
Concepts and applications in functional diversity

Stefano Mammola1,2,*, Carlos P Carmona3, Thomas Guillerme4, Pedro Cardoso1,**

1. Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (Luomus),

University of Helsinki, Helsinki, Finland

2.  Molecular ecology group (MEG),  Water  Research Institute,  National  Research Council  (CNR-IRSA),

Verbania Pallanza, Italy

3. Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

4. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom

* Corresponding author: stefano.mammola@helsinki.fi

** Corresponding author: pedro.cardoso@helsinki.fi

1

1

2

3

4

5

6

7

8

9

10

11

12



ABSTRACT

The use of functional  analyses in  ecology has grown exponentially  over the past  two decades,

broadening our understanding of biological diversity and its change across space and time. Virtually

all ecological sub-disciplines recognize the critical value of looking at species and communities

from  a  functional  perspective,  and  this  has  led  to  a  proliferation  of  methods  for  estimating

contrasting  dimensions  of  functional  diversity.  Differences  between  these  methods  and  their

development generated terminological inconsistencies and confusion about the selection of the most

appropriate approach for addressing any particular ecological question, hampering the potential for

comparative studies and meta-analyses. We show that two general mathematical frameworks for

estimating  functional  diversity  are  prevailing:  those  based  on  dissimilarity  matrices  (e.g.,  Rao

entropy,  functional  dendrograms)  and those  relying  on multidimensional  spaces,  constructed  as

either binary (convex hulls) or probabilistic hypervolumes. We review these frameworks, discuss

their  strengths  and  weaknesses,  and  provide  an  overview of  the  main  R packages  allowing to

perform these calculations. In parallel, we propose a ‘periodic table’ of functional diversity metrics

quantifying the richness, divergence, and regularity of species or individuals under each framework.

Therefore, this overview offers a roadmap for confidently approaching functional diversity analyses

both theoretically and practically.

Keywords: alpha diversity, beta diversity, disparity, evenness, functional dendrogram, functional 

divergence, functional dispersion, functional hyperspace, functional regularity, functional richness, 

biological traits, functional originality, functional uniqueness
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INTRODUCTION

The idea that organisms are not equal in their attributes and functions—that is, the range of things 

they do (Petchey & Gaston, 2006)—can be traced back to the concept of ecological niche (Elton, 

1927; Grinnell, 1917, 1924; Hutchinson, 1957) and the subsequent emergence of functional ecology

as a scientific discipline (Calow, 1987; Keddy, 1992). Over the past two decades, we have 

witnessed an exponential growth of trait-based studies (>13,500 published papers as of 2019; 

Figure 1). This was largely driven by a number of seminal essays that illustrated a way of rethinking

entire ecological fields from a functional perspective, from population and community ecology 

(Bolnick et al., 2011; Lavorel & Garnier, 2002; McGill, Enquist, Weiher, & Westoby, 2006; Violle 

et al., 2012), to biogeography (Violle, Reich, Pacala, Enquist, & Kattge, 2014), along with 

conservation biology (Cadotte, Carscadden, & Mirotchnick, 2011; Rosenfeld, 2002; Wellnitz & 

Poff, 2001). Stemming from this intellectual legacy, the use of functional diversity in the study of 

ecological patterns across different spatial and temporal scales has now become routine (Carmona, 

de Bello, Mason, & Lepš, 2016b; Jarzyna & Jetz, 2018; Kamran et al., 2011; Kraft & Ackerly, 

2010; Lamanna et al., 2014; Mammola & Cardoso, 2020; Mason & De Bello, 2013). 

This fast  theoretical  development  was  accompanied  by  a  proliferation  of  methods  for

studying  functional  diversity  (Legras,  Loiseau,  &  Gaertner,  2018).  There  is  nowadays  a  wide

variety of algorithms and frameworks (hereafter ‘methods’) that can be used to delineate the trait

space occupied by a given species or community, each based on particular mathematical objects—

raw data, distance matrices, trees, convex hulls, kernel density hypervolumes, etc (see Table 1 for a

glossary). Once the trait space is generated, an even larger set of indexes (hereafter ‘metrics’) is

available  to  calculate  specific  properties  of  the  system  (Pavoine  &  Bonsall,  2011;  Schleuter,

Daufresne,  Massol,  & Argillier,  2010).  Albeit  this  broad availability  of methods and metrics is

fueling gigantic leaps forward in our understanding of ecosystem functionality, it has been pointed
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out  that  it  is  also  “[...]  causing  much confusion  in  selecting  appropriate  methods  for  specific

questions” (Carmona et al., 2016b). 

In our view, this confusion is the direct consequence of two drivers. First, there have been

few efforts to compare each method to illustrate their strengths, weaknesses, and limitations. Our

experiences  as  reviewers  and  editors  of  manuscripts,  readers  of  the  existing  literature,  and

instructors of early-career  scientists  have led us to think that  most  users routinely use a single

method or metric just because it has been published in a famous paper or it appears in the first page

of Google, and not because it better fits their question and data. Second, researchers developing the

statistics underlying functional diversity approaches often provided the user with a limited selection

of  functions  for  calculating  functional  metrics  or  used  different  denominations  to  metrics  with

similar properties. 

In  the  last  decade  or  so,  there  have  been  subsequent  attempts  to  categorize  functional

metrics and explore their usefulness in discriminating different processes (e.g., Mason et al., 2005;

Mouchet et al., 2010; Ricotta, 2007; Villéger et al., 2008). Building upon this ground, Pavoine &

Bonsall  (2011) provided a  broad clarification of  the mathematics underpinning this  plethora of

metrics,  categorizing  them  under  three  independent  dimensions  of  richness,  divergence,  and

regularity (Box 1). The Pavoine-Bonsall scheme is compelling, as it allows to group taxonomic,

phylogenetic,  and functional  metrics under a common umbrella  and thus it  well  encapsulates  a

modern view on biodiversity (Jarzyna & Jetz, 2016). Yet, the classification still presents limitations

(e.g., it does not fully account for a beta-diversity level; Box 1) and was not fully incorporated in

the available statistical packages for functional diversity calculation, which often provide the user

with an incoherent set of metrics to explore these three dimensions. 

