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Abstract16

1. Meta-analyses in ecology and evolution require special attention due to certain study17

characteristics in these fields. First, the primary articles in these fields usually report results18

that are observed from studies conducted with different species, and the phylogeny among19

the species violates the independence assumption. Second, articles frequently allow the20

computation of multiple effect sizes which cannot be accounted for by conventional meta-21

analytic models. While both issues can be dealt with by utilizing a multilevel model that22

accounts for phylogeny, the performance of such a model has not been examined extensively.23

In this article, we investigate the performance of this model in comparison with some simpler24

models.25

2. We conducted an extensive simulation study where data with different hierarchical26

structures (in terms of study and species levels) were generated and then various models were27

fitted to examine their performance. The models we used include the conventional random-28

effects and multilevel random-effects models along with more complex multilevel models29

that account for species-level variance with different variance components. Furthermore, we30

present an illustrative application of these models based on the data from a meta-analysis31

on size-assortative mating and comment on the results in light of the findings from the32

simulation study.33

3. Our simulation results show that, when the phylogenetic relationships among the34

species are at least moderately strong, only the most complex model that decomposes the35

species-level variance into non-phylogenetic and phylogenetic components provides approxi-36

mately unbiased estimates of the overall mean and variance components and yields confidence37

intervals with an approximately nominal coverage rate. Contrarily, removing the phyloge-38

netic or non-phylogenetic component leads to biased variance component estimates and an39

increased risk for incorrect inferences about the overall mean. These findings are supported40

by the results derived from the illustrative application.41
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4. Based on our results, we suggest that meta-analyses in ecology and evolution should42

use the model that accounts for both the non-phylogenetic and phylogenetic species-level43

variance in addition to the multilevel structure of the data. Any attempts to simplify this44

model, such as using only the phylogenetic variance component, may lead to erroneous45

inferences from the data.46

47

Keywords: comparative analysis, mixed-effects models, model efficiency, multilevel48

models, phylogenetic meta-analysis, random-effects variance estimation.49
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1 Introduction50

Meta-analysis encompasses an array of methods for synthesizing information from studies ex-51

amining some phenomenon of interest and evaluating the consistency of their results (Glass,52

1976; Hedges and Olkin, 1985; Cooper et al., 2009; Senior et al., 2016). Although these53

methods have been mostly developed in the medical and social sciences (Egger et al., 2001;54

Sutton and Higgins, 2008; Cooper et al., 2009), ecologists and evolutionary biologists have55

successfully adopted these techniques for conducting research syntheses in their respective56

fields (Jessica Gurevitch et al., 2001; Koricheva et al., 2013; J. Gurevitch et al., 2018).57

However, meta-analyses in ecology and evolution typically have several features that require58

special attention so that trustworthy evidence can be obtained.59

To start, meta-analyses in these fields often incorporate data from multiple species which60

share an evolutionary history, described by a phylogeny (Arnqvist and Wooster, 1995; J.61

Gurevitch and Hedges, 1999; Chamberlain et al., 2012). As a result, the samples (and the62

effect sizes obtained from these samples) are not independent which violates the independence63

assumption underlying conventional meta-analytic models. For example, the standard fixed-64

and random-effects models (Hedges and Olkin, 1985; Hedges and Vevea, 1998), often used65

for ecological meta-analyses (Nakagawa and Santos, 2012), assume independence among the66

effect sizes and therefore do not account for phylogeny (Chamberlain et al., 2012; Noble67

et al., 2017). This issue was first addressed by Adams (2008) and Lajeunesse (2009) who68

incorporated phylogenies into the fixed- and random-effects models, respectively.69

Chamberlain et al. (2012) empirically investigated how the inclusion of phylogeny af-70

fects the estimate of the overall mean based on data from 30 meta-analyses in ecology and71

evolution. While the estimate of the overall mean did not change considerably in most72

cases (especially when using a random-effects model), a substantial portion of the meta-73

analyses, which reported significant results before, produced non-significant results when74

the phylogeny was incorporated into the model. Therefore, including phylogeny might be75
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an important factor to reduce Type I error rates and to obtain an accurate reflection of the76

uncertainty of meta-analytic estimates.77

Although Chamberlain et al. (2012) is the most extensive study to date examining the78

effects of phylogeny in meta-analysis, their work was based on available meta-analyses. To79

investigate the issue of phylogeny more broadly, we require a simulation study to explore a80

wider parameter space and under controlled conditions. Moreover, Chamberlain et al. (2012)81

did not address the fact that ecological and evolutionary studies usually report multiple82

effect sizes per study, which leads to dependence among the effect sizes belonging to the83

same study (Nakagawa and Santos, 2012; Noble et al., 2017). Although past and current84

meta-analyses have sometimes avoided this issue by selecting a single effect size from each85

study or by collapsing multiple effect sizes into one, these procedures can lead to a severe86

loss of information (Nakagawa and Santos, 2012; Nakagawa et al., 2021).87

As an alternative, Hadfield and Nakagawa (2010) proposed a mixed-effects model that88

accounts for the multilevel structure via a study-level random effect (i.e., multiple effect89

sizes per study are nested within this random effect). In the same model, they include two90

additional random effects to estimate the non-phylogenetic and the phylogenetic species-91

level variance. This way, among-species variance is decomposed into two components, the92

one resulting from species similarities due to evolutionary history and the other from species93

similarities due to shared ecology and other factors (Lynch, 1991). Although the model94

by Hadfield and Nakagawa (2010) addresses two major statistical issues in ecological and95

evolutionary meta-analyses, the complexity of the model poses certain challenges.96

