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Abstract 9 

For centuries, ecologists and evolutionary biologists have used images such as drawings, 10 

paintings, and photographs to record and quantify the shapes and patterns of life. With the 11 

advent of digital imaging, biologists continue to collect image data at an ever-increasing rate. 12 

This immense body of data provides insight into a wide range of biological phenomena, 13 

including phenotypic trait diversity, population dynamics, mechanisms of divergence and 14 

adaptation and evolutionary change. However, the rate of image acquisition frequently 15 

outpaces our capacity to manually extract meaningful information from the images. Moreover, 16 

manual image analysis is low-throughput, difficult to reproduce, and typically measures only a 17 

few traits at a time. This has proven to be an impediment to the growing field of phenomics - 18 

the study of many phenotypic dimensions together. Computer vision (CV), the automated 19 

extraction and processing of information from digital images, is a way to alleviate this 20 

longstanding analytical bottleneck. In this review, we illustrate the capabilities of CV for fast, 21 

comprehensive, and reproducible image analysis in ecology and evolution. First, we briefly 22 

review phenomics, arguing that ecologists and evolutionary biologists can most effectively 23 

capture phenomic-level data by using CV. Next, we describe the primary types of image-based 24 

data, and review CV approaches for extracting them (including techniques that entail machine 25 

learning and others that do not). We identify common hurdles and pitfalls, and then highlight 26 

recent successful implementations of CV in the study of ecology and evolution. Finally, we 27 

outline promising future applications for CV in biology. We anticipate that CV will become a 28 
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basic component of the biologist’s toolkit, further enhancing data quality and quantity, and 29 

sparking changes in how empirical ecological and evolutionary research will be conducted. 30 

From phenotypes to phenomics: measuring traits at scale 31 

Faced with the overwhelming complexity of the living world, most life scientists confine their 32 

efforts to a small set of observable traits. Although a drastic simplification of organismal 33 

complexity, the focus on single phenotypic attributes often provides a tractable, operational 34 

approach to understand biological phenomena, e.g. phenotypic trait diversity, population 35 

dynamics, mechanisms of divergence and adaptation and evolutionary change. However, 36 

there are also obvious limitations in how much we can learn from studying small numbers of 37 

phenotypes in isolation. Evolutionary and conservation biologist Michael Soulé was one of the 38 

first to demonstrate the value of collecting and analyzing many phenotypes at once in his early 39 

study of the side-blotched lizard (Uta stansburiana; [Soulé 1967]; reviewed in Houle et al. ). 40 

While doing so, he defined the term “phenome” as “the phenotype as a whole” (Soulé 1967). 41 

Phenomics, by extension, is the comprehensive study of phenomes. In practice, this entails 42 

collecting and analyzing multidimensional phenotypes with a wide range of quantitative and 43 

high-throughput methods (Houle et al. 2010, Bilder et al. 2009). Given that biologists are now 44 

attempting to understand increasingly complex and high dimensional relationships (Walsh 45 

2007), it is surprising that phenomics still remains underutilized (Fig. 1), both as 46 

methodological approach and as an overarching conceptual and analytical framework (Houle 47 

et al. 2010).  48 

Phenomic datasets are essential if we are to understand some of the most compelling 49 

but challenging questions in the study of ecology and evolution. For instance, natural selection 50 

typically does not operate on single traits, but on multiple traits simultaneously (Lande and 51 

Arnold 1983, Phillips and Arnold 1999b). Such correlational selection can bias evolutionary 52 

change and shape genetic covariance patterns by building up and maintaining linkage 53 

disequilibrium (Schluter 1996, Phillips and Arnold 1999a, Sinervo and Svensson 2002, 54 
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Svensson et al. 2021), and it is a phenomenon that can most effectively be uncovered in 55 

multidimensional phenotypic datasets. Another example is pleiotropy, which generates 56 

patterns of covariation among traits that are impossible to predict if only a few simple traits are 57 

measured (Visscher and Yang 2016, Saltz et al. 2017). Phenotypic plasticity, which is 58 

increasingly recognized in mediating evolutionary trajectories (Pfennig et al. 2010), is also an 59 

inherently multivariate phenomenon involving many traits and interactions between traits, so 60 

it should be quantified as such (Morel-Journel et al. 2020). Finally, community stability 61 

depends on species interactions and ecological niches of organisms; niches are typically 62 

influenced by many traits at once (Blonder 2018, Laughlin et al. 2020). Put simply: if we are to 63 

draw a complete picture of biological processes and aim to understand their causal 64 

relationships at various levels of biological organization, we need to measure more traits. 65 

Phenomic datasets will make our conclusions and inferences more robust if underpinned by 66 

more complete information without systematic biases.  67 

High dimensional phenotypic data are also needed for uncovering the causal links 68 

between genotypes, environmental factors, and phenotypes, i.e. to understand the genotype-69 

phenotype map (Houle et al. 2010, Orgogozo et al. 2015). The advent of genomics - high 70 

throughput molecular methods to analyze the structure, function or evolution of an organism's 71 

genome in parts or as a whole (Church and Gilbert 1984, Feder and Mitchell-Olds 2003) - has 72 

already improved our understanding of many biological phenomena. This includes the 73 

emergence and maintenance of biological diversity (Seehausen et al. 2014), the inheritance 74 

and evolution of complex traits (Pitchers et al. 2019), and the evolutionary origin of key 75 

metabolic traits (Ishikawa et al. 2019). Thus, accessible molecular tools have lowered the 76 

hurdles for discovery-based genomic research and shifted the focus away from the study of 77 

observable organismal traits and phenotypes towards their molecular basis. However, a 78 

similar “moonshot-program” for the phenotype, i.e. an ensemble of phenomics methods that 79 

matches genomics in their comprehensiveness, is still lacking (Freimer and Sabatti 2003). The 80 

growing mismatch in how efficiently molecular and phenotypic data are collected may hamper 81 
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further scientific progress in ecological and evolutionary research (Houle et al. 2010, Orgogozo 82 

et al. 2015, Lamichhaney et al. 2019). 83 

Following previous calls for phenomic research programs (Bilder et al. 2009, Houle et 84 

al. 2010, Furbank and Tester 2011), some recent studies have collected phenotypic data with 85 

high dimensionality, for example, in plants (Ubbens and Stavness 2017), animals (Cheng et 86 

al. 2011, Kühl and Burghardt 2013, Pitchers et al. 2019) and microbes (Zackrisson et al. 2016, 87 