Altogether, these shortcomings generate a fertile ground for terminological and conceptual

confusion, which leads to a parallel confusion about the selection of the most appropriate methods

and  metric for  addressing  any  particular  ecological  question.  This  hampers  the  potential  for
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comparative  studies  and  meta-analyses,  meanwhile  preventing  to  fully  understand  the  eco-

evolutionary  rationale  beyond  functional  diversity  estimation.  We aim,  therefore,  to  propose  a

classification of the existing jungle of functional methods, dimensions, and metrics. To achieve this

goal, we first review the main frameworks and R packages for estimating functional diversity that

are emerging in trait-based ecology. We explain the ecological logic underpinning each framework

(that is, how each method relates to the concept of niche) and discuss their pros and cons. We then

illustrate the meaning of the three dimensions of functional diversity—richness, divergence, and

regularity  (Box  1)—in  the  context  of  each  of  these  methods.  Finally,  we  present  the  metrics

quantifying each dimension within each method and which R packages allow to calculate them. Our

ultimate goal  is  to  develop a  roadmap to select  the best  possible  functional  diversity  approach

depending on the question under study.
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Box 1. The Pavoine–Bonsall scheme for classifying taxonomic, phylogenetic, and functional metrics.

Pavoine and Bonsall  (2011) proposed a semantic framework for classifying taxonomic,  phylogenetic, and

functional metrics under a unified scheme. This classification was further improved by Tucker et al. (2017),

who  identified  three  distinct  dimensions  of  diversity:  richness,  divergence,  and  regularity.  These  three

dimensions capture the primary mathematical operation inherent to each metric, namely:

i) the ‘richness’ dimension encompasses metrics reflecting the sum of difference among observations (sum);

ii) the ‘divergence’ dimension encompasses metrics reflecting the average difference among observations

(mean); and

iii) the ‘regularity’ dimension encompasses metrics reflecting how regular the difference among observations

are (variance).

Note  that  these  dimensionss  loosely  correspond  to  respectively  trait  space’s  size,  position  and  density

discussed in an evolutionary biology context in Guillerme et al (2020).

This scheme is general as it can be applied to both abundance and presence/absence formulations,

and provides a simple and intuitive rationale for grouping functional metrics. The classification scheme is

also split on a second axis of information, reflecting the level of data organization at which each metric is

calculated  (Group).  In  their  classification  of  phylogenetic  indexes,  Tucker  et  al.  used  two  levels  of

organization, depending whether each metric is calculated within a set (e.g., individuals within a species or

species within a community; so-called α-diversity) or between sets (e.g., comparison of multiple species or

communities in space and time; so-called β-diversity). Here, we expanded this second axis of information to

three levels of organization, namely:

i)  ‘Observation  level’,  representing  the  distinct  functional  elements  within  a  set  (e.g.,  an  individual,

population, or species);

ii) ‘Within groups’, representing all the  Observation level elements within a set (e.g., functional diversity

within a population, species, community, or region); and

ii) ‘Between groups’, comparing multiple Groups (e.g., comparison of multiple populations, species, 

communities, or regions in space and time).
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MATHEMATICAL METHODS FOR FUNCTIONAL DIVERSITY ESTIMATION

Stemming from the concept of ecological guild (Root, 1967), the simplest mathematical estimation

of functional diversity can be achieved using a raw data matrix of traits, whereby total functional

richness is calculated as the number of unique functional combinations (guilds) in a given set of

observations  (Blondel, 2003). Although the idea of guild provides an intuitive representation of

functional diversity, researchers soon felt that this approach was too simplistic (Legras et al., 2018).

A plethora  of  more  sophisticated  methods  has  since  been  developed to  represent  the  observed

diversity of traits in a system and their relations. We will refer to this representation of the diversity

of traits as the ‘trait space’ throughout this review (see Table 1). 

Rather  than  overviewing all  published and used  methods,  which  would  probably  create

further confusion, we seek to illustrate a way to frame the plethora of possibilities for trait space

analyses. We chose to only discuss methods that: 

i) are open and free, which today practically coincide with packages and functions implemented and

maintained in R (Lai, Lortie, Muenchen, Yang, & Ma, 2019);

ii) are accessible to the largest possible audience, namely methods that are thoroughly documented

and thereby do not require a high level of knowledge in statistics or programming; and

iii) are based on robust mathematical concepts that provide an easy-to-understand representation of

the trait space.

In our  view,  two general  mathematical  approaches for estimating the trait  space and its

properties  are  prevailing  in  recent  literature:  those  based  on  non-ordinated  matrices  (non-

dimensional  representation) and  those  based  on  ordinated  multidimensional  spaces  (i.e.,

multidimensional representation).  Note, however, that the distinction between dissimilarity-based

and multidimensional may become blurry when the data used to build a multidimensional space are

first converted to a dissimilarity matrix to deal with non-continuous traits (see “Input data & data
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preparation”  in  Figure  2).  We  hereafter  briefly  describe  each  of  these  methods,  discuss  their

strengths and weaknesses (Table 2), and list the main R packages that can be used for practical

calculations.
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Methods based on non-dimensional representation

All  these  methods  rely  on  converting  the  trait  matrix  to  a  dissimilarity  matrix;  in  turn,  this

transformed  matrix  serves  to  delineate  the  trait  space  and  explore  its  properties. Here,  we

distinguished between methods and metrics that attempt to measure the entropy of the trait space as

the dissimilarity among observations directly (mean dissimilarity methods) and those that use a

distance-based dendrogram object to represent the trait space. 

Whereas all these methods have several features that may make them advantageous over

multidimensional frameworks, there are at least two main caveats that apply to all. Foremost, they

do not relate well with the classical concept of niche sensu Hutchinson (1957). Second, as discussed

by Podani and Schmera (2006), the choice of the distance measure to use is not trivial, especially

because  a  trait  matrix  is  frequently  a  mixture  of  different  datatypes—continuous,  ordinal,

categorical, and binary data—and this can significantly affect results (see also Lloyd, 2016). 

Mean dissimilarity methods

The methods in this category are based on the notion that functional diversity represents the extent

of  trait  differences  between species  (de  Bello,  Carmona,  Lepš,  Szava-Kovats,  & Pärtel,  2016).

