σ2
sIs), (6)

where uij is a random effect corresponding to the jth effect size in the ith study, si is a175

random effect at the study level, u is now a 1×Ntotal column vector with the uij values, s is176

a 1×Nstudies column vector with the si values (which are assumed to be normally distributed177

with mean 0 and variance σ2
s), and Iu and Is are Ntotal×Ntotal and Nstudies×Nstudies identity178

matrices, respectively. Finally, e is now a 1×Ntotal column vector with the eij values and V179

is the corresponding (diagonal) variance-covariance matrix with dimensions Ntotal ×Ntotal.180

When the effect size estimates were computed based on a set of Nspecies different species,181

we will need an additional index. Let yijk denote the jth effect in the ith study as before, but182

now let k = 1, . . . , Nspecies be the index that indicates for which species a particular effect183

size estimate was computed. Model 5 can then be extended to account for species-level184

variability as follows:185

yijk = µ+ uij + si + nk + eij, (7)
186

n ∼ N(0, σ2
nIn), (8)

where nk is a species-specific random effect, n is a 1 × Nspecies column vector with the nk187

values (which are assumed to be normally distributed with mean 0 and between-species188

variance σ2
n), and In has dimensions Nspecies × Nspecies. Note that nk is a crossed random189

effect (e.g., Fernández-Castilla et al., 2019) and not nested within studies and we therefore190

do not put subscript k on uij, si, or eij.191

Model 7, however, does not account for phylogeny. For this, we further extend the192

model by including an additional species-level random effect (Hadfield and Nakagawa, 2010),193

but instead of assuming independence for different species (as for the nk values), we allow194
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the values of the random effect to be correlated according to a phylogenetic correlation195

matrix, which in turn is derived from a phylogenetic tree based on some model of evolution196

(e.g., Brownian motion) prior to the analysis (e.g., Lajeunesse, 2009; Felsenstein, 1985, 2004;197

Freckleton et al., 2002). The model is given by198

yijk = µ+ uij + si + nk + pk + eij, (9)

199

p ∼ N(0, σ2
pA), (10)

where pk denotes the phylogenetic random effect for the kth species, p is a 1×Nspecies column200

vector with the pk values (which are assumed to follow a multivariate normal distribution with201

mean 0 and variance-covariance matrix σ2
pA, where A is the Nspecies ×Nspecies phylogenetic202

correlation matrix). Hence, the model includes a non-phylogenetic species-level random effect203

(i.e., the nk values) to account for heterogeneity in the effects sizes due to differences between204

species unrelated to phylogeny (e.g., the influence of differences in the environments they205

live in) and a phylogenetic random effect (i.e., the pk values) that captures dependencies in206

the effect sizes according to the similarities between species due to phylogenetic relatedness.207

A concern with model 9 arises when phylogenetic relationships are weak. In that case,208

A starts to resemble In and hence σ2
p and σ2

n are confounded and may not be uniquely209

identifiable. This may lead to bias in the estimates of the variance components. This concern,210

or the complexity of model 9 in general, has led some researchers to adopt a simplified model211

in their meta-analyses where the non-phylogenetic variance component is removed. This212

leads to the model213

yijk = µ+ uij + si + pk + eij, (11)

with all terms as explained before. Whether this simplified version is an adequate substitute214

for model 9 is currently unknown.215

The models described above can be fitted within a Bayesian or likelihood framework216

(Hadfield and Nakagawa, 2010). For the latter, the metafor package (Viechtbauer, 2010)217
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for R (R Core Team, 2021) is particularly attractive as it is freely available and was written218

specifically for the purposes of conducting meta-analyses. Maximum likelihood (ML) or219

restricted maximum likelihood (REML) estimation can be used for model fitting (the latter220

usually being the preferred choice; see Patterson and Thompson, 1971), providing estimates221

of the variance components included in a particular model, the estimate of µ (i.e., µ̂), and its222

standard error (i.e., SE[µ̂]). Likelihood ratio tests and profile likelihood confidence intervals223

provide inferences for the variance components. An approximate 95% Wald-type confidence224

interval for µ can be obtained with µ̂ ± 1.96SE[µ̂]. Analogously, H0: µ = 0 can be tested225

by comparing z = µ̂/SE[µ̂] against the critical values (i.e., ±1.96) of a standard normal226

distribution.227

Although fitting the models and deriving inference from them is feasible, the consequences228

of using the various models have not been examined systematically. We therefore conducted229

an extensive simulation study to investigate the performance of the various model under230

varying circumstances.231

2.2 Simulation Setup232

In our setup, the primary studies could provide one or multiple effect size estimates for one233

or multiple species. We set (Nstudies, Nspecies) either to (20, 40) or (50, 100) to examine the234

difference between a smaller versus larger meta-analysis. Furthermore, we set σ2
u, σ2

s , σ2
n, and235

σ2
p to either 0, 0.05, or 0.3 (plus an additional parameter α to be described below to either236