French et al. 2018). The methods in such studies included 2D- and 3D-scanners, camera 88 

traps, robotic imaging platforms, computational image analysis, morphometrics, 89 

transcriptomics, metabolomics, and automated data loggers to record physiological and 90 

behavioral data from organisms (Houle et al. 2010).  Many of these techniques produce image-91 

based data. In general, ecologists and evolutionary biologists use digital imaging to quantify 92 

the external phenotype of an organism (i.e. its visually observable characteristics), to count 93 

organisms (e.g. cells on microscope slides), or to detect the presence of an organism (e.g. in 94 

images collected by camera traps). Existing work has supplied us with an immense body of 95 

image data that has provided insight into a wide range of biological phenomena, yet, when 96 

biologists manually extract phenotypes from images for phenomic-scale research, they 97 

confront several main bottlenecks. 98 

A major constraint when working with large amounts of images (~1000 or more) is 99 

processing time and cost. Manual extraction of phenotypic data from images is slow and it 100 

requires trained domain experts whose work is extremely expensive. Moreover, the collection 101 

of such metrics in a manual fashion entails subjective decisions by the researcher, which may 102 

make it prone to error, and certainly makes reproducibility difficult. Last, manually measured 103 

traits tend to be low-dimensional measurements of higher dimensional traits. For example, 104 

external color traits, such as eye color phenotypes, are often scored as discrete categories 105 

(e.g. red vs blue phenotypes), whereas pixel level information (number of red vs. blue pixels) 106 

can provide a continuous phenotypic metric (Liu et al. 2010). Such quantitative, high-107 

dimensional data can provide insight into previously hidden axes of variation in natural 108 

phenotypes. In this review we extol computer vision (CV), the automatic extraction of 109 
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meaningful information from images, as a promising toolbox to collect phenotypic information 110 

on a massive scale. The field has blossomed in recent years, producing a diverse array of 111 

computational tools to increase analytic efficiency, data dimensionality, and reproducibility. 112 

We argue that CV is poised to become a basic component of the data analysis toolkit in 113 

ecology and evolution, enabling researchers to collect and explore phenomic-scale data.  114 

Digital images as data  115 

The structure of digital images  116 

A two-dimensional image is an intuitive way to record, store, and analyze organismal 117 

phenotypes. In the pre-photography era, ecologists and evolutionary biologists used drawings 118 

to capture the shapes and patterns of life, later to be replaced by analog photography, which 119 

allowed for qualitative assessment and simple, often only qualitative analysis of phenotypic 120 

variation. With the advent of digital photography, biologists could collect phenotypic data at 121 

unprecedented rates using camera stands, camera traps, microscopes, scanners, video 122 

cameras, or any other instrument with semiconductor image sensors (hereafter “image 123 

sensors”). Image sensors produce two-dimensional raster images (also known as bitmap 124 

images), which store incoming visible light or other electromagnetic signals into discrete, 125 

locatable picture elements - in short: pixels (Fig. 2). Each pixel contains quantitative 126 

phenotypic information that is organized as an array of rows and columns, whose dimensions 127 

are also referred to as “pixel resolution” or just “resolution”. An image with 1000 rows and 1500 128 

columns has a resolution of 1000 x 1500 (= 1 500 000 pixels, or 1.5 megapixels). The same 129 

applies for digital videos, which are simply a series of digital images displayed in succession, 130 

where the frame rate (measured as frames per second = fps) describes the speed of that 131 

succession.  132 

At the pixel level, images or video frames can store variable amounts of information, 133 

depending on the bit depth, which refers to the number of distinct values that a pixel can 134 

represent (Fig. 2). In binary images, pixels contain information as a single bit, which can take 135 
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exactly two values - typically black or white (21 values = 2 intensity values). Grayscale images 136 

from typical consumer cameras have a bit depth of 8, thus each pixel can take a value between 137 

0-255 (28 values = 256 intensity values), which typically represents a level of light intensity, 138 

also referred to as pixel intensity. Color images are typically composed of at least three sets 139 

of pixel arrays, also referred to as channels, each of which contain values for either red, green 140 

or blue (RGB; Fig. 2). Each channel, when extracted from an RGB image, is a grayscale 141 

representation of the intensities for a single-color channel. Through the combination of pixel 142 

values at each location into triplets, colors are numerically represented. Today the industrial 143 

standard for color images is 24-bit depth, in which each color channel has a bit depth of 8 and 144 

thus can represent 256 colors (Fig. 1). Thus, 24-bit RGB images can represent over 16 million 145 

color variations in each pixel (224 = 256 x 256 x 256 = 16 777 216 intensity values), which 146 

already greatly surpasses the estimated 2.28 million of color variations that humans can 147 

perceive (Pointer and Attridge 1998).  148 

Today, high resolution image sensors are an affordable way to store externally visible 149 

phenotypic information, like color and shape. However, advanced image sensors can also 150 

combine information from different spectra other than the visible light, like infrared radiation, 151 

which can be used to quantify individual body temperatures. With thermal image sensors, 152 

biologists can estimate body surface temperatures, which are correlated with internal (core) 153 

body temperatures (Tattersall and Cadena 2010), particularly in small animals like insects 154 

(Tsubaki et al. 2010, Svensson et al. 2020). Thermal imaging, or thermography, offers new 155 

opportunities for ecophysiological evolutionary research of how animals cope with heat or cold 156 

stress in their natural environments (Fig. 4B; Tattersall et al. 2009, Tattersall and Cadena 157 

2010, Svensson and Waller 2013). Fluorescence spectroscopy is another way to quantify 158 

phenotypes in high throughput and with high detail. For example, plate readers typically used 159 

in microbial and plankton research, can combine light in the visible spectrum with images 160 

containing information of cell fluorescence or absorbance to an “image stack” (Roeder et al. 161 

2012). Image stacks and the inclusion of multiple spectral channels provide a promising 162 
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avenue of research towards capturing a more complete representation of the phenotype (Fig. 163 

4A; Hense et al. 2008, Di et al. 2014). 164 

 165 

A brief introduction to computer vision 166 

CV is an interdisciplinary field at the intersection of signal processing and machine learning 167 