These methods do not allow to visualize the trait space directly [but see, e.g., Micó et al. (2020) for

a work-around], and are more a collection of metrics measuring entropy-based properties of the trait

matrix.  The three most commonly used are: 

i)  Rao  quadratic  entropy  (Rao),  representing  the  expected  dissimilarity  between  two  different

individuals, populations, or species sampled at random (Botta-Dukát, 2005);

ii) functional dispersion (FDis) sensu Laliberté & Legendre (2010), representing the mean distance

of individual species to the centroid of all species; and
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iii)  mean  pairwise  dissimilarity  (MPD),  representing  the  expected  dissimilarity  between  two

randomly-sampled individuals from different species (Weiher & Keddy, 1995).

The differences between these metrics are subtle, but with important practical consequences. Both

Rao and FDis have the same mathematical basis as variance (Pavoine & Bonsall, 2011), so that they

are considered to be fundamentally equivalent  (de Bello et al.,  2021). Conversely, in  MPD the

expected dissimilarity is estimated only considering individuals from different species, thus it does

not allow to account for intraspecific variability, unlike Rao. The great advantage of using  mean

dissimilarity methods versus others, is their clear link with taxonomic and phylogenetic diversity.

Rao is in fact a generalization of the Simpson index of taxonomic diversity (Rao and Simpson are

equivalent if the dissimilarity between all pairs of species is equal to 1; de Bello et al., 2016). This

provides the basis to estimate taxonomic, phylogenetic (if using evolutionary instead of functional

dissimilarities between species), and functional diversity under a common mathematical framework

(De Bello, Lavergne, Meynard, Lepš, & Thuiller, 2010; Hevia et al., 2016). Another advantage is

that all these indexes allow to incorporate information on species abundances on estimations of

functional  diversity,  as  well  as  using  trait  data  containing  missing  information  (as  long as  the

dissimilarity index chosen allows for it).

Yet,  they present disadvantages as well  (Table 2). Besides the general caveats discussed

before, probably the main limit is that there is no single mean dissimilarity method able to measure

the  richness,  divergence,  and  regularity  components  of  the  trait  space.  While  Rao  and  related

metrics  are  well  suited  to  estimate  the  divergence component,  they do not  serve well  in  other

research scenarios. Also, a consequence of the mathematical relationship between Rao (and, as a

corollary,  of FDis) and Simpson’s index is that Rao is not independent of species richness, but

rather have an asymptotically-increasing relationship with it  (Carmona, Guerrero, Morales, Oñate,

& Peco, 2017). However, this may also be seen as a strength, as we are not always interested in

functional diversity indices that are independent from species richness. 
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There are several R packages providing functions to calculate mean dissimilarity metrics.

Rao is implemented, although with different formulations, in adiv (Pavoine, 2020), FD (Laliberté,

Legendre, & Shipley, 2014), and TPD (Carmona, 2019). FDis is available in the FD package. MPD

is implemented in the picante package (Kembel et al., 2010); however, when the abundance of

species is considered, the MPD values estimated in this implementation are equal to Rao—see de

Bello et al. (2016) for a discussion and a function to estimate abundance-weighted MPD values that

reflect the definition of MPD that we provided above.

Functional dendrograms

In a milestone paper, Petchey and Gaston  (2002) proposed to represent the trait space of a given

community or site as the dendrogram of the functional relationships (distances) among species,

whereby  total  functional  richness  can  be  calculated  as  the  total  branch  length  of  the  tree.  A

dendrogram representation of the trait space is graphically intuitive, allowing to visualize functional

relations among species or individuals. Moreover, this way of calculating the trait space is strongly

linked with tree-based phylogenetic diversity (Faith, 1992), thereby offering a congruent framework

based on tree objects for comparing different dimensions of biodiversity (taxonomic, phylogenetic,

and  functional  diversity; Jarzyna  & Jetz,  2016). As  previously  discussed,  a  dendrogram-based

representation of the trait space presents, of course, disadvantages as well (Table 2).

As far as R is concerned, tree-based calculation of the trait space is available through adiv

(Pavoine, 2020), BAT (Cardoso, Mammola, Rigal, & Carvalho, 2020; Cardoso, Rigal, & Carvalho,

2015), and vegan (Oksanen et al., 2018), besides many other packages that focus on phylogenetic

diversity (e.g.  ape;  Paradis & Schliep, 2019). While  vegan and other packages currently allow

calculating only the richness component of functional diversity,  BAT allows to explore richness,

divergence, and regularity dimensions.
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Methods based on multidimensional spaces

Making the closest  analogy with the  Hutchinsonian niche, Rosenfeld  (2002) defined functional

diversity as the distribution of observations in a multidimensional space whose axes represent the

traits of interest.  In other words, the position of observations in a multidimensional space can be

used to characterize the boundaries of a multidimensional object (hypervolume) encompassing all

trait values observed in the group.

The interest in multidimensional representations of the trait space (and of the ecological

niche; Holt, 2009) is raising. Beyond trait-based ecology (Blonder, 2019), hypervolumes have been

applied to fields as diverse as environmental risk assessment  (Yemshanov et al., 2017), invasion

biology  (Zhang,  Mammola,  McLay,  Capinha,  &  Yokota,  2020),  and  cybersecurity  (Gonzalez-

Granadillo, Garcia-Alfaro, & Debar, 2017). It has been ironically pointed out that there are now

probably “as many definitions of these multidimensional spaces [...] as there are questions that can

be tackled with such methods” (Guillerme, 2018). Here, in a way of synthesis, we grouped methods

in two families: those that achieve a binary description of the trait space depending on whether it is

occupied or not, and those that achieve a probabilistic description of the trait space by modeling the

density of observations. 

Binary hypervolumes

A binary hypervolume, or convex hull,  is  the smallest  convex polyhedron surrounding a set  of

observations.  It  is  arguably  one  the  simplest  type  of  hypervolume  and  provides  an  intuitive

geometrical representation of the trait space that easily embodies the often continuous nature of

species’ traits  (Cornwell,  Schwilk,  &  Ackerly,  2006).  This  approach  was  first  introduced  by

Cornwell (2006) and later popularized by Villéger et al. (2008) who described a way to use convex

hulls  for  functional  richness  estimation  and to  explore  turnover  among  communities  (Villéger,
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Grenouillet, & Brosse, 2013). A convex hull has a great advantage over rectangular representation

of  the  trait  space  (e.g.,  Ricklefs  & Travis,  1980)  in  that  it  excludes  the  ‘‘missing  corners’’ of

irregular distributions. In n≥ 2 dimensions, it also reduces the amount of empty space compared to

(hyper-)cubes or (hyper-)spheres (Cornwell et al., 2006). 