Partitioning the species variance into its two components is a challenging endeavor, be-97

cause both components are modeled using random effects at the species level, with the only98

difference being that the phylogenetic component assumes that the random effects are corre-99

lated according to a phylogenetic correlation matrix – which is derived from a phylogenetic100

tree constructed based on the similarities and differences of species in terms of their (usu-101
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ally) genetic (but sometimes also physical) characteristics (Felsenstein, 2004). This raises102

concerns about the identifiability of the variance components and potential bias in their es-103

timates, issues that have also been raised outside the meta-analytic context when analyzing104

the data of primary studies including multiple species (Paradis, 2012).105

Moreover, the complexity of the model poses a threat to the convergence of optimization106

algorithms (Bates et al., 2015). Accordingly, Nakagawa and Santos (2012) suggested that107

model fitting may only be feasible with larger datasets, which would limit the applicability108

of the model in practice. To avoid these problems, some ecological and evolutionary meta-109

analyses have been carried out using a simplified model without the non-phylogenetic random110

effect and that therefore accounts for species variance only via the phylogenetic component111

(e.g., Garamszegi et al., 2012; Moore et al., 2016). However, the consequences of doing so,112

and the performance of the more complex model, has yet to be evaluated in a simulation113

study.114

We therefore investigated the performance of models for conducting a phylogenetic mul-115

tilevel meta-analysis in a comprehensive simulation study. We simulate studies that report116

multiple effect sizes and use several models that vary in their complexity, starting from a117

simple model (including only a random effect at the effect sizes level) to the most complex118

model which incorporates a study-level and two among-species random effects. Further, we119

generate specific conditions to examine the performance of the most complex model when120

phylogenetic relationships are weak and the consequences of removing the non-phylogenetic121

component. Finally, we present an illustrative application of these models based on the data122

from a meta-analysis on size-assortative mating and comment on the results in light of the123

findings from the simulation study.124
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2 Materials and Methods125

2.1 Meta-Analytic Models126

To conduct a meta-analysis, the phenomenon of interest (e.g., the size of a treatment effect127

or the strength of the association between two variables) needs to be quantified in terms of128

an effect size estimate for each study to be included in the analysis. We use the term ‘study’129

broadly here (and essentially in the sense of ‘paper’ or ‘publication’), as a single study may130

contribute multiple estimates (i.e., multiple effect sizes, for instance, for multiple species,131

subgroups, treatments), but for the moment we assume that each study contributes a single132

estimate to the meta-analysis. Depending on the purpose of a meta-analysis and the informa-133

tion reported in the individual studies, one might use raw or standardized mean differences,134

response ratios, odds/risk ratios, or correlation coefficients to quantify the relevant results135

(see Borenstein et al., 2011, for a review). In addition, we need to compute the sampling136

variances of the estimates, that is, the variability in each estimate that would be expected137

under repeated sampling of new study units under identical circumstances (Nakagawa and138

Cuthill, 2007; Cooper et al., 2009; Borenstein et al., 2011).139

Regardless of the specific measure used in a meta-analysis, let yi denote the effect size140

estimate for the ith study (with i = 1, . . . , Nstudies) and vi the corresponding sampling141

variance (note that the terms ‘study’ and ‘effect size’ are interchangeable when each study142

reports a single effect size). The most basic model that can be considered for synthesizing143

the estimates is the fixed-effects model, which is given by144

yi = µ+ ei, (1)

145

e ∼ N(0,V), (2)

where µ is the overall mean, ei is the sampling error for the ith study, e is a 1 × Nstudies146
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column vector with the ei values (which are assumed to be normally distributed with mean147

0 and variance vi), 0 is a column vector of zeros, and V is an Nstudies ×Nstudies matrix with148

the vi values along the diagonal.149

The fixed-effects model assumes that the included studies share a single common true150

effect. This assumption, however, is rarely met in multi-population and multi-species meta-151

analyses of ecology and evolution studies (Senior et al., 2016). The random-effects model152

addresses this potential ‘heterogeneity’ among the true effects by adding a random effect153

corresponding to each estimate and is given by154

yi = µ+ ui + ei (3)

155

u ∼ N(0, σ2
uIu), (4)

where ui is the random effect corresponding to the ith estimate, u is a 1 × Nstudies column156

vector with the ui values (which are assumed to be normally distributed with mean 0 and157

variance σ2
u), and Iu is an Nstudies ×Nstudies identity matrix.158

Although the models above are suitable for conducting a meta-analysis in many cir-159

cumstances, they do not account for the multilevel structure that arises when at least some160

studies provide multiple effect size estimates (e.g., when the same experiment was conducted161

under varying circumstances within the same study) and they do not account for phyloge-162

netic dependence (when studies are conducted with multiple species that differ in similarity163

due to differences in their shared evolutionary history).164

To address the first issue, we can use a multilevel meta-analytic model (Konstantopoulos,165

2011; Nakagawa and Santos, 2012) which includes a random effect at the effect size level166