0.5, 1, or 2) to define a particular condition within the simulation study. Table 1 provides237

an overview of the 158 conditions that were studied in this manner. Note that we used238

a ‘conditional factorization’ of the variance components to keep the number of conditions239

manageable and to generate scenarios where one of the models described in equations 3, 5, 7,240

and 9 corresponds to the true data generating mechanism (see Table 1). Within a particular241

condition, the following steps were repeated 1000 times.242

First, the number of effect sizes provided by the studies (i.e., theNi values) were simulated243
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Nstudies Nspecies σ2
u σ2

s σ2
n σ2

p α Conditions True model

20 40 0, 0.05, 0.30 0 0 0 1 3 Model 3

20 40 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

50 100 0, 0.05, 0.30 0 0 0 1 3 Model 3

50 100 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

Table 1: Overview of the conditions examined in the simulation study. The first two columns
show the number of studies and species, respectively. The next four columns indicate the
true values of the variance components. The α column represent the power parameter. All
values were crossed within a particular row of the table. The last two columns respectively
represent the number of conditions generated in each row and the model that corresponds
to the true data generating mechanism for the conditions in a particular row.

from a right-skewed distribution, as typically observed in practice. For this, we generated244

Nstudies random values from a Beta(1.5, 3) distribution, which were then multiplied by 39,245

rounded to the closest integer, and increased by 1. Therefore, the number of estimates per246

study could vary between 1 and 40 (with a mean, median, and mode of approximately 14,247

13, and 9, respectively).248

In the next step, we simulated the species indices (i.e., the k values) by generating Ntotal249

random values from a Beta(2, 2) distribution, which were multiplied by Nspecies− 1, rounded250

to the closest integer, and then increased by 1. Accordingly, the number of times that the251

various species were studied followed a symmetric unimodal distribution (with mean equal252

to (Nspecies + 1)/2). In order to guarantee that all species appear at least once in each meta-253

analysis, a randomly chosen Nspecies random numbers generated this way were replaced with254

the integers from 1 to Nspecies.255

Next, we generated a phylogenetic tree for the species using the rtree() function from256

the R package ape (Paradis and Schliep, 2019), which uses a recursive random splitting257

algorithm to simulate a phylogeny (Paradis, 2012). The branch lengths were then computed258
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Figure 1: An example of a simulated phylogenetic tree for 40 species modified with different
values of the power parameter α (i.e., 0.5, 1, and 2).

using the compute.brlen() function based on the method by Grafen (1989), using the power259

parameter α to adjust the ‘height’ of branch lengths at the tips of the phylogenetic tree,260

leading to phylogenetic relationships that are generally stronger when branches are shorter261

at the tips or weaker when branches are longer at the tips. Fig. 1 shows an example of such262

a simulated tree for 40 species modified by different α values. Finally, the correlation matrix263

that represents the phylogenetic relationships (matrix A in equation 10) was calculated264

from the tree by using the vcv() function based on a Brownian model of evolution (i.e.,265

Ak,k′ = 1 − bk,k′ , where bk,k′ is the branch length for a pair of species to their most recent266

common ancestor).267

We then generated the values for the four random effects, corresponding to the variance268

components σ2
u, σ2

s , σ2
n, and σ2

p, either as independent draws from normal distributions for269

the first three components or from a multivariate normal distribution for the last one. In270

conditions where a variance component is equal to 0, the corresponding random effect values271

are then just a series of 0s of the appropriate length. To complete the data generating step,272

the sampling variances (i.e., the vij values) were simulated from a right-skewed Beta(2, 20)273
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distribution (and hence had a value of .091 on average) which were then used to generate274

the Ntotal sampling errors from a normal distribution with mean 0 and variance vij. We then275

summed up the random effects and sampling errors as shown in equation 9, setting µ = 0276

without loss of generality.277

After generating the data, we fitted the four models shown in equations 3, 5, 7, and 9,278

using REML estimation as implemented in the rma.mv() function from the metafor package.279