Yet, convex hulls have several shortcomings in functional ecology (Table 2). Foremost, the

assumption that there is no empty space within extreme values of traits of a convex hull implies that

adding unique combinations of traits does not always affect functional richness or other metrics if

the new combinations fall within the existing trait space  (Blonder, 2016; Mammola & Cardoso,

2020). Convex hulls are also extremely sensitive to outliers and they can only be used to explore the

richness dimension of functional diversity (see Table 3). Owing to these and other pitfalls, Podani

(2009) reached the conclusion that “the measurement of functional diversity […] can do very well

without convex hull, because a plethora of methods [is] available already.” 

Despite these critiques, the trajectory of functional ecology research has been different: FD,

the  R  package  that  introduced  convex  hull  in  functional  ecology,  has  accumulated  over  1000

citations in Google Scholar as of October 2020, affirming itself as one of the most used statistical

environments for functional analyses. There are other packages allowing to build and/or analyses

convex hulls, including BAT, and betapart (Baselga, Orme, Villeger, De Bortoli, & Leprieur,

2018), and several others not been specifically developed for functional analyses.

Probabilistic hypervolumes

Rather than assuming that the trait space is homogeneous, as in the case of a convex-hull, density-

based approaches allow detecting areas of higher or lower density in the multidimensional space

(Blonder, 2016). Thus, probabilistic hypervolumes reflect the notion that not all areas within the

boundaries of a given trait space are filled with the same intensity. The popularity of probabilistic
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hypervolumes  is  steadily  increasing  in  functional  ecology,  as  testified  by  the  number  of  R

algorithms  published  in  recent  years  allowing  to  delineate  and/or  analyze  probabilistic

hypervolumes (Blonder, Lamanna, Violle, & Enquist, 2014; Blonder et al., 2018; M. J. M. Brown,

Holland, & Jordan, 2020; Carmona, de Bello, Mason, & Lepš, 2019; Carvalho & Cardoso, 2020;

Junker, Kuppler, Bathke, Schreyer, & Trutschnig, 2016; Mammola & Cardoso, 2020; Swanson et

al., 2015).

Inevitably, these representations of the trait space, like any other, also present shortcomings,

at  least  in their  present formulation (Table 2). The plot density will  depend on the method and

parameters  used,  and  there  are  no  clear  guidelines  on  the  best  options  (Mammola,  2019).

Furthermore,  these  methods  are  computationally  demanding,  especially  in  high  dimensions

(Mammola & Cardoso, 2020).

While a number of approaches are available for estimating probabilistic hypervolumes, the

two R packages that allow characterizing the trait space in the domain of richness, divergence, and

regularity  are  BAT  and  TPD  (Table 3).  In its  current  version,  BAT relies  on a kernel  density

estimation of the trait space as in the package hypervolume (Blonder, 2018); once the trait space

is generated, several  custom metrics can be used to explore its properties  (Mammola & Cardoso,

2020).  TPD  implements  instead  a  delineation  of  the  trait  space  based  on  probability  density

functions that can be estimated (and composed) at  different hierarchical scales. These functions

represent, for each point of the trait space, the relative abundance of the corresponding trait values

at the considered scale (Carmona et al., 2016b, 2019).

DIMENSIONS OF FUNCTIONAL DIVERSITY FOR SPECIFIC RESEARCH QUESTIONS

Most often than not, the reason for characterizing a trait space is to explore its properties in relation 

to a research question of interest (Figure 2). This can be achieved by interrogating the trait space at 
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a specific level of organization under the domain of richness, divergence, and regularity. Here we 

propose a way to group existing functional metrics using a simple, unifying scheme. This ‘periodic 

table’ of functional diversity (Table 3) is an attempt towards providing some order to the avalanche 

of available metrics, useful for applying the richness, divergence, and regularity notions (Box 1) to 

different level of organisation and spatial scales. Interestingly, besides emphasizing how there is 

both complementarity and redundancy in the metrics for exploring the trait space, this exercise of 

classification allowed us to point to the existence of gaps in what is currently available, potentially 

stimulating future developments of new metrics.

Richness

The richness dimension is arguably the most intuitive component of functional diversity.  When

estimating functional richness one tries to answer questions related to the amount of trait space

occupied by assemblages as well as how it varies in space and time. This include questions such as

what ecological processes and ecosystem services we lose if suddenly a community is wiped out

(Cadotte et al., 2011; Cooke, Eigenbrod, & Bates, 2019), the filtering effect of a given habitat on

species  traits  (Martínez  et  al.,  2020;  Micó  et  al.,  2020),  and  how does  the  functionality  of  a

community  varies  through  seasons  (Rocha,  Vasseur,  &  Gaedke,  2012).  At  a  broader,

macroecological scale, many studies have explored variations in functional richness along gradients

of thermal seasonality (latitude) (Lamanna et al., 2014; Schumm et al., 2019), glacier cover (L. E.

Brown et al., 2018), or urbanization (Buchholz, Gathof, Grossmann, Kowarik, & Fischer, 2020; Sol

et al., 2020). Mapping the richness of traits can also serve to identify areas of conservation priority

based on criteria beyond species richness (Brum et al., 2017; Strecker, Olden, Whittier, & Paukert,

2011) and even to compare extinction risk across different taxa (Carmona et al., 2020). We refer the

readers to the comprehensive overview by Lagres et al.  (2018) for further reading on the richness

component.
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Divergence

Metrics classified under the divergence component of functional diversity seek to measure the 

extent to which observations spread across the occupied trait space (Anderson, 2006), usually 

relative to a mean or centroid (Mason et al., 2005; Villéger et al., 2008). Measuring dispersion allow

answering questions related to community assembly processes and the general organisation of the 

trait space (Mason et al., 2005).  A high dispersion often translates to a high degree of niche 

differentiation and/or relaxed ecological filters, and consequently low competition for space and 

resources. In a similar vein, some authors interpreted dispersion as a measure of the functional 

redundancy (see Rosenfeld, 2002b; Wellnitz & Poff, 2001). Theoretically, less redundant 

communities should be those characterized by more relaxed ecological filters, and vice versa 

(Ricotta, Laroche, Szeidl, & Pavoine, 2020). From the perspective of biological conservation, more 

functionally redundant systems should show greater resilience to perturbation, e.g., when facing the 

extinction or disappearance of a single species, the roles performed by it can easily be done by 

functionally close species. 