(as in model 3 – for brevity, we use the equation numbers to refer to the various models167

throughout this article), but which now captures variability in the true effects within studies,168

and a random effect at the study level, which captures between-study variability. Let yij169
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denote the jth effect in the ith study (with j = 1, . . . , Ni, where Ni is the number of170

effect sizes reported in the ith study), vij the corresponding sampling variance, and let171

Ntotal = ∑Nstudies
i=1 Ni denote the total number of effects. The model is then given by172

yij = µ+ uij + si + eij (5)

173

s ∼ N(0, σ2
sIs), (6)

where uij is a random effect corresponding to the jth effect size in the ith study, si is a174

random effect at the study level, u is now a 1 ×Ntotal column vector with the uij values, s is175

a 1×Nstudies column vector with the si values (which are assumed to be normally distributed176

with mean 0 and variance σ2
s), and Iu and Is are Ntotal×Ntotal and Nstudies×Nstudies identity177

matrices, respectively. Finally, e is now a 1 ×Ntotal column vector with the eij values and V178

is the corresponding (diagonal) variance-covariance matrix with dimensions Ntotal × Ntotal,179

and the remaining terms are defined as described earlier.180

When the effect size estimates are computed based on a set of Nspecies different species,181

we will need an additional index. Let yijk denote the jth effect in the ith study as before, but182

now let k = 1, . . . , Nspecies be the index that indicates for which species a particular effect183

size estimate was computed. Model 5 can then be extended to account for species-level184

variability as follows:185

yijk = µ+ uij + si + nk + eij, (7)
186

n ∼ N(0, σ2
nIn), (8)

where nk is a species-specific random effect, n is a 1 × Nspecies column vector with the nk187

values (which are assumed to be normally distributed with mean 0 and between-species188

variance σ2
n), and In has dimensions Nspecies ×Nspecies, with the remaining terms as defined189

earlier. Note that nk is a crossed random effect (e.g., Fernández-Castilla et al., 2019) and190
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not nested within studies and we therefore do not put subscript k on uij, si, or eij.191

Model 7, however, does not account for phylogeny. For this, we further extend the model192

by including an additional species-level random effect (Hadfield and Nakagawa, 2010), but193

instead of assuming independence for different species (as for the nk values), we allow the194

values of the random effect to be correlated according to a phylogenetic correlation matrix,195

which in turn is derived from a phylogenetic tree based on some model of evolution (e.g.,196

Brownian motion) prior to the analysis (e.g., Lajeunesse, 2009; Felsenstein, 1985; Felsenstein,197

2004; Freckleton et al., 2002). The model is given by198

yijk = µ+ uij + si + nk + pk + eij, (9)

199

p ∼ N(0, σ2
pA), (10)

where pk denotes the phylogenetic random effect for the kth species, p is a 1×Nspecies column200

vector with the pk values (which are assumed to follow a multivariate normal distribution201

with mean 0 and variance-covariance matrix σ2
pA, where σ2

p denotes between-species variance202

due to the phylogeny, and A is the Nspecies ×Nspecies phylogenetic correlation matrix), with203

the remaining terms as defined earlier. Hence, the model includes a non-phylogenetic species-204

level random effect (i.e., the nk values) to account for heterogeneity in the effects sizes due205

to differences between species unrelated to phylogeny (e.g., the influence of differences in206

the environments they live in) and a phylogenetic random effect (i.e., the pk values) that207

captures dependencies in the effect sizes according to the similarities between species due to208

phylogenetic relatedness.209

Since model 9 includes the species random effect twice (once assumed to be independent210

and once assumed to be correlated according to the values in A), concerns about identifia-211

bility and potential bias in the estimates of the variance components may be raised. In fact,212

when phylogenetic relationships are weak (i.e., when the off-diagonal values in A are close to213
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0 and hence the phylogenetic tree resembles a star phylogeny), then A starts to approximate214

In and hence σ2
p and σ2

n are confounded and are not uniquely identifiable. This concern, or215

the complexity of model 9 in general, has led some researchers to adopt a simplified model in216

their meta-analyses where the non-phylogenetic variance component is removed. This leads217

to the model218

yijk = µ+ uij + si + pk + eij, (11)

with all terms as explained before. Whether this simplified version is an adequate substitute219

for model 9 is currently unknown.220

The models described above can be fitted with the metafor package (Viechtbauer, 2010)221

for R (R Core Team, 2021). Maximum likelihood (ML) or restricted maximum likelihood222

(REML) estimation can be used for model fitting (the latter usually being the preferred223

choice; see Patterson and Thompson, 1971), providing estimates of the variance components224

included in a particular model, the estimate of µ (i.e., µ̂), and its standard error (i.e., SE[µ̂]).225

Likelihood ratio tests and profile likelihood confidence intervals provide inferences for the226

variance components. An approximate 95% Wald-type confidence interval for µ can be227

obtained with µ̂± t.975,dfSE[µ̂], where t.975,df denotes the 97.5th percentile of a t-distribution228

with df degrees of freedom. Based on Nakagawa et al. (2021), we set df = Nstudies−1, which229

we expected would bring the coverage rate of the confidence interval closer to its nominal230

95% level (when compared to a confidence interval based on a standard normal distribution).231