For model 3, we simply treated each estimate as a separate study (one can also think of this280

as model 5 without the addition of the study-level random effect). For each model, we then281

saved the estimate of µ, the variance component estimates, the bounds of the 95% Wald-type282

confidence interval for µ, and the model fitting time. In case any one of the four models283

did not converge within a particular iteration (with the default settings of the rma.mv()284

function), the iteration was discarded and a new iteration was run to guarantee that a 1000285

successful model fits were available for all four models.286

After the 1000 iterations, we computed the mean of the µ̂ values for each model, the mean287

of the variance component estimates, the proportion of iterations where 0 was included in288

the confidence interval (i.e., the empirical coverage rate for µ), the mean confidence interval289

width, the convergence rate, and the mean model fitting time. The simulation was run on a290

workstation with an Intel Xeon E5-2630v4 processor utilizing 15 cores in parallel. Completion291

time for the simulation was approximately 7 days (roughly 2520 core hours).292

We generated two other sets of conditions to investigate specific questions. First, we293

examined conditions where the phylogenetic relationships could also be weaker than in the294

main scenarios to test the performance of model 9 under such conditions. These conditions295

were generated by setting α to (0.1, 0.2, 0.3, 0.4, 0.5, 1, 2) when (Nstudies, Nspecies) = (50, 100),296

the estimate- and study-level variance components were both large (0.3), and the levels of297

the remaining variance components were factorized with values of 0.05 and 0.3 (for a total of298

28 different conditions). Second, we compared the performance of model 9 and the simplified299

model 11 (that leaves out the non-phylogenetic species-level random effect). For this, we set300
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(Nstudies, Nspecies) = (50, 100), σ2
u = 0.05, σ2

s = 0.05, and α = 1, and then generated different301

conditions by factorizing different values of only σ2
n and σ2

p, where the former was set to302

values from 0 to 0.3 with increments of 0.05, whereas the latter was set to either 0, 0.05, or303

0.3 (for a total of 21 different conditions).304

3 Results305

3.1 Simulation Results306

Fig. 2a displays boxplots of the mean µ̂ values for each of the four models across the 158307

conditions, separated by which model was the true data generating mechanism. Generally,308

the means were clustered tightly around 0, indicating little to no bias in µ̂, although in a small309

set of conditions there was some slight positive bias in the estimates of the overall mean.310

These conditions were characterized by non-zero values for all four variance components311

(i.e., when model 9 was the true model), (Nstudies, Nspecies) = (20, 40), a weak phylogenetic312

relationship (α = 0.5), and a large phylogenetic variance (σ2
p = 0.3).313

In contrast to the results for the overall mean, the coverage rates of the 95% confidence314

interval for µ differed markedly across models (Fig. 2b). For conditions where model 3 was315

the true data generating mechanism, all models achieved coverage rates close to or slightly316

above the nominal 95% confidence level regardless of the condition. As the other variance317

components were introduced into the data, however, the coverage rates of models that did318

not account for these additional sources of variability started to decrease, at times severely319

so. Only model 9 was able to achieve rates close to the nominal level across the majority320

of conditions, although the rates also fell somewhat below the nominal level for certain321

conditions when all variance components were larger than zero.322

Given that estimates of µ were relatively unbiased for all models, the closer to nominal323

coverage rates of model 9 would be expected to be mainly a consequence of wider confidence324

intervals (that consequently have a better chance of capturing the true value of µ). Fig. 2c325
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Figure 2: Boxplots based on the (a) mean µ̂ values, (b) coverage rates of the 95% confidence
interval for µ, and (c) mean confidence interval widths for each of the four models across the
158 conditions, separated by which model was the true data generating mechanism.

confirms this, showing the mean confidence interval widths for the various models across326

the various conditions. However, what is particularly noteworthy is that the use of model327

9 under conditions where actually a simpler model is the true data generating mechanism328

only leads to a relatively minor increase in the mean interval width.329

Fig. 3 displays the bias in the variance component estimates of model 9 under the 28330

different conditions generated by varying α, σ2
n, and σ2

p (while holding σ2
u and σ2

s constant331

at 0.3). The results show no bias in the estimates of σ2
u and σ2

s . Furthermore, the model332
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Figure 3: Mean bias of the variance component estimates of model 9 under different com-
binations of the power parameter (α) and the non-phylogenetic and phylogenetic variance
components (σ2

n and σ2
p, respectively).

is able to estimate σ2
n and σ2

p with little to no bias, except when the strength of the phylo-333

genetic relationships decreased. As expected, under such conditions, the model struggles to334

provide unbiased estimates of the non-phylogenetic and phylogenetic species-level variance335

components (especially when σ2
n 6= σ2

p).336

Fig. 4a shows the coverage rates of the confidence interval for µ for models 9 and 11 as337

the size of the non-phylogenetic species-level variance component (i.e., σ2
n) was increased.338