Regularity

The regularity component, or evenness, is probably the least intuitive measurable property of 

functional diversity, reflecting the regularity of observations’ distribution within the trait space 

(Mouillot, Mason, Dumay, & Wilson, 2005; Schleuter et al., 2010). In terms of raw data, regularity 

often measures the skewness of trait values; graphically, it can be seen as a measure of how 

harmonious the shape of the occupied trait space is—the symmetry of branches in a functional 

dendrogram or the regularity of the shape of a probabilistic hypervolume. Biologically speaking, 

regularity is used to examine the degree to which there is an effective use of the entire range of 

resources available to a given niche space (Mason et al., 2005). A practical example comes from 
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cave ecosystems, where the permanent darkness and the consequent lack of photosynthetic primary 

producers skew the total trait space towards the over-expression of traits of detritivorous and 

predators (Gibert & Deharveng, 2002) or towards species employing particular hunting strategies 

(Cardoso, 2012).

LEVEL OF ORGANISATION

Existing metrics are furthermore divided according to the level of data organization at which they

are calculated. Metrics can be calculated for individual observations (individuals, populations, or

species), within groups (e.g., individuals within a species or species within a community; so-called

α-diversity) or between groups (e.g., comparison of multiple species or communities in space and

time; so-called β-diversity).

Observations

Observations  contribute  differently  to  the  trait  space  occupied  by  a  population,  species  or

community, or to the differences between populations, species, or communities. Different measures

have been developed to reflect the position of an observation in the trait space relative to other

observations,  including  originality,  uniqueness,  and  contribution  (Table  3).  All  these  measures

quantify in different ways how dissimilar is an observation from all others and hence how much it

adds to the group measures. A general method to calculate contribution is to use a leave-one-out

approach  (Mammola & Cardoso, 2020), whereby the contribution of each observation would be

expressed as the difference of a given measure with and without a given observation. This can be

applied  to  richness,  divergence,  or  regularity,  allowing  to  map the  different  components  of

functional rarity and commonness (Grenié, Denelle, Tucker, Munoz, & Violle, 2017; Violle et al.,
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2017) at different scales of organisation  (Carmona, de Bello, Sasaki, Uchida, & Pärtel, 2017). In

conservation  biology,  for  example,  one can estimate  the  importance  of  both  common and rare

species to the net ecosystem functionality (Chapman, Tunnicliffe, & Bates, 2018) to define species-

level conservation priorities (Davic, 2003). 

Within groups

Within-group level,  often referred to as alpha diversity or simply α, reflects the properties of a

group of observations without reference to other groups. Observations add to the occupation of a

given trait  space that  characterizes  in different  ways a  species  or  community.  This  is  the most

intuitive property of groups and by far the most explored level in functional diversity studies.

Between groups

Differences  between  groups  reflect  the  natural  heterogeneity  in  nature,  whereby  populations,

species, and communities differ in space and time. Also called beta diversity or β, this property was

first defined as the extent of change in community composition along gradients (Whittaker, 1960).

Since  then,  the  term  has  expanded  its  use,  although  always  encompassing  some  kind  of

compositional heterogeneity or differentiation  (Anderson et  al.,  2011; Tuomisto,  2010b, 2010a).

Importantly, two distinct processes shape species or communities and their functional differences:

substitution of trait space and net gain or loss of trait space [see Carvalho & Cardoso  (2020) for

species and Cardoso et al. (2014) for communities]. When comparing groups, one may understand

how niche shifting in space or time relate with competition or ecological release and consequent

evolution of traits (Carvalho & Cardoso, 2020), or to explore how trait diversity decays with spatial

distance or change through time (Pavoine & Bonsall, 2011).
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CONCLUSIONS

We here illustrated the emerging consensus on a few, non-overlapping frameworks for delineating

the trait space and measuring its properties. Our hope is that this synthesis, by digesting available

concepts (Table 1), methods (Table 2), and metrics (Table 3), will offer a practical overview and

workflow  for  streamlining  functional  diversity  analyses  (Figure  2).  Four  take-home  messages

emerge from this classification exercise: 

i)  Don’t mix apples and oranges. Many studies calculate properties of functional diversity with a

cocktail of different methods and metrics. This is the case, for example, of many studies based on

the R package  FD,  which estimates richness as the volume of a convex hull,  divergence as the

distance of the observations to  a  centroid or center  of gravity,  and regularity  with a  minimum

spanning tree (Laliberté & Legendre, 2010; Laliberté et al., 2014; Villéger et al., 2008). Whenever

possible,  we recommend being consistent by choosing a single method for delineating the trait

space (e.g., a functional dendrogram or a multivariate space) and sticking to it for exploring its

properties  in  the  dimensions  of  richness,  divergence,  and  regularity.  Otherwise,  it  may  be

problematic  to  disentangle  the  effect  of  the  ecological  process(es)  of  interest  from that  of  the

different algorithms used. As a corollary, it must be noted that caution should also be exercised

when comparing results from different studies if these were based on different methods and metrics.

ii)  Acknowledge uncertainty. In  an ideal world, by calculating analogous metrics using different

methods—e.g., the functional richness calculated with a dendrogram or a convex hull—one would

reach the  same (or  convergent)  results.  However,  as  emphasized  by a  few comparative  studies

across  a  selection  of  methods  and  metrics  (Junker  et  al.,  2016;  Mammola  &  Cardoso,  2020;

Mouchet et al., 2010; Wong & Carmona, 2020), this is rarely the case. Discrepancies are partly
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related to the intrinsic differences of each approach (Table 2), and partly to the scale of analysis and

methodological choices on how to handle trait variability (Gentile, Bonelli, & Riva, 2020; Wong &