(Fig. 6; Mitchell 1997), which is concerned with the automatic and semiautomatic extraction of 168 

information from digital images. After image acquisition, a typical CV workflow involves three 169 

main steps: preprocessing, segmentation, and measurement (Fig. 3).  170 

Preprocessing - Independent of how much care has been taken during image acquisition, 171 

preprocessing is an important step to prepare images for the CV routines to follow. There is a 172 

wealth of image processing techniques that can be applied at this stage, such as 173 

transformations to reduce noise (e.g. gaussian blur) or enhance contrast (e.g. histogram 174 

adjustment). Images can also be masked or labeled to filter the image so that subsequent 175 

steps are applied to the intended portions of each image.  Defining the appropriate coordinate 176 

space (i.e. pixel-to-mm ratios) is also part of preprocessing. This step is highly specific to the 177 

respective study system or image dataset and may initially require some fine-tuning by the 178 

scientist to ensure data quality, which, however, can typically be automated afterwards. 179 

Segmentation The central step in all phenotyping related CV-pipelines is the segmentation 180 

of images into pixels that contain the desired signal or information (foreground) and all other 181 

pixels (background). In its most basic form, segmentation of grayscale images can be done 182 

by simple signal processing algorithms, such as a threshold or watershed. Similarly, feature 183 

detection algorithms examine pixels and their adjacent region for specific characteristics or 184 

key points, e.g. whether groups of pixel form edges, corners, ridges or blobs. Videos or 185 

multiple images of the same scene provide an additional opportunity for segmentation: 186 

foreground detection can detect changes in image sequences to determine the pixels of 187 

interest (e.g. a specimen placed in an arena, or animals moving against a static background), 188 

while subsequent background subtraction isolates the foreground for further processing. 189 

Finally, object detection describes the high-level task of finding instances of semantic objects 190 
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(organisms, organs, structures, etc.) in an image, which is typically addressed through 191 

classical machine learning or deep learning (see section Computer vision methods). In 192 

classical machine learning, features must be first engineered or extracted from a training 193 

dataset using feature detectors, then used to train a classifier, and finally applied to the actual 194 

dataset (Mitchell 1997). Deep learning algorithms are a family of machine learning methods 195 

based on artificial neural networks that “learn” what constitutes the object of interest during 196 

the training phase. With sufficient training from labelled images, deep learning-powered object 197 

detection algorithms can be highly accurate and often greatly outperform pre-existing object 198 

recognition methods - in some cases even human experts (Buetti-Dinh et al. 2019).  199 

Measurement What sorts of data can we extract from images? CV can retrieve a multitude of 200 

phenotypic traits from digital images in a systematic and repeatable fashion. In the simplest 201 

case such traits have been measured traditionally and are established in each study system, 202 

such as body size (e.g. length or diameter) or color (e.g. “red phenotype” vs “blue phenotype”). 203 

In such cases, switching from a manual approach to a semi- or fully automatic CV approach 204 

is straightforward, because the target traits are well embedded in existing statistical and 205 

conceptual frameworks. The main benefits from CV are that costly manual labor is reduced 206 

and that the obtained data becomes more reproducible, because the applied CV analysis 207 

pipeline can be stored and re-executed. It is also possible to increase the number of 208 

dimensions without much extra effort and without discarding the traditionally measured traits 209 

(Table 1). For example, in addition to body size, one could extract body shape traits, i.e. the 210 

outline of the body itself (i.e. contour coordinates of the foreground), and texture (i.e. all pixel 211 

intensities within the foreground). Such high dimensional traits can be directly analyzed using 212 

multivariate statistics, or transformed into continuous low dimensional traits, such as 213 

continuous shape features (circularity or area), texture features (color intensity or variation, 214 

pixel distribution), or moments of the raw data (Table 1).  215 
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A history of computer vision methods 216 

The field of CV is now close to celebrating its 6th decade. It first emerged in the late 1950s 217 

and early 1960s, in the context of artificial intelligence research (Rosenblatt 1958). At the time, 218 

it was widely considered a stepping-stone in our search for understanding human intelligence 219 

(Minsky 1961). Given its long history, a wide variety of CV techniques have emerged since its 220 

inception, but they all contain variations of the same basic mechanism. CV is, from the 221 

methodological standpoint, the process of extracting meaningful features from image data and 222 

then the use of such features to perform tasks, which, as described above, may include 223 

classification, segmentation, recognition, detection, among others. In this section, we will not 224 

aim at presenting an all-encompassing review of all CV methods, but rather to identify the 225 

major trends in the field and highlight the techniques that have proved useful in the context of 226 

biological research. It is worth noting that even classical CV approaches are still routinely used 227 

in the modern literature, either in isolation or, most commonly, in combination with others. In 228 

a large part, methodological choices in CV are highly domain-specific (see section Practical 229 

considerations for computer vision, Fig. 4, and Fig. 6).  230 

 231 

First wave - Hand-crafted features 232 

The first wave of CV algorithms is also the closest one to the essence of CV, namely, the 233 

process of extracting features from images. Starting with the work of Larry Roberts, which 234 

aimed at deriving 3D information from 2D images (Roberts 1963), researchers in the 1970s 235 

and 1980s developed different ways to perform feature extraction from raw pixel data. Such 236 

features tended to be low-level features, such as lines, edges, texture or lighting, but provided 237 

us with the initial basic geometric understanding of the data contained in images. A notable 238 

example of such algorithms is the watershed algorithm. First developed in 1979 (Beucher 239 

1979), the watershed algorithm treats images as a topographic map, in which pixel intensity 240 

represents its height, and attempts to segment the image into multiple separate ‘drainage 241 

basins’. This algorithm is still routinely used in signal processing techniques (Fig. 6) and can 242 
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be effectively used to process biological images such as those obtained through animal or 243 

plant cell microscopy (McQuin et al. 2018). Other initial low-level hand-crafted approaches 244 

that achieved popularity include the Canny and Sobel filters (edge detectors; Canny 1986, 245 

Kanopoulos et al. 1988) and Hough transforms (ridge detection; Duda and Hart 1972). 246 

Another approach that gained popularity in the CV literature in the early 1990s was 247 

principal component analysis (PCA). In a PCA, independent, aggregate statistical features are 248 

extracted from multidimensional datasets. These can be used, for example, in classification. 249 

One of the most notable uses of PCA in the context of CV was the eigenfaces approach (Turk 250 

and Pentland 1991). Essentially, Turk and Pentland (1991) noted that one could decompose 251 

a database of face images into eigenvectors (or characteristic images) through PCA. These 252 

eigenvectors could then be linearly combined to reconstruct any image in the original dataset. 253 

A new face could be decomposed into statistical features and further compared to other known 254 

images in a multidimensional space. PCA has notably found many other uses in biology (e.g., 255 

(Ringnér 2008).  256 

In the late 1990s and early 2000s, Scale Invariant Feature Transform (SIFT; Lowe 257 