While model 9 provided rates close to or somewhat below the nominal level, the rates for339

model 11 were often equal to 100% and hence the confidence interval tended to be too wide.340

Furthermore, Fig. 4b demonstrates that the bias in the phylogenetic variance component of341

model 11 inflated rapidly as the value of σ2
n increased (the value of σ2

p had no noteworthy342
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Figure 4: Comparison of models 9 and 11 as the size of the non-phylogenetic species-level
variance component (i.e., σ2

n) was systematically increased. (a) Coverage rates of the 95%
confidence intervals for µ, (b) bias in the non-phylogenetic and phylogenetic variance com-
ponents.

influence on the bias and hence we averaged these results over the three possible values of343

σ2
p). In contrast, model 9 estimated these two variance components essentially without bias344

under these scenarios.345

Model fitting times differed between the various models (Table 2), with model 9 requiring346

the most amount of time on average, regardless of the true data generating mechanism.347

The most challenging conditions for the more complex models were those scenarios where348

model 3 corresponded to the true data generating mechanism. In this case, a single fit of349

model 9 took around 26 seconds on average when (Nstudies, Nspecies) = (50, 100). In these350

conditions, convergence rates were also the lowest, although even model 9 then converged in351

approximately 96% of the iterations.352

3.2 Illustrative Example353

We use the data from the meta-analysis by Rios Moura et al. (2021) on size-assortative mating354

(SAM) to illustrate an application of the models. Each study included in the meta-analysis355
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(a) (Nstudies, NSpecies) = (20, 40) (b) (Nstudies, NSpecies) = (50, 100)

True Model True Model

Model Fit Model 3 Model 5 Model 7 Model 9 Model Fit Model 3 Model 5 Model 7 Model 9

Model 3
0.939

(100.00%)

0.668

(100.00%)

0.700

(100.00%)

0.700

(100.00%)
Model 3

1.589

(100.00%)

1.313

(100.00%)

1.307

(100.00%)

1.294

(100.00%)

Model 5
2.653

(99.81%)

1.104

(100.00%)

1.151

(100.00%)

1.162

(100.00%)
Model 5

3.934

(99.78%)

1.986

(100.00%)

1.999

(100.00%)

1.959

(100.00%)

Model 7
2.484

(97.53%)

1.876

(100.00%)

0.868

(100.00%)

0.858

(100.00%)
Model 7

19.823

(96.86%)

14.752

(100.00%)

7.364

(100.00%)

7.393

(100.00%)

Model 9
3.316

(96.56%)

3.053

(99.73%)

2.288

(99.99%)

1.463

(99.99%)
Model 9

25.980

(95.63%)

23.540

(99.60%)

18.641

(100.00%)

11.005

(100.00%)

Table 2: Average model fitting times in seconds and convergence rates (in parentheses) of
all models under the different data generating mechanisms.

provided one or multiple correlation coefficients describing the similarity in some measure of356

body size in mating couples. For the analysis, the correlation coefficients were transformed357

with Fisher’s r-to-z transformation. We focus here on the estimate of the overall mean358

(transformed) correlation coefficient, leaving aside the issue of differences between studies359

where correlations were computed with or without pooling of data across different timepoints360

or areas (i.e., temporal/spatial pooling). Also, using the method by Grafen (1989), we turned361

the phylogenetic tree used by Rios Moura et al. (2021) into an ultrametric tree before fitting362

models 9 and 11, to bring these analyses more in line with how our simulation study was363

conducted. The dataset includes 1828 effect size estimates (i.e., transformed correlations)364

collected from 457 studies and 341 species.365

Table 3 presents the results obtained from each model. Interestingly, the estimate of the366

overall mean tended to be somewhat larger in the more complex models, although differences367

between models 7, 9, and 11 were relatively small. More importantly, we see a substantial368

increase in the standard error of the estimated overall mean for the more complex models.369