Although fitting the models and deriving inferences from them is feasible, the conse-232

quences of using the various models have not been examined systematically. We therefore233

conducted an extensive simulation study to investigate the performance of the various model234

under varying circumstances.235
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Table 1: Overview of the conditions examined in the simulation study. The first two columns
show the number of studies and species, respectively. The next four columns indicate the
true values of the variance components. The α column represent the power parameter. All
values were crossed within a particular row of the table. The last two columns respectively
indicate the number of conditions generated in each row and the model that corresponds to
the true data generating mechanism for the conditions in a particular row.
Nstudies Nspecies σ2

u σ2
s σ2

n σ2
p α Conditions True model

20 40 0, 0.05, 0.30 0 0 0 1 3 Model 3

20 40 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

50 100 0, 0.05, 0.30 0 0 0 1 3 Model 3

50 100 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

2.2 Simulation Setup236

In our setup, the primary studies could provide one or multiple effect size estimates for one237

or multiple species. We set (Nstudies, Nspecies) either to (20, 40) or (50, 100) to examine the238

difference between a smaller versus larger meta-analysis. Furthermore, we set σ2
u, σ2

s , σ2
n, and239

σ2
p to either 0, 0.05, or 0.3 (plus an additional parameter α to be described below to either240

0.5, 1, or 2) to define a particular condition within the simulation study. Table 1 provides an241

overview of the 158 conditions that were studied in this manner. Note that, instead of a full242

factorization of all parameters, we introduced the variance components successively (in the243

order of σ2
u, σ2

s , σ2
n, and σ2

p) using the non-zero values (i.e., 0.05 and 0.3) to keep the number244

of conditions manageable and to generate scenarios where one of the models described in245

equations 3, 5, 7, and 9 corresponds to the true data generating mechanism (see Table 1).246

Within a particular condition, the following steps were repeated 1000 times.247

First, the number of effect sizes provided by the studies (i.e., theNi values) were simulated248

from a right-skewed distribution, as typically observed in practice. For this, we generated249
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Nstudies random values from a Beta(1.5, 3) distribution, which were then multiplied by 39,250

rounded to the closest integer, and increased by 1. Therefore, the number of estimates per251

study could vary between 1 and 40 (with a mean, median, and mode of approximately 14,252

13, and 9, respectively).253

In the next step, we simulated the species indices (i.e., the k values) by generating Ntotal254

random values from a Beta(2, 2) distribution, which were multiplied by Nspecies − 1, rounded255

to the closest integer, and then increased by 1. Accordingly, the number of times that the256

various species were studied followed a symmetric unimodal distribution (with mean equal257

to (Nspecies + 1)/2). In order to guarantee that all species appear at least once in each meta-258

analysis, a randomly chosen Nspecies random numbers generated this way were replaced with259

the integers from 1 to Nspecies.260

Next, we generated a phylogenetic tree for the species using the rtree() function from261

the R package ape (Paradis and Schliep, 2019), which uses a recursive random splitting262

algorithm to simulate a phylogeny (Paradis, 2012). The branch lengths were then computed263

using the compute.brlen() function based on the method by Grafen (1989), using the power264

parameter α to adjust the ‘height’ of branch lengths at the tips of the phylogenetic tree,265

leading to phylogenetic relationships that are generally stronger when branches are shorter266

at the tips or weaker when branches are longer at the tips. Fig. 1 shows an example of such267

a simulated tree for 40 species modified by different α values. Finally, the correlation matrix268

that represents the phylogenetic relationships (matrix A in equation 10) was calculated269

from the tree by using the vcv() function based on a Brownian model of evolution (i.e.,270

Ak,k′ = 1 − bk,k′ , where bk,k′ is the branch length for a pair of species to their most recent271

common ancestor). Hence, as α decreases, the off-diagonal values in A converge to 0, whereas272

as α increases, the off-diagonal values in A increase on average.273

We then generated the values for the four random effects, corresponding to the variance274

components σ2
u, σ2

s , σ2
n, and σ2

p, either as independent draws from normal distributions for275
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Figure 1: An example of a simulated phylogenetic tree for 40 species modified with different
values of the power parameter α (i.e., 0.5, 1, and 2).

the first three components or from a multivariate normal distribution for the last one. In276

conditions where a variance component is equal to 0, the corresponding random effect values277

are then just a series of 0s of the appropriate length. To complete the data generating step,278

the sampling variances (i.e., the vij values) were simulated from a right-skewed Beta(2, 20)279

distribution (and hence had a value of .091 on average) which were then used to generate280

the Ntotal sampling errors from a normal distribution with mean 0 and variance vij. We281

then summed the random effects and sampling errors as shown in equation 9, setting µ = 0282

without loss of generality (as scalar changes to µ do not affect any other parts of the models).283

After generating the data, we fitted the four models shown in equations 3, 5, 7, and 9,284

using REML estimation as implemented in the rma.mv() function from the metafor package.285

For model 3, we simply treated each estimate as a separate study (one can also think of this286

as model 5 without the addition of the study-level random effect). For each model, we287

then saved the estimate of µ, the variance component estimates, the bounds of the 95%288