1999, 2004) and Histogram of Oriented Gradients (HOG; Dalal and Triggs 2005) were 258 

developed. Both SIFT and HOG represent intermediate-level local features that can be used 259 

to identify keypoints that are shared across images. In both approaches, the first step is the 260 

extraction of these intermediate-level features from image data, followed by a feature matching 261 

step that tries to identify those features in multiple images. Finding keypoints across images 262 

is an essential step in many CV applications, such as object detection, landmarking, and 263 

image registration. These intermediate-level features have several advantages over the lower-264 

level features mentioned above, most notably the ability to be detected in a wide-variety of 265 

scales, noise and illumination. Another key aspect of SIFT and HOG features is that they are 266 

generally invariant to certain geometric transformations, such as uniform scaling and simple 267 

affine distortions.  268 

 269 
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Second wave - Initial machine-learning approaches 270 

While the use of hand-crafted features spurred much of the initial work in CV, soon it became 271 

apparent that without image standardization, those low- and intermediate-level features will 272 

often fall short of producing sufficiently robust CV algorithms. For example, images belonging 273 

to the same class can often look very different and the identification of a common set of shared 274 

low-level features can prove to be quite challenging. Consider, for instance, the task of 275 

classifying animal images. Two cat breeds can look quite different, despite belonging to the 276 

same general class (cat). As such, while the initial feature-engineering approaches were 277 

essential for the development of the field, it was only with the advent of machine-learning that 278 

CV acquired more generalizable applications. 279 

Machine learning algorithms for CV can be divided in two main categories (but see Box 280 

2): supervised and unsupervised (Geoffrey Hinton, Terrence J. Sejnowski 1999). 281 

Unsupervised algorithms attempt to identify previously unidentified patterns on unlabeled 282 

data. In other words, no supervision is applied to the algorithm during learning.  While it can 283 

be argued that PCA was one of the first successful unsupervised learning algorithms applied 284 

directly to CV, here we group PCA with “first wave” tools due to its use as a feature extractor. 285 

Other unsupervised learning algorithms commonly used in CV include clustering techniques, 286 

such as k-means (Lloyd 1982) and gaussian mixture models (GMM; Reynolds and Rose 287 

1995). Clustering algorithms represented some of the first machine learning approaches for 288 

CV. Their aim is to find an optimal set of objects (or components) that are more similar to each 289 

other than to those in other sets. This type of approach allowed researchers to find hidden 290 

patterns embedded in multidimensional data, proving useful for classification and 291 

segmentation tasks. 292 

However, it is in the supervised domain that machine learning for CV has been most 293 

successful (Heileman and Myler 1989). In supervised learning approaches, the user supplies 294 

labeled training data in the form of input-output pairs (Box 2). The ML algorithm iteratively 295 

“learns” a function that maps input into output for the labeled training data. Among the initial 296 

supervised learning approaches for CV, Support Vector Machines (SVM) were by far the most 297 
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common approach (Cortes and Vapnik 1995). Given a certain image dataset and their 298 

corresponding labels (e.g., classes in a classification task), SVMs find the hyperplane (in 299 

feature space) that maximizes the separation between the classes of interest. An essential 300 

aspect of SVMs is that such learned decision boundaries separating the classes can be 301 

nonlinear in the original feature space, allowing the model to separate classes that would not 302 

be separable by a purely linear technique (Cortes and Vapnik 1995).  303 

 304 

Third wave - Ensemble methods 305 

While SVMs were extremely successful in CV and spurred much of the supervised work that 306 

happened afterwards, it became clear by the early 2000s that single estimators often 307 

underperformed approaches combining the predictions of several independent estimators, an 308 

approach known as ensemble methods (Dietterich 2000). Ensemble methods represent a 309 

slightly different philosophical approach to machine learning, in which multiple models are 310 

trained to solve the same task and their individual results are combined to obtain an even 311 

better model performance. Several ensemble methods have been developed in the literature, 312 

but they are generally divided in two main families: bagging and boosting. 313 

Bagging approaches combine several models that were trained in parallel through an 314 

averaging process (Bauer and Kohavi 1999). Each underlying model is trained independently 315 

of the others based on a bootstrap resample of the original dataset. As a consequence, each 316 

model is trained with slightly different and (almost) independent data, greatly reducing the 317 

variance in the combined model predictions. A classic example of bagging approach is the 318 

random forest algorithm (Breiman 2001), in which multiple learning trees are fitted to bootstrap 319 

resamples of the data and posteriorly combined through mean averaging (or majority vote). 320 

Boosting, on the other hand, combines learners sequentially rather than in parallel  321 

(Bauer and Kohavi 1999).  Among boosting algorithms, gradient boosting (Friedman 2000) is 322 

one of the most widely used in CV. In gradient boosting, models are combined in a cascade 323 

fashion, such that a downstream model is fitted to the residuals of upstream models. As a 324 

consequence, while each individual model in the cascade is only weakly related to the overall 325 
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task, the combined algorithm (i.e., the entire cascade) represents a strong learner that is 326 

directly related to the task of interest. Since this approach, if unchecked, will lead the final 327 

model to overfit the training data, regularization procedures are usually applied when using 328 

gradient boosting.  329 

 330 

Fourth wave – Deep learning 331 

Deep learning approaches are, at the time of this writing, the state-of-the-art in CV and have 332 

recently become more accessible through the community-wide adoption of code-sharing 333 

practices (e.g. via https://github.com/ or https://stackoverflow.com/). Deep learning refers to a 334 

family of machine learning methods based on artificial neural networks with multiple steps that 335 

perform convolutions or other mathematical operations on the input data, each of which is 336 

referred to as a hidden layer. Networks with dozens or hundreds of hidden layers (i.e. deep 337 

networks) allow for the extraction of high-level features from raw image data (LeCun et al. 338 

2015). While they have only recently become widespread, the history of artificial neural 339 

networks is at least as old as the field of CV itself. One of first successful attempts in the study 340 

of artificial neural networks was the perceptron (Rosenblatt 1958), a computer whose 341 

hardware design was inspired by neurons, and which was used to classify a set of inputs into 342 

two categories. This early work, while successful, was largely restricted to linear functions and 343 

therefore could not deal with non-linearity, such as XOR functions (Minsky et al. 1969). As a 344 

consequence, artificial neural network research remained rather understudied until the early 345 