As a result, the confidence intervals become wider, the values of the test statistics smaller,370

while the respective p-values increase. Although each model suggests that the overall mean371

significantly differs from 0 (at the conventional 0.05 level of significance), the p-value for372
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µ̂ SE[µ̂] 95% CI Z p σ̂2
u σ̂2

s σ̂2
n σ̂2

p AIC

Model 3 0.24 0.007 0.23, 0.25 34.15 <0.0001 0.0641 – – – 1082.8

Model 5 0.30 0.015 0.27, 0.33 20.42 <0.0001 0.0149 0.0806 – – 429.0

Model 7 0.34 0.020 0.30, 0.38 17.37 <0.0001 0.0143 0.0195 0.0815 – 386.3

Model 9 0.37 0.130 0.11, 0.62 2.83 0.0046 0.0145 0.0192 0.0555 0.0512 344.7

Model 11 0.36 0.172 0.02, 0.70 2.07 0.0383 0.0149 0.0557 – 0.0914 367.2

Table 3: Results derived from fitting the various models to the example dataset. The first five
columns show the estimated overall mean, its standard error, the 95% confidence interval,
the test statistic, and the p-value for testing H0: µ = 0, respectively. The next four columns
show the estimates of the variance components in the respective models. The last column
shows the Akaike Information Criteria (AIC) values.

model 11 was approaching the rejection threshold.373

The estimates of the variance components also show some interesting patterns. While the374

simple random-effects model 3 cannot distinguish between different sources of variability and375

attributes all of the heterogeneity to differences between the individual effect size estimates,376

model 5 suggests that the variance in the effects is more related to differences between377

studies than particular estimates within studies. However, once species-level variability is378

considered, it becomes apparent that this is actually the dominant source of heterogeneity.379

Moreover, model 9 shows that this variability is to approximately equal parts attributable to380

non-phylogenetic and phylogenetic species-level differences. In contrast, when ignoring the381

non-phylogenetic variance component in the simplified model 11, part of the variance from382

that component is forced back into the study-level variance component. Furthermore, σ̂2
p in383

the simplified model is substantially inflated compared to model 9 which may be an example384

of the inflation in this component when σ2
n is excluded (see Fig. 4b). Based on these findings385

and the Akaike Information Criteria (AIC) values of the various models, we would strongly386

favor model 9 in this comparison, illustrating that both non-phylogenetic and phylogenetic387

variance components should be considered in the analysis.388
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4 Discussion389

Meta-analyses in the fields of ecology and evolution typically need to address the fact that390

multiple effect size estimates can be extracted from at least some of the studies and that391

the estimates are based on various species that are related to each other due to their shared392

evolutionary history. In this paper, we investigated the performance of the phylogenetic393

multilevel meta-analytic model by Hadfield and Nakagawa (2010) and Nakagawa and Santos394

(2012) that captures these intricacies along with some simpler models. Despite the concerns395

raised in the introduction, the model can successfully estimate the overall mean and its396

uncertainty. It also provides approximately unbiased estimates of all variance components,397

including the non-phylogenetic and phylogenetic species-level variances, as long as there are398

at least moderately strong phylogenetic relationships among the species. In addition, despite399

its complexity, the model does not appear to suffer from convergence problems and model400

fitting does not require excessive computational times.401

4.1 Estimating the Overall Mean and its Uncertainty402

Not only the phylogenetic multilevel meta-analytic model, but also the simpler models that403

leave out certain variance components provide essentially unbiased estimates of the overall404

mean, regardless of the nature of the true model that underlies the data (Fig. 2a). However,405

the uncertainty in the overall mean will only be estimated accurately when the fitted model406

includes the variance components that contribute to the heterogeneity and the dependencies407

among the underlying true effects. Fitting underspecified models typically led to severe408

undercoverage of the confidence interval for the overall mean and hence anticonservative409

inferences. In fact, subtracting the coverage rates shown in Fig. 2b from 1 yields the Type410

I error rates for the test of the overall mean, which could go as high as 91% when using411

a simple random-effects model that ignores the multilevel structure and the species-level412

variance components.413
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These findings are in line with those by Chamberlain et al. (2012), who demonstrated,414

based on 30 published meta-analyses, that the inclusion of phylogeny into a random-effects415

model usually only led to minor changes in the pooled effect size, but had a more substantial416

impact on the statistical significance of the finding (turning significant findings into non-417

significant ones in the majority of cases where changes occurred).418

Our findings can also be used to alleviate concerns with using the phylogenetic multilevel419

meta-analytic model when it is actually an overspecified model (i.e., when the actual data420

generating mechanism is simpler). In those cases, the mean confidence interval width of the421

model was just barely wider than that of the simpler models, indicating little to no loss in422

efficiency by fitting an overly complex model (Fig. 2c). The superfluous variance components423

then converge towards 0 (or close to it), which appears to be slightly more challenging for424

the optimization algorithm, leading to longer model fitting times and occasional convergence425

problems, but not to any worrisome degree (Table 2). Moreover, in practice, for any particu-426

lar dataset, convergence problems can typically be resolved by selecting a different optimizer427

or making changes to the settings for the optimization routine, so the convergence rates as428

given only apply to the default settings.429

At the same time, we should point out that the coverage rate of the model did fall slightly430

below the nominal 95% level in the majority of conditions when all variance components431

were in fact non-zero (see Fig. 2b, rightmost panel). This undercoverage stems from using432

an overly simple Wald-type confidence interval using critical values based on a standard433

normal distribution that ignores the uncertainty in the estimates of the variance components434