Carmona,  2020).  We believe  it  would  be  needed to  comprehensively  analyse  properties  of  the

existing methods using either real-world data or simulations based on different combinations of

traits, scales of organization, and input parameters. Until then, it is important to acknowledge that

often we do not fully understand what each method and metric is exactly measuring.

iii) Refute parochialism. There are plenty of functional diversity methods and metrics out there, and

many more will likely be developed in the future. While this is certainly disorienting for researchers

approaching functional diversity analyses for the first time, choosing between seemingly equally

appropriate options remains challenging even for experienced researchers (Cianciaruso, Sobral, &

Lees,  2017).  Inevitably,  most  researchers  will  tend  to  stick  to  their  ‘pet’ approach.  Yet,  it  is

important to keep in mind that any analytical choice should always be fine-tuned to the ecological

question  of  interest  (Figure  2)  and the  caveats  inherent  to  each  method  (Table  2),  rather  than

subjective preferences.

iv) Indulge in the unknown. The existing breadth of metrics will never allow us to explore all the

properties of the distribution of observations in a given trait space and to answer the potentially

unlimited number of eco-evolutionary questions. When dealing with novel paradigms and systems,

one will often have to develop metrics or functions de novo. If one lacks programming skills, there

are tools that can facilitate this task. An example is the dispRity framework (Guillerme, 2018;

Guillerme, Puttick, Marcy, & Weisbecker, 2020), providing a modular architecture to create and test

new metrics tailored to specific datasets and questions.
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FIGURES CAPTIONS

Figure 1. Growth in functional diversity studies over time.  Number of published papers on functional

diversity over time, compared to other benchmark disciplines in ecology. The number of papers was sourced

from Web of Science (Clarivate Analytics)  on 25 November 2020. For functional  ecology,  we used the

query: TS = ("functional diversity" OR  "trait diversity" OR "functional richness" OR  "functional trait" OR

"trait-based ecology").  For behavioural ecology, the query:  TS=("behavioral ecology"  OR "behavioural

ecology"  OR "ecological ethology"  OR "etho-ecology"). For community ecology, the query: TS = ("meta-

communit*"  OR "community ecology"  OR "metacommunit*"  OR "biological communit*"). For trophic web

ecology, the query:  TS = ("trophic web"  OR "food-web"  OR "food web"  OR "ecological network"  OR

"network ecology").

Figure 2. A theoretical workflow for functional diversity analyses. The scheme is structured as a decision

tree designed to guide the researcher along three consequential steps: i) data preparation; ii) definition of the

trait space; and iii) characterization of the properties of the trait space using different metrics to answer

different research questions. See Table 1 for a definition of terms used.
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TABLES

Table 1. Glossary of terms. Modified from Guillerme et al. (2020). 

Term Mathematics Definition Examples in literature

Trait matrix Matrix (n x d)

The matrix reporting the traits of the studied
system. It reflects the variation of traits in 
the trait space occupied by a certain 
ecological or evolutionary unit.

Functional space, ecospace, 
dissimilarity matrix, etc.

Observations Rows (n) The units of focus in the study.
Taxa, populations, morphospecies, 
species, etc.

Traits
(= dimensions)

Columns (d)

The number of elements (traits) that were 
measured for each Observation or any 
transformation thereof (e.g., principal 
components).

Traits, ordination scores, distances, 
principal components, etc.

Observation 
matrix Matrix (m x n)

Optional matrix that provides attributes for 
the Observations (e.g., abundances, 
weights) and the subdivision of the Trait 
matrix into relevant Groups.

Abundance data, community data,
incidence data, biomass data, etc.

Groups Rows (m)
The meaningful groups of observations for 
answering the research question(s) of 
interest.

Communities, ecosystems, species, 
clades, geological strata, etc.

Trait space
Graphical 
representation of 
the trait matrix.

Any transformation and/or visualization 
(graphic representation; usually a 2D or 3D 
projection) of the trait matrix. It represents 
the space in which functional metrics are 
most often visualized.

Hypervolume, convex hull, 
functional dendrogram, probability 
density, etc.

Functional metric
Statistic (i.e., a 
measure)

The metric is the aspect(s) of interest that 
attempts to summarize some intrinsic 
feature of the variation in the trait space. 
This is what is measured (usually at the 
level of the group) to answer the research 
question(s) of interest.

Functional metric, functional index, 
functional diversity, functional 
richness, beta functional diversity, 
trait dispersion, trait divergence, etc.



Table 2.  Advantages and disadvantages of the existing frameworks for functional diversity . Main R
packages for calculation are given in alphabetic order.

Family Method Advantages Disadvantages R packages

R
aw

 d
at

a Functional 
guild or any 
other raw 
representation 
of the traits

- Simplest approach.
- Rooted in a milestone ecological 
concept: the guild.
- Easily communicated or visualized, 
even for the general public.

- Functional guild transforms continuous 
traits into categories, with consequent loss 
of information.
- Does not provide a direct link with the 
niche concept.
- The selection of the relevant number of 
groups is often subjective.
- The delimitation of groups is subjective.

stats

D
is

si
m

il
ar

it
y-

b
as

ed
 m

et
h

od
s

Mean 
dissimilarity 
methods

- Allow considering abundances.
- Clear biological interpretation. 
(average dissimilarity between the 
individuals composing a group).
- Clear correspondence with variance, 
which allows using an analysis of 
variance framework (De Bello et al., 
2011).
- Allow for partitioning of diversity 
across scales (de Bello et al., 2010; 
Pavoine et al., 2016). 
- Can be applied to other aspects of 
diversity (taxonomic, phylogenetic) 
using a single coherent mathematical 
framework (Pavoine, Marcon, & 
Ricotta, 2016).