80s when training procedures for multi-layer perceptrons were introduced (i.e., 346 

backpropagation; Rumelhart and McClelland 1987). Even then, multi-layer approaches were 347 

computationally taxing, and the hardware requirements represented an important bottleneck 348 

to research in neural network-based CV, which remained disfavored compared to much lighter 349 

approaches, such as SVMs. 350 

It eventually became clear that a neural network approach to CV represented a 351 

fundamental leap for CV. When compared to the hand-crafted features that dominated the 352 

field for most of its history, neural networks learn features from the data itself, therefore 353 
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eliminating the need for feature engineering (LeCun et al. 2015). In a large part, deep learning 354 

approaches for CV have only emerged in force due to two major developments at the 355 

beginning of the 21st century. On one side, hardware capability greatly increased due to high 356 

consumer demand for personal computing and gaming. On the other, there was a widespread 357 

adoption of the internet, leading to an exponential increase in data availability through shared 358 

image databases and labelled data. Today, deep learning is a general term that encompasses 359 

a wide variety of approaches that share an architectural commonality of relying on training 360 

neural networks with multiple hidden layers. However, this superficial similarity hides a 361 

considerable array of differences between different algorithms and one could say that the field 362 

of deep learning is as diverse as the domains in which CV is applied. We present some of the 363 

most relevant classes of deep learning approaches in Box 2. 364 

Practical considerations for computer vision 365 

Measurement theory: define your traits thoughtfully 366 

Defining meaningful phenotypes is deceptively challenging. Traditionally, biologists relied on 367 

intuition and natural history conventions to define phenotypes, but this approach can obscure 368 

the fact that phenomes are exceedingly high-dimensional, and many dimensions are infinitely 369 

divisible. When deciding what to measure, we suggest that researchers consider 370 

measurement theory, a qualitative formalization of the relationship between actual 371 

measurements and the entity that the measurements are intended to represent (Houle et al. 372 

2011). In phenomics using CV, we recommend that researchers adhere to the following three 373 

principles: i) Ensure that the measurements are meaningful in the theoretical context of 374 

research questions. ii) Remember that all measurements are estimates. Measurements 375 

without uncertainties should always be avoided. iii) Be careful with units and scale types, 376 

particularly when composite values, such as the proportion of one measurement over another, 377 

are used as a measurement. Wolman (2006) and Houle et al. (2011) give details of 378 

measurement theory and practical guidelines for its use in ecology and evolutionary biology. 379 
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 380 

Image quality and pertinent metadata: collect images that are maximally useful 381 

As a general rule of thumb, images taken for any CV analysis should have a signal-to-noise 382 

ratio (SNR) sufficiently high so that the signal (i.e. the phenotypic information) is detectable 383 

from the image background. High SNR can be achieved by using high resolution imaging 384 

devices (e.g. DSLR cameras or flatbed scanners), ensuring that the object is in focus (e.g. 385 

automatically or by fixing the distance between camera and object), and by creating a high 386 

contrast between object and background (e.g. by using backgrounds that are of contrasting 387 

color or brightness to the organism or object). We recommend to iteratively assess suitability 388 

of imaging data early on in a project and adjust if necessary. This means taking pilot datasets, 389 

processing them, measuring traits, estimating measurement errors, and then updating the 390 

image collection process. Moreover, it is good practice to include a color or size reference 391 

whenever possible. It helps researchers to assess if the image has sufficient SNR, increases 392 

reproducibility, and helps to evaluate measurement bias as we discuss in the next section. 393 

 394 

Every measurement is an estimate: dealing with measurement error 395 

Another important aspect to consider when measuring phenotypes from images is the 396 

(in)accuracy of measurements. Formally, measurement inaccuracy is composed of 397 

imprecision and bias, corresponding to random and systematic differences between measured 398 

and true values, and can be expressed as the following relationship  399 

 400 

inaccuracy = imprecision + bias2 401 

 402 

(Grabowski and Porto 2017, Tsuboi et al. 2020). These two sources of errors characterize 403 

distinct aspects of a measurement: precise measurements may still be inaccurate if biased, 404 

and unbiased measurements may still be inaccurate if imprecise (Fig. 5). Measurement 405 

imprecision can be evaluated by the coefficient of variation (standard deviation divided by the 406 

mean) of repeated measurements. Bias requires a knowledge of true values. 407 
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 We ultimately need to understand if a measurement is sufficiently accurate to address 408 

the research question at hand. Repeatability is a widely used estimator of measurement 409 

accuracy in ecology and evolutionary biology (Wolak et al. 2012), which in our notation could 410 

be expressed as 411 

 412 

repeatability = 1 - 
௜௡௔௖௖௨௥௔௖௬

௧௢௧௔௟ ௩௔௥௜௔௡௖௘
 413 

 414 

This expression clarifies that the repeatability depends both on measurement inaccuracy and 415 

total variance in the data. For example, volume estimates of deer antler from 3D 416 

photogrammetry have an average inaccuracy of 8.5%, which results in repeatabilities of 67.8-417 

99.7% depending on the variance in antler volume that a dataset contains (Tsuboi et al. 2020). 418 

In other words, a dataset with little variation requires more accurate measurement to achieve 419 

the same repeatability as a dataset with more variation. Therefore, the impact of measurement 420 

error has to be evaluated in the specific context of data analysis. 421 

CV-based phenomics is extremely useful in this regard because it allows researchers 422 

to identically repeat a measurement process, and thereby evaluate inaccuracies in order to 423 

improve measurement precision. In the aforementioned example of volume estimated from 424 

3D photogrammetry (Tsuboi et al. 2020), it was found that 70% of the total inaccuracy arose 425 

from the error in scaling arbitrary voxel units into real volumetric units. Therefore, by using the 426 

mean of two estimates obtained from two copies of an image that are scaled twice 427 

independently as a representative measurement, the inaccuracy dropped to 5.5%. However, 428 

the opportunity to improve accuracy by repeated measurements is limited if a majority of error 429 

arises from the stored images themselves. For this reason, we recommend always taking 430 

repeated images of the same subject at least for a subset of data. This will allow evaluating 431 

the magnitude of error due to images relative to the error due to acquisition of measurements 432 

from images. If the error caused by images is large compared to the error caused by data 433 
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acquisition, it may be necessary to modify imaging and/or preprocessing protocol to increase 434 

SNR.  435 

 Assessing measurement bias requires separate treatments. When linear (length) or 436 

chromatic (color) measurements are obtained from images, it is a good general practice to 437 

include size and color scales as part of images to estimate bias as the difference between 438 

known values of imaged scales and measurements obtained through CV (i.e. the reference 439 

card in Fig. 3). Knowing the true value may be difficult in some cases, such as domain area 440 

or circularity (Hoffmann et al. 2018), since they are hard to characterize without a CV. When 441 

multiple independent methods to measure the same character exist, we recommend using 442 

them on sample data to determine the bias of one method relative to the other. 443 