Wald-type confidence interval for µ, and the model fitting time to assess how demanding289

the computations are when fitting these models. In case any one of the four models did not290
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converge within a particular iteration (with the default settings of the rma.mv() function),291

the iteration was discarded and a new iteration was run to guarantee that a 1000 successful292

model fits were available for all four models (in all conditions, >99% of the analyses converged293

on solutions).294

After the 1000 iterations, we computed the mean of the µ̂ values for each model, the mean295

of the variance component estimates, the proportion of iterations where 0 was included in296

the confidence interval (i.e., the empirical coverage rate for µ), the mean confidence interval297

width, the mean absolute bias in the estimates of µ and the variance components, the298

convergence rate, and the mean model fitting time. The simulation was run on a workstation299

with two AMD EPYC 7551 32-Core CPUs utilizing 60 cores in parallel. Completion time300

for the simulation was approximately 35 hours (roughly 2100 core hours).301

We generated two other sets of conditions to investigate specific questions. First, we302

examined conditions where the phylogenetic relationships could also be weaker than in the303

main scenarios to test the performance of model 9 under such conditions. These conditions304

were generated by setting α to (0.1, 0.2, 0.3, 0.4, 0.5, 1, 2) when (Nstudies, Nspecies) = (50, 100),305

the estimate- and study-level variance components were both large (0.3), and the levels of306

the remaining variance components were factorized with values of 0.05 and 0.3 (for a total of307

28 different conditions). Second, we compared the performance of model 9 and the simplified308

model 11 (that leaves out the non-phylogenetic species-level random effect). For this, we set309

(Nstudies, Nspecies) = (50, 100), σ2
u = 0.05, σ2

s = 0.05, and α = 1, and then generated different310

conditions by factorizing different values of only σ2
n and σ2

p, where the former was set to311

values from 0 to 0.3 with increments of 0.05, whereas the latter was set to either 0, 0.05, or312

0.3 (for a total of 21 different conditions). The R code to reproduce the simulation and its313

results are available at the Open Science Framework (https://osf.io/ms8eq/).314
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3 Results315

3.1 Simulation Results316

Fig. 2a displays boxplots of the mean µ̂ values (over the 1000 iterations) for each of the four317

models across the 158 conditions, separated by which model was the true data generating318

mechanism. Generally, the means were clustered tightly around 0, indicating little to no bias319

in µ̂, although in a small set of conditions there was some slight positive bias in the estimates320

of the overall mean. These conditions were characterized by non-zero values for all four321

variance components (i.e., when model 9 was the true model), (Nstudies, Nspecies) = (20, 40),322

a weak phylogenetic relationship (α = 0.5), and a large phylogenetic variance (σ2
p = 0.3).323

In contrast to the results for the overall mean, the coverage rates of the 95% confidence324

interval for µ differed markedly across models (Fig. 2b). For conditions where model 3 was325

the true data generating mechanism, all models achieved coverage rates close to or slightly326

above the nominal 95% confidence level regardless of the condition. As the other variance327

components were introduced into the data, however, the coverage rates of models that did328

not account for these additional sources of variability started to decrease, at times severely329

so. Only model 9 was able to achieve rates close to the nominal level across the majority330

of conditions, although the rates also fell somewhat below the nominal level for certain331

conditions when all variance components were larger than zero.332

Given that estimates of µ were relatively unbiased for all models, the closer to nominal333

coverage rates of model 9 would be expected to be mainly a consequence of wider confidence334

intervals (that consequently have a better chance of capturing the true value of µ). Fig. 2c335

confirms this, showing the mean confidence interval widths for the various models across336

the various conditions. However, what is particularly noteworthy is that the use of model337

9 under conditions where actually a simpler model is the true data generating mechanism338

only leads to a relatively minor increase in the mean interval width.339
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Figure 2: Boxplots (representing the five-number summaries) based on the (a) mean µ̂
values (over the 1000 iterations), (b) coverage rates of the 95% confidence interval for µ, and
(c) mean confidence interval widths for each of the four models across the 158 conditions,
separated by which model was the true data generating mechanism.

Fig. 3 displays the bias in the variance component estimates of model 9 under the 28340

different conditions generated by varying α, σ2
n, and σ2

p (while holding σ2
u and σ2

s constant at341

0.3). The results show no bias in the estimates of σ2
u and σ2

s . Furthermore, the model is able342

to estimate σ2
n and σ2

p with little to no bias, except when the strength of the phylogenetic343

relationships decreased. As expected, under such conditions, the model struggles to provide344
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Figure 3: Mean bias of the variance component estimates of model 9 under different com-
binations of the power parameter (α) and the non-phylogenetic and phylogenetic variance
components (σ2

n and σ2
p, respectively). The variance components in model 9, σ2

u, σ2
s , σ2

n, and
σ2
p are presented as black, red, green, and blue lines.

unbiased estimates of the non-phylogenetic and phylogenetic species-level variance compo-345

nents. Regardless, model 9 still provided overall estimates with mean absolute bias lower346

than 0.024 across all 28 conditions, although the coverage rate of the CI for µ again tended347

to fall somewhat below the nominal 95% level (with a mean coverage rate of 92% over the348

28 conditions).349

Fig. 4a shows the coverage rates of the confidence interval for µ for models 9 and 11 as350

the size of the non-phylogenetic species-level variance component (i.e., σ2
n) was increased.351

While model 9 provided rates close to or somewhat below the nominal level, the rates for352

model 11 were often equal to 100% and hence the confidence interval tended to be too wide353
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Figure 4: Comparison of models 9 and 11 as the size of the non-phylogenetic species-level
variance component (i.e., σ2

n) was systematically increased. (a) Coverage rates of the 95%
confidence intervals for µ, (b) bias in the non-phylogenetic and phylogenetic variance com-
ponents.