(especially in the study and the two species-level components when Nstudies and Nspecies are435

low). A similar issue, but for a simpler model with only between- and within-study variance436

components (i.e., model 5 in our simulation) was also recently pointed out by Song et al.437

(2020). Improved methods based on the t-distribution, with various approximations for438

the degrees of freedom, have been proposed and studied extensively in the context of the439

standard random-effects model (e.g., Sanchez-Meca and Marin-Martinez, 2008) and mixed-440
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effects models in general (e.g., Luke, 2017), but these methods have not been generalized441

to the present context. As a simple approximation, using the smaller of Nstudies − 1 and442

Nspecies − 1 as the degrees of freedom for a confidence interval based on a t-distribution is443

likely to bring the coverage rate quite close to the nominal rates in the majority of conditions.444

4.2 Including and Testing the Phylogenetic Effect445

Phylogenies play a central role in the context of phylogenetic comparative studies (Freckleton446

et al., 2002; Blomberg et al., 2003; Ives et al., 2007). An important step in such studies is447

testing the significance of the ‘phylogenetic signal’ in some trait of interest. This test is448

often performed through a statistic such as λ (Pagel, 1999) or K (Blomberg et al., 2003).449

Although model 9 does not parameterize the phylogenetic effect in this manner, one can450

derive information from its output that shows its relationship to the λ statistic. In particular,451

Pagel’s λ is a multiplicative factor that is applied to the off-diagonal values of the correlation452

matrix that represents the phylogenetic relationships (i.e., the A matrix). For example, the453

variance-covariance matrix for three species would be given by454

σ2


1 λa12 λa13

1 λa23

1



while the decomposition of the species-level heterogeneity in model 9 implies the variance-455

covariance matrix456

σ2
n


1

1

1

+ σ2
p


1 a12 a13

1 a23

1

 = (σ2
n + σ2

p)


1

(
σ2

p

σ2
n+σ2

p

)
a12

(
σ2

p

σ2
n+σ2

p

)
a13

1
(

σ2
p

σ2
n+σ2

p

)
a23

1


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and hence σ2 = σ2
n +σ2

p and λ = σ2
p/(σ2

n +σ2
p) (see also Lynch, 1991; Freckleton et al., 2002).457

Hence, σ2
p/(σ2

n + σ2
p) indicates the degree of the phylogenetic signal in the overall variance458

sourced from the species. A likelihood ratio test of H0:σ2
p = 0 can be easily performed by459

comparing X2 = −2(ll7− ll9) against a chi-squared distribution with one degree of freedom,460

where ll7 and ll9 are the (restricted) log likelihoods of models 7 and 9, respectively.461

4.3 Estimating the Non-Phylogenetic and Phylogenetic Variance462

Given the informative nature of these two variance components, it is essential to estimate463

their true values accurately. We found that model 9 was usually able to estimate these compo-464

nents unbiasedly, but should note that the model struggles to separate the non-phylogenetic465

and phylogenetic species effects when phylogenetic relationships are weak. In essence, the466

two sources of variability then start to collapse into one, with a total variance of σ2
n+σ2

p. This467

total variance is then distributed in approximately equal parts into the two estimates, which468

explains the apparent low bias when (coincidentally) σ2
n = σ2

p (Fig. 3a and d). However,469

when σ2
n 6= σ2

p, the bias in the two estimates becomes apparent (Fig. 3b and c). Therefore,470

we would caution against the use of model 9 when phylogenetic relationships are weak. As a471

rough guideline, for α = 0.5, the mean correlation in the A matrix (excluding the diagonal)472

is around 0.2 and hence a lower mean correlation would call into question the trustworthiness473

of the estimates of σ2
n and σ2

p.474

Some meta-analyses in ecology and evolution have used model 11 to reduce model com-475

plexity (e.g., Garamszegi et al., 2012; Moore et al., 2016). Our results indicate that this476

approach cannot be recommended. As we increased the value of σ2
n, the bias in the phyloge-477

netic variance component inflated massively in this simplified model (Fig. 4b). As a result,478

the relevance of the phylogeny could be greatly overestimated. In addition, the confidence479

interval for the overall mean then becomes extremely conservative with coverage rates at480

or very close to 100%. This in turn implies a loss of efficiency for estimating the overall481

mean and a loss of power for testing H0:µ = 0. The illustrative example also shows this482
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phenomenon.483