 444 

Selecting a CV pipeline:  as simple as possible, as complex as necessary  445 

When using CV tools there are usually many different ways to collect a specific type of 446 

phenotypic information from images (Fig. 6). Therefore, one of the first hurdles to overcome 447 

when considering the use of CV is selecting the appropriate technique from among a large 448 

and growing set of choices. The continued emergence of novel algorithms to collect, process 449 

and analyze image-derived data may sometimes make us believe that any “older” technology 450 

is immediately outdated. Deep learning, specifically CNNs, is a prominent example of an 451 

innovation in CV that was frequently communicated as so “revolutionary” and “transformative” 452 

that many scientists believed it would replace all existing methods. However, despite the 453 

success of CNNs, there are many cases where they are inappropriate or unfeasible, e.g. due 454 

to small sample sizes, hardware or time constraints, or because of the complexity that deep 455 

learning implementations entail, despite many efforts to make this technology more tractable. 456 

We discourage readers from defaulting to using the newest technology stacks; rather, we 457 

suggest that researchers be pragmatic as to which is the fastest and simplest way to get the 458 

phenotypic information of desire from any given set of images. 459 

Begin by considering the size of a given image dataset, whether it is complete, e.g. 460 

after an experiment, or whether there will be continued future additions, e.g. as part of a long-461 
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term experiment or field survey. As a rough rule of thumb, if a dataset encompasses only a 462 

thousand images or fewer, consider it “small”; if a dataset has thousands to tens of thousands 463 

images, consider it “large” (see Fig. 6 for methodological suggestions for each case). The next 464 

assessment should be about the SNR in your images: images taken in the laboratory typically 465 

have a high degree of standardization, e.g. controlled light environment or background, and 466 

thus a very high SNR. Field images can also have a high SNR, for example, if they are taken 467 

against the sky or if the trait of question is very distinct from the background through bright 468 

coloration. If the dataset is “small” and/or has high SNR, it may not be necessary to use the 469 

more sophisticated CV tools; instead, signal processing, e.g. threshold or watershed 470 

algorithms, may already be sufficient for segmentation although typically some pre- and post-471 

processing is typically still required (e.g. blurring to remove noise, “morphology”-operations to 472 

close gaps, or masking false positives).  473 

For large datasets, images with low SNR, or if the information of interest is variable 474 

across images (e.g. traits are photographed from different angles or partially covered up), 475 

machine learning approaches are probably more suitable. In contrast to signal processing, 476 

where segmentation results are immediately available, all machine learning image analysis 477 

pipelines include iterative training and validation phases, followed by a final testing phase. 478 

Such a workflow can be complex to initiate but pays off in the long run by providing 479 

segmentation results that become increasingly robust if more training data is supplied over 480 

time. Classic machine learning algorithms often require an intermediate amount of training 481 

data (500-1000 or more images) before they can produce satisfactory results. In this category, 482 

SVM or HOG algorithms are a good choice when areas of interest do not contrast sufficiently 483 

from the surrounding area, for example, when automatically detecting landmarks (Porto and 484 

Lysne Voje 2020). Deep learning algorithms require much larger training datasets (several 485 

1000s to 10000s) but are less sensitive to noise and idiosyncrasies of the foreground. Thus, 486 

for large and continuously growing data sets, or for recurring image analysis tasks, deep 487 

learning has become the standard approach for segmentation.  Deeper networks may 488 

increase model accuracy, and thus improve the segmentation results, but have an increasing 489 
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risk of overfitting the contained information - i.e. the model is less generalizable to input data. 490 

While the implementation of deep learning pipelines requires some expertise, they can be 491 

retrained and are typically less domain specific than classic machine learning pipelines 492 

(O’Mahony et al. 2020). 493 

Recent examples of computer vision to collect phenomic data 494 

“Phenomics” as a term has not yet gained widespread attention in the ecological and 495 

evolutionary biology research communities (Fig. 1), but many biologists are engaged in 496 

research programs that are collecting phenomic data, even though it is not called as such. 497 

Some of them are already using automatic or semi-automatic CV to collect phenotypic data. 498 

Here we present small a selection of promising applications of CV to answer ecological or 499 

evolutionary research questions (points matching panels in Fig. 4): 500 

A. Resource competition traits - Species diversity within ecological communities is 501 

often thought to be governed by competition for limiting resources (Chesson 2000). 502 

However, the exact traits that make species or individuals the best competitors under 503 

resource limitation conditions are difficult to identify among all other traits. In this 504 

example, the phenotypic space underlying resource competition was explored by 505 

implementing different limitation scenarios for experimental phytoplankton 506 

communities. Images were taken with a plate reader that used a combination of visible 507 

light and fluorometry measurements (Hense et al. 2008). The images were analyzed 508 

using signal processing, which allowed the rapid segmentation of several 1000 images 509 

by combining information from multiple fluorescence emission excitation spectra to an 510 

image stack. As a result, over 100 traits related to morphology (shape, size, and 511 

texture) and internal physiology (pigment content, distribution of pigments within each 512 

cell) were obtained at the individual cell level. (Gallego et al., unpublished data) 513 

B. Thermal adaptation and thermal reaction norms - Variation in body temperature 514 

can be an important source of fitness variation (Kingsolver and Huey 2008, Svensson 515 
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et al. 2020). Quantifying body temperature and thermal reaction norms in response to 516 

natural and sexual selection allows us to test predictions from evolutionary theory 517 

about phenotypic plasticity and canalization (Lande 2009, Chevin et al. 2010). 518 

However, body temperature is an internal physiological trait that is difficult to quantify 519 

in a non-invasive way on many individuals simultaneously and under natural 520 

conditions. Thermal imaging is an efficient and non-invasive method to quantify such 521 

physiological phenotypes on a large scale and can be combined with thermal loggers 522 

to measure local thermal environmental conditions in the field (Svensson and Waller 523 

2013, Svensson et al. 2020). 524 

C. Stochastically patterned morphological traits - In contrast to homologous, 525 

landmark-based morphological traits, tissues also form emergent patterns that are 526 

unique to every individual. The arrangement of veins on the wings of damselflies is 527 

one such example. By measuring the spacing, angles, and connectivities within the 528 

adult wing tissue, researchers have proposed hypotheses about the mechanisms of 529 

wing development and physical constraints on wing evolution (Hoffmann et al. 2018, 530 