(except for the three conditions where σ2
n = 0 and hence where model 11 was the true model).354

Furthermore, Fig. 4b demonstrates that the bias in the phylogenetic variance component of355

model 11 inflated rapidly as the value of σ2
n increased (the value of σ2

p had no noteworthy356

influence on the bias and hence we averaged these results over the three possible values of357

σ2
p). In contrast, model 9 estimated these two variance components essentially without bias358

under these scenarios.359

Model fitting times differed between the various models (Table 2), with model 9 requiring360

the most amount of time on average, regardless of the true data generating mechanism. The361

most challenging conditions for the more complex models were those scenarios where model362

3 corresponded to the true data generating mechanism. In this case, a single fit of model 9363

took around 33 seconds on average when (Nstudies, Nspecies) = (50, 100). In these conditions,364

convergence rates were also the lowest, although even model 9 then converged in more than365

99% of the iterations.366
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Table 2: Average model fitting times in seconds and convergence rates (in parentheses) of
all models under the different data generating mechanisms.

(a) (Nstudies, NSpecies) = (20, 40) (b) (Nstudies, NSpecies) = (50, 100)

True Model True Model

Model Fit Model 3 Model 5 Model 7 Model 9 Model Fit Model 3 Model 5 Model 7 Model 9

Model 3
0.841

(100.00%)

0.852

(100.00%)

0.830

(100.00%)

0.858

(100.00%)
Model 3

1.625

(100.00%)

1.643

(100.00%)

1.687

(100.00%)

1.551

(100.00%)

Model 5
3.052

(100.00%)

1.433

(100.00%)

1.418

(100.00%)

1.475

(100.00%)
Model 5

4.446

(100.00%)

2.506

(100.00%)

2.573

(100.00%)

2.379

(100.00%)

Model 7
2.753

(99.75%)

2.227

(100.00%)

1.015

(100.00%)

1.045

(100.00%)
Model 7

24.611

(100.00%)

19.649

(100.00%)

9.862

(100.00%)

9.528

(100.00%)

Model 9
3.805

(99.26%)

3.671

(99.68%)

2.781

(99.99%)

1.825

(100.00%)
Model 9

32.897

(99.31%)

31.880

(99.53%)

25.287

(100.00%)

14.405

(100.00%)

3.2 Illustrative Example367

We use the data from the meta-analysis by Rios Moura et al. (2021) on size-assortative mating368

(SAM) to illustrate an application of the models. Each study included in the meta-analysis369

provided one or multiple correlation coefficients describing the similarity in some measure of370

body size in mating couples. For the analysis, the correlation coefficients were transformed371

with Fisher’s r-to-z transformation (i.e., the inverse hyperbolic tangent transformation). We372

focus here on the estimate of the overall mean (transformed) correlation coefficient, leaving373

aside the issue of differences between studies where correlations were computed with or374

without pooling of data across different timepoints or areas (i.e., temporal/spatial pooling).375

Also, using the method by Grafen (1989), we turned the phylogenetic tree used by Rios376

Moura et al. (2021) into an ultrametric tree before fitting models 9 and 11, to bring these377

analyses more in line with how our simulation study was conducted. The dataset includes378

1828 effect size estimates (i.e., transformed correlations) collected from 457 studies and 341379

species.380

Table 3 presents the results obtained from each model. Interestingly, the estimate of the381

overall mean tended to be somewhat larger in the more complex models, although differences382
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Table 3: Results derived from fitting the various models to the example dataset. The first five
columns show the estimated overall mean, its standard error, the 95% confidence interval,
the test statistic, and the p-value for testing H0: µ = 0, respectively. The next four columns
show the estimates of the variance components in the respective models. The last column
shows the Akaike Information Criteria (AIC) values.

µ̂ SE[µ̂] 95% CI Z p σ̂2
u σ̂2

s σ̂2
n σ̂2

p AIC

Model 3 0.24 0.007 0.23, 0.25 34.15 <0.0001 0.0641 – – – 1082.8

Model 5 0.30 0.015 0.27, 0.33 20.42 <0.0001 0.0149 0.0806 – – 429.0

Model 7 0.34 0.019 0.30, 0.38 17.37 <0.0001 0.0143 0.0195 0.0815 – 386.3

Model 9 0.37 0.130 0.11, 0.62 2.83 0.0046 0.0145 0.0192 0.0555 0.0512 344.7

Model 11 0.36 0.172 0.02, 0.70 2.07 0.0382 0.0149 0.0557 – 0.0913 367.2

between models 7, 9, and 11 were relatively small. More importantly, we see a substantial383

increase in the standard error of the estimated overall mean for the more complex models.384

As a result, the confidence intervals become wider, the values of the test statistics smaller,385

while the respective p-values increase. Although each model suggests that the overall mean386

significantly differs from 0 (at the conventional 0.05 level of significance), the p-value for387

model 11 was approaching the rejection threshold.388

The estimates of the variance components also show some interesting patterns. While the389

simple random-effects model 3 cannot distinguish between different sources of variability and390

attributes all of the heterogeneity to differences between the individual effect size estimates,391

model 5 suggests that the variance in the effects is more related to differences between studies392

than particular estimates within studies. However, once species-level variability is considered393

in model 7, it becomes apparent that this is actually the dominant source of heterogeneity.394