- There is not a single entropy-based 
framework to measure richness, divergence 
and regularity components of the trait 
matrix.
- Does not come with a clear graphical 
representation of the trait space – although 
possibilities do exist (Bruelheide et al., 
2018; Carmona et al., 2012).
- Choice of distance measure is not trivial; 
should be considered carefully as it may 
affect results significantly (De Bello, 
Carmona, Mason, Sebastià, & Lepš, 2013).
- Not intuitively linked to the concept of 
species niche.
- Diversity does not necessarily increase 
when more observations or traits are added 
(this may also be seen as an advantage, e.g. 
when calculating redundancy).

ade4 (Dray & 
Dufour, 2007); 
adiv * (Pavoine, 
2020); 
entropart 
(Marcon & 
Hérault, 2015); 
funrar * (Grenié
et al., 2017); FD *
(Laliberté et al., 
2014); picante 
(Kembel et al., 
2010); TPD * 
(Carmona, 2019)

Functional 
dendrogram 
(= functional 
tree)

- Intuitive visual presentation, 
potentially allowing to calculate by 
hand all functional diversity metrics 
(easy error checking).
- The theoretical understanding of tree 
objects properties is vast, thanks to a 
long tradition of phylogenetic studies.
- Can be applied to other aspects of 
diversity (taxonomic, phylogenetic) 
using a single coherent mathematical 
framework based on trees (Cardoso et 
al., 2015).

- Not sensitive to abundances when 
calculating richness.
- Choice of distance measure for tree 
estimation is not trivial; should be 
considered carefully as it may affect results 
significantly (Podani & Schmera, 2006).
- Not intuitively linked to the concept of 
ecological niche.

adiv *; BAT * 
(Cardoso et al., 
2020); vegan 
(Oksanen et al., 
2018)

M
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Binary 
hypervolume 
(= convex hull)

- Intuitive visual presentation of the 
trait space (Cornwell et al., 2006).
- Conceptually simpler than 
probabilistic hypervolumes.
- Computationally faster than 
probabilistic hypervolumes.

- Only suitable for exploring the Richness 
dimension of functional diversity (see Table 
3)
- Curse of dimensionality (Bellman, 1957): 
a linear increase in the number of 
dimensions requires an exponential increase
in the number of observations. Also, 
computation time scales exponentially with 
the number of dimensions (Blonder, 2016; 
Guillerme et al., 2020; Mammola, 2019).
- Do not allow the existence of variable 
densities in the trait space – ‘convex hull 
expectation’ (Blonder, 2016).
- Extremely sensitive to outliers: a single 
functionally distinct observation may 

BAT *; 
betapart 
(Baselga et al., 
2018); FD *



significantly affect the estimation of the 
volume.
- Perform poorly with low sample size.
- Cannot consider abundances when 
calculating richness.
- Categorical traits are not fully 
implemented in the calculation – although 
possibilities do exist (e.g., Carvalho & 
Cardoso, 2020; Lloyd, 2016, 2018).

Probabilistic 
hypervolume 
(= continuous 
hypervolume, 
n-dimensional 
hypervolume)

- Stems from a milestone theoretical 
concept in ecology: the 
Huntchinsonian niche (Hutchinson, 
1957).
- Allow considering abundances.
- A density-based description of the 
trait space enhances the possibility to 
explore areas of higher and lower 
functional density within the 
boundaries of the hypervolume 
(Blonder, 2016; Carmona et al., 2019).

- Curse of dimensionality (see above).
- Categorical traits are as yet not fully 
implemented – although possibilities do 
exist (see above).
- For stochastic hypervolumes, might 
require to perform iterations and report 
results using null modeling techniques.
- Sensitive to the choice of bandwidth when 
kernel density estimations are used.
- Diversity does not necessarily increase 
when more observations or traits are added [
negative contribution sensu Mammola & 
Cardoso (2020); this may also be seen as an 
advantage, e.g. when calculating 
redundancy].
- Time consuming for big or complex 
datasets.

BAT *; dynRB 
(Junker et al., 
2016); 
hypervolume 
(Blonder, 2018); 
nicheROVER 
(Swanson et al., 
2015); TPD *

* Packages with a large set of complementary functional metrics to explore the richness, divergence and regularity
components of the trait space.



Table 3. A periodic table of functional diversity.  The classification is adapted from the Pavoine–Bonsall scheme (Box 1). The row entries distinguish between

observation,  within groups,  and between groups levels;  column entries represent  the three dimensions of richness,  divergence,  and regularity under the main

frameworks identified in this study. The table is expanded from those proposed in Mammola & Cardoso (2020). Examples of R functions for calculation (ordered

alphabetically) are mostly taken from packages fully devoted for functional diversity estimations (see Table 2).

Dimension: RICHNESS (… how much?) DIVERGENCE (… how different?) REGULARITY (… how regularly?)

Framework: Raw data
Mean

dissimilarity
Functional

dendrogram
Binary

hypervolume
Probabilistic
hypervolume

Raw data
Mean

dissimilarity
Functional

dendrogram
Binary

hypervolume
Probabilistic
hypervolume

Raw data
Mean

dissimilarity

Functional
dendrogra

m

Binary
hypervol

ume 

Probabilistic
hypervolume

O
B

S
E

R
V

A
T

IO
N

 L
E

V
E

L

Metric: Contribution to richness Originality / Uniqueness Contribution to evenness

Question: How much does an observation add to the total trait space? How different is an observation to the others? How much does an observation increase the regularity?

Example
calculation:

For each 
observation is 
1 divided by 
the number of 
observations 
with the same 
combination 
of traits.

- Edge length 
provided by 
an 
observation.

Contribution 
of an 
observation to
the total 
volume of a 
convex hull.

Contribution 
of an 
observation to
the total 
volume of a 
probabilistic 
hypervolume 
(can be 
negative)

The 
distance of 
each 
functional 
observation
from the 
average of 
the trait 
itself.

Average 
distance 
between an 
observation 
and all 
others 
(originality) 
or between 
an 
observation 
and the 
closest 
(uniqueness)
.

Average 
distance 
between an 
observation 
and all others 
(originality) or
between an 
observation 
and the closest
(uniqueness) 
in the tree.

Not 
applicable: a 
convex hull, 
being 
homogeneous
, is equally 
dispersed 
throughout.

Average 
distance 
between an 
observation 
and a sample 
of random 
points within 
the 
probabilistic 
hypervolume, 
or overlap 
between the 
TPD function 
of a single 
observation 
and the TPD 
function of the
whole set of 
observations.