Salcedo et al. 2019). 531 

D. Morphometrics and shape of complex structures - Landmark-based 532 

morphometrics has become a popular tool used to characterize morphological 533 

variation in complex biological structures. Despite its popularity, landmark data is still 534 

collected mainly through manual annotation, a process which represents a significant 535 

bottleneck for phenomic studies. However, machine-learning-based CV can be used 536 

to accurately automate landmark data collection in morphometric studies not only in 537 

2D (McPeek et al. 2008, Porto and Voje 2020), but also in 3D (Porto et al. 2020). 538 

E. Volumes of morphologically complex traits. Many topics in evolutionary ecology   539 

concerns investment of resources into a particular trait. However, measuring energetic 540 

investment, either as mass or volume of the target traits, has been challenging 541 

because many traits are morphologically complex, making it difficult to estimate 542 

investment from a combination of linear measurements. Photogrammetry is a low-cost 543 
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and fast technique to create 3D surface images from a set of images. Using a simple 544 

protocol and a free proprietary software, Tsuboi et al. (2020) demonstrated that 545 

photogrammetry can accurately measure the volume of antler in deer family Cervidae. 546 

The protocol is still relatively low-throughput due primarily to the necessity of high 547 

number of images (> 50) per sample, but it allows extensive sampling (sensu Houle et 548 

al. 2010) of linear, area and volumetric measurements of antler structures. 549 

Outlook 550 

In this review we provided a broad overview of various CV techniques and gave some recent 551 

examples of their application in ecological and evolutionary research. We presented CV as a 552 

promising toolkit to overcome the image analysis bottleneck in phenomics. However, to be 553 

clear, we do not suggest that biologists discontinue the collection of univariate traits like body 554 

size or discrete colors. Such measures are undoubtedly useful if they contain explanatory 555 

value and predictive power. Instead, we propose that CV can help to i) collect them with higher 556 

throughput, ii) in a more reproducible fashion, and to iii) collect additional traits so we can 557 

interpret them in the context of trait combinations. We argue that CV is not bound to 558 

immediately replace existing methods, but it simply opens the opportunity to place empirical 559 

research of phenotypes on a broader base. We also note that CV based phenomics can be 560 

pursued in a deductive or inductive fashion. In the former case, scientists would simply 561 

conduct hypothesis driven research including a wider array of traits into causal models (Houle 562 

et al. 2011); in the latter, they would engage in discovery-based data-mining approaches that 563 

allow scientists to form hypotheses a posteriori based on the collected data (Kell and Oliver 564 

2004).   565 

Although CV based phenomics provides new opportunities for many areas of study, 566 

we identify several specific fields that will profit most immediately from CV. First, evolutionary 567 

quantitative genetics will benefit tremendously from increased sample sizes that CV-568 

phenomics entails, because the bottleneck of the field has been the difficulty in accurately 569 
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estimating key statistics such as genetic variance covariance matrices and selection gradients. 570 

The recent discovery of tight matches between mutational, genetic, and macroevolutionary 571 

variances in Drosophilid wing shape (Houle et al. 2017) is exemplary of a successful phenomic 572 

project. Second, large-scale empirical studies of the genotype-phenotype map will finally 573 

become possible, because of the availability of high-throughput phenotypic data and analytical 574 

framework to deal with big data (Pitchers et al. 2019, Zheng et al. 2019, Maeda et al. 2020). 575 

Third, studies of fossil time-series will gain opportunities to document and analyze the 576 

dynamics of long-term phenotypic evolution with unprecedented temporal resolution (Liow et 577 

al. 2017, Brombacher et al. 2017). The ever-growing technology of CV indicates that these 578 

are likely a small subset of unforeseen future applications of CV phenomics in our field. Just 579 

like the technological advancements in DNA-sequencing has revolutionized our view of 580 

genomes, development and molecular evolution in the past decades, we anticipate that the 581 

way we look at phenotypic data will be changing in the coming years.  582 

Just as CV is changing what it means to measure a trait, there is a complementary 583 

change in what can be considered scientific image data in the first place. Large, publicly 584 

available image datasets are fertile ground for ecology and evolutionary research. Such 585 

databases include both popular and non-scientific social media (e.g. https://www.flickr.com/ 586 

or https://www.instagram.com/), but also quality-controlled and vetted natural history and 587 

species identification resources with global scope and ambitions (e.g. 588 

https://www.inaturalist.org/). Successful examples of how such public image databases can 589 

be useful are in studies aiming to quantify the frequencies variation of discrete traits, such as 590 

color polymorphism frequencies in different geographic regions (Leighton et al. 2016). These 591 

manual efforts in mining available public image resources can potentially be replaced in the 592 

future using more automated machine learning or CV approaches. Similarly, the corpus of 593 

published scientific literature is full of image data that can be combined and re-analyzed in 594 

order to address larger-scale questions (Hoffmann et al. 2018, Church et al. 2019a, 2019b). 595 

Previous calls for phenomics argued that, to make phenomics a successful endeavor, 596 

it has to be extensive, aiming at measuring many different aspects of the phenotypes, as well 597 
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as intensive, aiming at characterizing each measurement accurately with large sample size 598 

and with high temporal resolution (Bilder et al. 2009, Houle et al. 2010, Furbank and Tester 599 

2011). We agree with this view, but we also emphasize that phenomics is nothing conceptually 600 

new in this respect. As we discussed, many researchers in our field have already adopted 601 

phenomic pipelines, studying high-dimensional phenotypic data acquired by high-throughput 602 

measuring technologies without using the term phenomics. If so, what is the conceptual value 603 

of phenomics? In our opinion, phenomics is more than just a rigorous version of conventional 604 

research of organismal phenotypes, but also a dedication towards phenotypic data. 605 

Phenomics shifts us from viewing phenotypes as given entities towards viewing them as part 606 

of the phenome at the whole organismal level.  607 
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Figures 879 

880 

Figure 1 - The current state of phenomics research. Left panel: a literature survey using the 881 

search key “phenomic* on in a Web of Science topic search (title, keywords, abstract) resulted 882 

in 1323 papers (on 23/10/2020). Here we show only papers published between 1990 and 883 

before 2020 (1125 papers) for better visual inference. Traditionally phenomics approaches are 884 

used in agricultural sciences and crop research to maximize yield, as well as in human 885 

medicine to study drug responses and disorder phenotypes. The black line denotes the studies 886 

that used computer vision or some sort of image analysis (acquired with a topic search using 887 

the strings "computer vision", "image analysis", "image based", "image processing"), indicating 888 

that only a small subset of the studies uses image analysis. Right panel: a word cloud that 889 

was constructed using the 500 most used keywords from the papers presented in the left 890 

panel.  891 

  892 
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 894 

 895 

 896 

Figure 2 - The structure of digital images. Two-dimensional raster images, as produced by 897 

most commercially available cameras, are composed of three color channels red, green, blue 898 