4.4 Caveats and Conclusions484

For the simulation study, we used a ‘generic’ effect size measure, that is, we directly simulated485

the sampling errors from a normal distribution and treated the sampling variances (i.e.,486

the vij values) as known. These conditions only apply asymptotically to measures typically487

used in practice (e.g., standardized mean differences, response ratios, correlation coefficients,488

risk/odds ratios). The present results therefore reflect the performance of the various models489

under idealized conditions (i.e., when the sample sizes of the individual studies are sufficiently490

large, such that the sampling distributions of the estimates are indeed approximately normal491

and any inaccuracies in the estimated sampling variances are negligible). The advantage of492

using a generic measure is that we were able to identify problems that are inherent to certain493

models and not (potentially) a consequence of violations to the model assumptions. On the494

other hand, it remains to be determined how well the phylogenetic multilevel model performs495

when the effect sizes are generated based on the exact distributional assumptions underlying496

specific measures.497

Therefore, at least for the moment, the present results suggest that model 9 is the most498

appropriate tool for conducting a multi-species meta-analysis in ecology and evolution. For499

the vast majority of conditions examined, it provides approximately unbiased estimates of500

the variance components and the overall mean and a confidence interval for the latter with a501

close to nominal coverage rate. Therefore, we recommend that meta-analysts in ecology and502

evolution use the phylogenetic multilevel model as the de facto standard when analyzing503

multi-species datasets.504
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László Zsolt Garamszegi, Gábor Markó, and Gábor Herczeg. A meta-analysis of correlated546

behaviours with implications for behavioural syndromes: Mean effect size, publication547

bias, phylogenetic effects and the role of mediator variables. Evolutionary Ecology, 26(5):548

1213–1235, 2012. doi: 10.1007/s10682-012-9589-8.549

Gene V Glass. Primary, secondary, and meta-analysis of research. Educational Researcher,550

5(10):3–8, 1976. doi: 10.3102/0013189x005010003.551

Alan Grafen. The phylogenetic regression. Philosophical Transactions of the Royal Society552

of London, Series B, 326(1233):119–157, 1989.553

Jessica Gurevitch and Larry V Hedges. Statistical issues in ecological meta-analyses. Ecology,554

80(4):1142–1149, 1999. doi: 10.1890/0012-9658(1999)080[1142:siiema]2.0.co;2.555

27



Jessica Gurevitch, Peter S Curtis, and Michael H Jones. Meta-analysis in ecology. Advances556

in Ecological Research, 32:199–247, 2001.557

Jessica Gurevitch, Julia Koricheva, Shinichi Nakagawa, and Gavin Stewart. Meta-analysis558

and the science of research synthesis. Nature, 555(7695):175, 2018. doi: 10.1038/559

nature25753.560

Jarrod D Hadfield and Shinichi Nakagawa. General quantitative genetic methods for561

comparative biology: Phylogenies, taxonomies and multi-trait models for continuous562

and categorical characters. Journal of Evolutionary Biology, 23(3):494–508, 2010. doi:563

10.1111/j.1420-9101.2009.01915.x.564

Larry Hedges and Ingram Olkin. Statistical models for meta-analysis. Academic Press, New565

York, 1985.566

Larry V Hedges and Jack L Vevea. Fixed- and random-effects models in meta-analysis.567

Psychological Methods, 3(4):486–504, 1998. doi: 10.1037/1082-989x.3.4.486.568

Larry V Hedges, Jessica Gurevitch, and Peter S Curtis. The meta-analysis of response ratios569

in experimental ecology. Ecology, 80(4):1150–1156, 1999. doi: 10.1890/0012-9658(1999)570

080[1150:tmaorr]2.0.co;2.571

Julian PT Higgins, Simon G Thompson, and David J Spiegelhalter. A re-evaluation of572

random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172(1):573

137–159, 2009. doi: 10.1111/j.1467-985x.2008.00552.x.574

Anthony R Ives, Peter E Midford, and Theodore Garland Jr. Within-species variation and575

measurement error in phylogenetic comparative methods. Systematic Biology, 56(2):252–576

270, 2007. doi: 10.1080/10635150701313830.577

S. Konstantopoulos. Fixed effects and variance components estimation in three-level meta-578

analysis. Research Synthesis Methods, 2(1):61–76, 2011. doi: 10.1002/jrsm.35.579

28



Julia Koricheva, Jessica Gurevitch, and Kerrie Mengersen, editors. Handbook of meta-580

analysis in ecology and evolution. Princeton University Press, Princeton, NJ, 2013.581