Contributi
on of an 
observatio
n to the 
evenness 
of a 
communit
y.

Contribution 
of an 
observation 
to the 
evenness of a 
community.

Contribution
of each 
observation 
to the 
evenness of 
the 
functional 
dendrogram.

Not 
applicabl
e: a 
convex 
hull, 
being 
homogen
eous, is 
even 
througho
ut.

Contribution 
of an 
observation to
the evenness 
of a 
probabilistic 
hypervolume.

Example R
function(s):

n.a. n.a. BAT::cont
ribution;
vegan::sp
antree

BAT::hull
.contribu
tion

BAT:: 
kernel.co
ntributio
n

n.a. funrar::
uniquene
ss

BAT::origi
nality; 
BAT::uniqu
eness

n.a. BAT::kerne
l.original
ity;
TPD::uniqu
eness

n.a. n.a. BAT::eve
nness.co
ntributi
on

n.a. BAT::kern
el.evenne
ss.contri
bution

Metric: Richness Divergence Evenness

Question: What is the size of the trait space? How disperse is the trait space? How regular is the trait space?

Example
calculation:

Number of 
unique 
combinations 

Number of 
equivalent 
observations 

Total branch 
length of the 
functional tree

Volume of the
convex hull 
or sum of 

Volume of the
hypervolumes
or, in TPD, 

Standard 
deviation of
functional 

Expected 
dissimilarity 
between two 

Average 
dissimilarity 
between any 

Not 
applicable: a 
convex hull, 

Average 
dissimilarity 
between any 

Regularity
of trait 
values, 

Regularity of 
abundances 
and distances 

Regularity of
abundances 
and 

Not 
applicabl
e: a 

Overlap 
between the 
hypervolume 
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of traits (or 
weighted 
mean of the 
trait values).

(i.e. maximally 
dissimilar 
observations 
needed to 
produce the 
observed 
diversity)

areas 
 of successive
convex hulls 
(after 
Fontana, 
Petchey, & 
Pomati, 2016)

the sum of 
cells where 
trait 
probability 
density > 0 
(Carmona, de 
Bello, Mason,
& Lepš, 
2016a; 
Carmona et 
al., 2016b)

observation
s.

observations 
randomly 
taken from 
the group 
(De Bello et 
al., 2011) or 
average 
distance of 
observations 
to a center of
the trait 
space
(Laliberté & 
Legendre, 
2010)

two 
observations 
in the tree. 

being 
homogeneous
, is equally 
disperse.

two random 
points within 
the boundaries
of the 
hypervolume 
or the distance
between 
random points 
and the 
centroid.

reflecting 
trait 
abundance
s and 
distances 
between 
values.
Approxim
ated as the
kurtosis of
traits 
(Gross et 
al., 2017) 
or 
weighted 
evennes of
the traits.

along the 
minimum 
spanning tree 
linking all 
observations 
 (Villéger et 
al., 2008); or 
deviation in 
the 
uniqueness.

distances 
between 
observations 
in the tree.

convex 
hull, 
being 
homogen
eous, is 
even 
througho
ut.

and an 
imaginary 
hypervolume 
where traits 
are evenly 
distributed 
within their 
possible range
(Carmona et 
al., 2019; 
Mammola & 
Cardoso, 
2020)

Example R
function(s):

BAT::cwm; 
FD::sing.s
p; 
FD::functc
omp

div::EqRao
; TPD::Rao

BAT::alph
a

BAT::hull
.alpha; 
FD::dbFD

BAT::kern
el.alpha;
TPD::REND

BAT::cwd FD::Fdis
; 
TPD::Rao

BAT::dispe
rsion

n.a. BAT::kerne
l.dispersi
on; 
TPD::REND

BAT::cw
e

FD::feve;
funrar::u
niqueness

BAT::eve
nness

n.a. BAT::kern
el.evenne
ss; 
TPD::REND

B
E
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E
E
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Metric: Beta richness Beta replacement Beta evenness

Question: How dissimilar is the size of multiple trait spaces? How distant are multiple trait spaces? How different is the regularity of multiple trait spaces?

Example
calculation:

Net difference 
in the number 
of distinct 
functional 
observations.

Number of 
equivalent 
observations 
estimated at 
nested scales

Net difference
in summed 
length of 
edges of 
functional 
dendrograms
 (beta richness
sensu 
Cardoso, 
Rigal, 
Carvalho, et 
al., 2014)

Net difference
in amplitude 
of binary 
hypervolumes
(or nestedness
 sensu 
Villéger et al.,
2013) 

Net difference
in amplitude 
of 
probabilistic 
hypervolumes
 (Carvalho & 
Cardoso, 
2020) 

Replaceme
nt of 
distinct 
functional 
observation
s between 
groups

Divergence 
among 
different 
groups

Replacement 
of the edges of
functional 
dendrograms
 (beta 
replacement 
sensu 
Cardoso, 
Rigal, 
Carvalho, et 
al., 2014)

Replacement 
of functional 
space 
enclosed by 
convex hulls 
(or turnover 
sensu 
 Villéger et 
al., 2013) 

Replacement 
of functional 
space enclosed
by 
probabilistic 
hypervolumes
 (Carvalho & 
Cardoso, 
2020) or 
overlap 
between 
probability 
density 
function

Difference
in 
evenness 
values 
between 
two 
groups

Difference in 
evenness 
values 
between two 
groups

Difference in
evenness 
values 
between two
functional 
dendrograms

Not 
applicabl
e: a 
convex 
hull, 
being 
homogen
eous, is 
even 
througho
ut.

Difference in 
evenness 
values 
between two 
probabilistic 
hypervolumes

Example R
function(s):

n.a. adiv::EqRa
o ;
TPD::Rao

BAT::beta BAT::hull
.beta; 
betapart:
:function
al.beta.m
ulti

BAT::kern
el.beta

n.a. ade4::di
sc; 
TPD::Rao

BAT::beta BAT::hull
.beta; 
betapart:
:function
al.beta.m
ulti;

BAT::kerne
l.beta; 
BAT::kerne
l.similari
ty; 
TPD::dissi
m;

n.a. n.a. BAT::bet
a.evenne
ss

n.a. BAT::kern
el.beta.e
venness

 n.a. = No specific function available. 
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