Moreover, model 9 shows that this variability is approximately equally attributable to non-395

phylogenetic and phylogenetic species-level differences. In contrast, when ignoring the non-396

phylogenetic variance component in the simplified model 11, part of the variance from that397
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component is forced back into the study-level variance component. Furthermore, σ̂2
p in the398

simplified model is substantially inflated compared to model 9 which may be an example of399

the inflation in this component when σ2
n is excluded (see Fig. 4b). Based on these findings400

and the Akaike Information Criteria (AIC) values of the various models, we would strongly401

favor model 9 in this comparison, illustrating that both non-phylogenetic and phylogenetic402

variance components should be considered in the analysis.403

4 Discussion404

Meta-analyses in the fields of ecology and evolution typically need to address the fact that405

multiple effect size estimates can be extracted from at least some of the studies and that406

the estimates are based on various species that are related to each other due to their shared407

evolutionary history. In this paper, we investigated the performance of the phylogenetic408

multilevel meta-analytic model by Hadfield and Nakagawa (2010) and Nakagawa and Santos409

(2012) that captures these intricacies along with some simpler models. Despite the concerns410

raised in the introduction, the model can successfully estimate the overall mean and its411

uncertainty. It also provides approximately unbiased estimates of all variance components,412

including the non-phylogenetic and phylogenetic species-level variances, as long as there are413

at least moderately strong phylogenetic relationships among the species. In addition, despite414

its complexity, the model does not appear to suffer from convergence problems and model415

fitting does not require excessive computational times.416

4.1 Estimating the Overall Mean and its Uncertainty417

Not only the phylogenetic multilevel meta-analytic model, but also the simpler models that418

leave out certain variance components provide essentially unbiased estimates of the overall419

mean, regardless of the nature of the true model that underlies the data (Fig. 2a). However,420

the uncertainty in the overall mean will only be estimated accurately when the fitted model421
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includes the variance components that contribute to the heterogeneity and the dependencies422

among the underlying true effects. Fitting underspecified models typically led to severe423

undercoverage of the confidence interval for the overall mean and hence anticonservative424

inferences. In fact, subtracting the coverage rates shown in Fig. 2b from 1 yields the Type425

I error rates for the test of the overall mean, which could go as high as 91% when using426

a simple random-effects model that ignores the multilevel structure and the species-level427

variance components.428

These findings are in line with those by Chamberlain et al. (2012), who demonstrated,429

based on 30 published meta-analyses, that the inclusion of phylogeny into a random-effects430

model usually only led to minor changes in the pooled effect size, but had a more substantial431

impact on the statistical significance of the finding (turning significant findings into non-432

significant ones in the majority of cases where changes occurred).433

Our findings can also be used to alleviate concerns with using the phylogenetic multilevel434

meta-analytic model when it is actually an overspecified model (i.e., when the actual data435

generating mechanism is simpler). In those cases, the mean confidence interval width of the436

model was just barely wider than that of the simpler models, indicating little to no loss in437

efficiency by fitting an overly complex model (Fig. 2c). The superfluous variance components438

then converge towards 0 (or close to it), which appears to be slightly more challenging for439

the optimization algorithm, leading to longer model fitting times and occasional convergence440

problems, but not to any worrisome degree (Table 2). Moreover, in practice, for any particu-441

lar dataset, convergence problems can typically be resolved by selecting a different optimizer442

or making changes to the settings for the optimization routine, so the convergence rates as443

given only apply to the default settings.444

At the same time, we should point out that the coverage rate of the model did fall slightly445

below the nominal 95% level in the majority of conditions when all variance components were446

in fact non-zero (see Fig. 2b, rightmost panel). A similar issue, but for a simpler model with447

23



only between- and within-study variance components (i.e., model 5 in our simulation) was448

also recently pointed out by Song et al. (2020). Improved methods based on a t-distribution449

with various approximations for the degrees of freedom have been proposed and studied450

extensively in the context of the standard random-effects model (e.g., Sanchez-Meca and451

Marin-Martinez, 2008) and mixed-effects models in general (e.g., Luke, 2017). Following452

Nakagawa et al. (2021), we actually based the confidence interval on a t-distribution with453

Nstudies − 1 as the degrees of freedom (as an improvement to using a confidence interval454

based on a standard normal distribution), although this was apparently not conservative455

enough, presumably due to the additional dependency among the effect sizes introduced by456

the phylogeny. Further work will be needed to find an even better approximation to the457

degrees of freedom in the present context.458

4.2 Including and Testing the Phylogenetic Effect459

Phylogenies play a central role in the context of phylogenetic comparative studies (Freckleton460

et al., 2002; Blomberg et al., 2003; Ives et al., 2007). An important step in such studies is461

testing the significance of the ‘phylogenetic signal’ in some trait of interest. This test is462

often performed through a statistic such as λ (Pagel, 1999) or K (Blomberg et al., 2003).463

Although model 9 does not parameterize the phylogenetic effect in this manner, one can464

derive information from its output that shows its relationship to the λ statistic. In particular,465

Pagel’s λ is a multiplicative factor that is applied to the off-diagonal values of the correlation466

matrix that represents the phylogenetic relationships (i.e., the A matrix). For example, the467

variance-covariance matrix for three species would be given by468

σ2


1 λa12 λa13

1 λa23

1


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while the decomposition of the species-level heterogeneity in model 9 implies the variance-469

covariance matrix470

σ2
n


1

1

1

+ σ2
p


1 a12 a13

1 a23

1

 = (σ2
n + σ2

p)