Marc J Lajeunesse. Meta-analysis and the comparative phylogenetic method. The American582

Naturalist, 174(3):369–381, 2009. doi: 10.2307/40306065.583

Steven G Luke. Evaluating significance in linear mixed-effects models in R. Behavior Re-584

search Methods, 49(4):1494–1502, 2017. doi: 10.3758/s13428-016-0809-y.585

Michael Lynch. Methods for the analysis of comparative data in evolutionary biology. Evo-586

lution, 45(5):1065–1080, 1991. doi: 10.1111/j.1558-5646.1991.tb04375.x.587

Fhionna R Moore, David M Shuker, and Liam Dougherty. Stress and sexual signaling:588

A systematic review and meta-analysis. Behavioral Ecology, 27(2):363–371, 2016. doi:589

10.1093/beheco/arv195.590

Shinichi Nakagawa and Innes C Cuthill. Effect size, confidence interval and statistical sig-591

nificance: A practical guide for biologists. Biological Reviews, 82(4):591–605, 2007. doi:592

10.1111/j.1469-185x.2007.00027.x.593

Shinichi Nakagawa and Eduardo SA Santos. Methodological issues and advances in bi-594

ological meta-analysis. Evolutionary Ecology, 26(5):1253–1274, 2012. doi: 10.1007/595

s10682-012-9555-5.596

Daniel WA Noble, Malgorzata Lagisz, Rose E O’dea, and Shinichi Nakagawa. Nonindepen-597

dence and sensitivity analyses in ecological and evolutionary meta-analyses. Molecular598

Ecology, 26(9):2410–2425, 2017. doi: 10.1111/mec.14031.599

Mark Pagel. Inferring the historical patterns of biological evolution. Nature, 401(6756):877,600

1999. doi: 10.1038/44766.601

Emmanuel Paradis. Analysis of phylogenetics and evolution with R. Springer, New York,602

2nd edition, 2012.603

29



Emmanuel Paradis and Klaus Schliep. ape 5.0: An environment for modern phylogenet-604

ics and evolutionary analyses in R. Bioinformatics, 35:526–528, 2019. doi: 10.1093/605

bioinformatics/bty633.606

H. D. Patterson and R. Thompson. Recovery of inter-block information when block sizes are607

unequal. Biometrika, 58(3):545–554, 1971. doi: 10.1093/biomet/58.3.545.608

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation609

for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.610

Rafael Rios Moura, Marcelo Oliveira Gonzaga, Nelson Silva Pinto, João Vasconcellos-Neto,611

and Gustavo S Requena. Assortative mating in space and time: Patterns and biases.612

Ecology Letters, 24:1089–1102, 2021. doi: 10.1111/ele.13690.613

J. Sanchez-Meca and F. Marin-Martinez. Confidence intervals for the overall effect size in614

random-effects meta-analysis. Psychological Methods, 13(1):31–48, 2008. doi: 10.1037/615

1082-989x.13.1.31.616

Alistair M Senior, Catherine E Grueber, Tsukushi Kamiya, Malgorzata Lagisz, Katie617

O’Dwyer, Eduardo SA Santos, and Shinichi Nakagawa. Heterogeneity in ecological and618

evolutionary meta-analyses: Its magnitude and implications. Ecology, 97(12):3293–3299,619

2016. doi: 10.1002/ecy.1591.620

C. Song, S. D. Peacor, C. W. Osenberg, and J. R. Bence. An assessment of statistical621

methods for nonindependent data in ecological meta-analyses. Ecology, 101(12):e03184,622

2020. doi: 10.1002/ecy.3184.623

Alexander J Sutton and Julian PT Higgins. Recent developments in meta-analysis. Statistics624

in Medicine, 27(5):625–650, 2008. doi: 10.1002/sim.2934.625

Wolfgang Viechtbauer. Conducting meta-analyses in R with the metafor package. Journal626

30

https://www.R-project.org/


of Statistical Software, 36(3):1–48, 2010. doi: 10.18637/jss.v036.i03. URL http://www.627

jstatsoft.org/v36/i03/.628

31

http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/

	Introduction
	Materials and Methods
	Meta-Analytic Models
	Simulation Setup

	Results
	Simulation Results
	Illustrative Example

	Discussion
	Estimating the Overall Mean and its Uncertainty
	Including and Testing the Phylogenetic Effect
	Estimating the Non-Phylogenetic and Phylogenetic Variance
	Caveats and Conclusions