1

(
σ2

p

σ2
n+σ2

p

)
a12

(
σ2

p

σ2
n+σ2

p

)
a13

1
(

σ2
p

σ2
n+σ2

p

)
a23

1



and hence σ2 = σ2
n + σ2

p and λ = σ2
p/(σ2

n + σ2
p) (see also Lynch, 1991; Freckleton et al.,471

2002). Hence, σ2
p/(σ2

n + σ2
p) indicates the degree of the phylogenetic signal in the overall472

variance sourced from the species. A likelihood ratio test of H0:σ2
p = 0 can be easily473

performed by comparing X2 = −2(ll7 − ll9) against a chi-squared distribution with one474

degree of freedom, where ll7 and ll9 are the (restricted) log likelihoods of models 7 and 9,475

respectively. However, we do not advocate making changes to the model based on this test476

(i.e., by dropping the phylogenetic species random effect from the model if the test is not477

significant), since making changes to an a priori chosen model based on the data at hand478

affects the statistical properties of all inferential methods in unknown and unpredictable479

ways. Finally, we note that the (asymptotic) null distribution of the likelihood ratio test480

statistic is actually more complex than simply a chi-squared distribution with one degree of481

freedom, a result of the parameter being on the boundary of the parameter space under the482

null distribution (Self and Liang, 1987). The appropriate reference distribution for this test483

in the present context remains to be determined.484

4.3 Estimating the Non-Phylogenetic and Phylogenetic Variance485

Given the informative nature of these two variance components, it is essential to estimate486

their true values accurately to properly account for the sources of heterogeneity and depen-487

dency in the data. We found that model 9 was usually able to estimate these components with488

little to no bias, but should note that the model struggles to separate the non-phylogenetic489
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and phylogenetic species effects when phylogenetic relationships are weak. In essence, the490

two sources of variability then start to collapse into one, with a total variance of σ2
n+σ2

p. The491

way this total variance is then distributed into the two estimates is in essence arbitrary and492

can depend on the starting values or other settings of the model fitting algorithm. Therefore,493

we would caution against the use of model 9 when phylogenetic relationships are weak. As a494

rough guideline, for α = 0.5, the mean correlation in the A matrix (excluding the diagonal)495

is around 0.2 and hence a lower mean correlation would call into question the trustworthiness496

of the estimates of σ2
n and σ2

p.497

Some meta-analyses in ecology and evolution have used model 11 to reduce model com-498

plexity (e.g., Garamszegi et al., 2012; Moore et al., 2016). Our results indicate that this499

approach cannot be recommended. As we increased the value of σ2
n, the bias in the phyloge-500

netic variance component inflated massively in this simplified model (Fig. 4b). As a result,501

the relevance of the phylogeny could be greatly overestimated. In addition, the confidence502

interval for the overall mean then becomes extremely conservative with coverage rates at503

or very close to 100%. This in turn implies a loss of efficiency for estimating the overall504

mean and a loss of power for testing H0:µ = 0. The illustrative example also shows this505

phenomenon.506

4.4 Caveats and Conclusions507

For the simulation study, we used a ‘generic’ effect size measure, that is, we directly simulated508

the sampling errors from a normal distribution and treated the sampling variances (i.e.,509

the vij values) as known. These conditions only apply asymptotically to measures typically510

used in practice (e.g., standardized mean differences, response ratios, correlation coefficients,511

risk/odds ratios). The present results therefore reflect the performance of the various models512

under idealized conditions (i.e., when the sample sizes of the individual studies are sufficiently513

large, such that the sampling distributions of the estimates are indeed approximately normal514
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and any inaccuracies in the estimated sampling variances are negligible). Although such ideal515

conditions are rare in practice (Hillebrand and J. Gurevitch, 2014; Pappalardo et al., 2020),516

the advantage of using a generic measure is that we were able to identify problems that are517

inherent to certain models and not (potentially) a consequence of violations to the model518

assumptions (i.e., if a particular model performs poorly for a measure that violates model519

assumptions, we do not know whether the poor performance is attributable to deficiencies of520

the model itself or a consequence of model assumptions being violated). On the other hand,521

it remains to be determined how well the phylogenetic multilevel model performs when the522

effect sizes are generated based on the exact distributional assumptions underlying specific523

measures.524

Also, an issue we did not tackle in the present simulation study is the influence of the525

distribution of the different species over the simulated studies. In particular, concerns may526

arise when many of the primary studies included in a meta-analysis have examined only527

a single or closely related species. This may make it difficult to accurately estimate and528

differentiate between the study- and the species-level variance components. We did not529

generate conditions to specifically simulate such scenarios; thus, this issue still remains to530

be investigated in future simulation studies.531

Therefore, at least for the moment, the present results suggest that model 9 is the532

most appropriate tool for conducting a multi-species meta-analysis in ecology and evolution533

(unless the phylogenetic relationships are weak, in which case model 7 may be preferable).534

For the vast majority of conditions examined, it provides approximately unbiased estimates535

of the variance components and the overall mean and a confidence interval for the latter536

with a close to nominal coverage rate. Therefore, we recommend that meta-analysts in537

ecology and evolution use the phylogenetic multilevel model as the de facto standard when538

analyzing multi-species datasets.539

540
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