= RGB), each of which by itself is a grayscale image. The industrial standard for color 899 

representation on the pixel level is 24 bit (224  = 16 777 216 possible color variations per pixel), 900 

which is achieved through additive mixing of each of the 8 bit channels (28 + 28 + 28 ). This 901 

enormous range of color intensities among several million pixels is a potentially very high-902 

resolution representation of organismal traits, or the organism as a whole. Therefore, digital 903 

images are a useful medium for phenomics research, as they offer an inexpensive, memory 904 

efficient and standardizable way to capture, store and analyze complex phenotypes. The 905 

photograph shows a blue-tip jewel damselfly (Chlorocypha curta) in Cameroon (Africa) - image 906 

by Erik Svensson.  907 

 908 

 909 
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Figure 3 - A typical computer vision workflow using signal processing. 1) Raw image - The 913 

goal is to detect, count and measure freshwater isopods (Asellus aquaticus, image by Moritz 914 

Lürig) from the raw image that was taken under controlled laboratory conditions. 2) 915 

Preprocessing - The operating principle of most signal processing workflows is that the objects 916 

of interest are made to contrast strongly from all other pixels, meaning that images should 917 

have a high signal-to-noise ratio (SNR. In this specific case a high SNR is already present, 918 

because the isopods are much darker than the tray they are sitting on and much larger than 919 

the fecal pellets and other detritus around them. To further increase the SNR, gaussian blur 920 

blends pixels in a given neighborhood (=kernel size), which effectively removes the smaller 921 

dark objects. The reference card gets excluded manually and can be used to convert pixels to 922 

millimeters and to correct the color space. 3) Segmentation - Using a thresholding algorithm 923 

all connected pixels that are above a specific grayscale value and larger than a specified area 924 

are designated foreground (white) and all pixels become background (black). The output from 925 

this step is referred to as a “binary mask”. 4) Measurement - Now the white pixels from the 926 

binary mask can be used to locate the areas of interest in the raw image and to extract 927 

information from them. Discrimination between multiple instances of the same class is referred 928 

to as instance segmentation. 929 
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930 

Figure 4 - Different types of high dimensional phenotypic data that are collected using a fully 931 

or semi-automatic computer vision approach. A) Morphology and fluorescence traits of 932 

phytoplankton communities are represented through a combination of shape features (e.g. 933 

circularity, perimeter length, area) and texture features (e.g. blob intensity and distribution 934 

within the cell) from images showing fluorescence intensity (pictograms on the left; images by 935 

Irene Gallego). B) In ostriches (Struthio camelus), surface temperatures of bare body parts 936 

without feathers (necks and legs) are detected using signal processing (image by Erik 937 

Svensson). C) Signal processing approach that captures individual domains of a damselfly 938 

wing via thresholding (image by Masahito Tsuboi). D) Ensemble-based approach to shape 939 

prediction of individual zooids within a bryozoan colony (image by Arthur Porto) E) 3D image 940 

of the skull of extinct deer Eucladoceros dicranios from which we can measure linear, area, 941 

and volumetric measurements of antler features (image by Masahito Tsuboi).  942 
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 943 

Figure 5 - Schematic illustration of bias and imprecision. X-axis represents phenotypic values 944 

and Y-axis represents number of observations. The gaussian curve shows the distribution of 945 

repeated measurements of the same specimen. Dashed line is the true estimate, and the 946 

variance of measurements around the true estimate is the imprecision. The true value may 947 

deviate systematically from the true estimate (long-dashed line). The difference between true 948 

estimate and true value is the bias.  949 



40 
 

 950 



41 
 

Figure 6 - Computer vision (CV) methods overview - which is the right one for my data? A) CV 951 

is a field at the intersection of machine learning and signal processing which is concerned with 952 

the automatic and semiautomatic extraction of information from digital images. B) Decision 953 

tree for CV methods: begin by considering the size of a given image dataset, whether it is 954 

complete, e.g. after an experiment, or whether there will be continued future additions, e.g. as 955 

part of a long-term experiment or field survey. The next assessment should be about the 956 

signal-to-noise ratio (SNR) in your images: images taken in the laboratory typically have a high 957 

degree of standardization and thus a very high SNR, which makes them suitable for a signal 958 

processing approach. In contrast to signal processing, where segmentation results are 959 

immediately available, all machine learning image analysis pipelines include iterative training 960 

and validation phases, followed by a final testing phase. Such a workflow can be complex to 961 

initiate but pays off in the long run by providing segmentation results that become increasingly 962 

robust if more training data is supplied over time. Deep learning algorithms require large 963 

training datasets (several 1000s to 10000s) but are less sensitive to noise and idiosyncrasies 964 

of the foreground. Thus, for large and continuously growing data sets, or for recurring image 965 

analysis tasks, deep learning has become the standard approach for segmentation. 966 

 967 

 968 
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Tables 970 

Table 1 - Classes of phenotypic data. Depending on the research question, scientists define 971 

their phenotypes of interest using specific or abstract, low or high dimensional traits (see 972 

section Measurement theory). The human eye excels at rapidly recognizing externally visible 973 

phenotypes (e.g. benthic vs. limnetic morphotypes of fish), but has difficulties discerning what 974 

constitutes such phenotypes. Computer vision offers an objective way to collect any data type 975 

with high efficiency and reproducibility. For instance, by breaking down low dimensional traits 976 

(e.g. red vs. blue phenotype) into continuous low or high dimensional metrics (e.g. degree of 977 

red- or blueness), the decision of what constitutes a phenotype becomes more reproducible.  978 

Trait type Low dimensional High dimensional 

Specific / directly 
measurable  

Size, discrete color (“red phenotype” vs. “blue 
phenotype”) and morphotype scoring (e.g. 
benthic vs limnetic) 

Shape coordinates, 
texture maps, 
landmarks   

Abstract / derived Shape (e.g. circularity, area) and texture 
features (e.g. mean, SD, uniformity), moments, 
principal components, hypervolumes 

Matrices, activation 
maps 

 979 

 980 
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Table 2 - Select examples of recent open-source computer vision libraries with a biology-982 

context. Although typically first developed for a particular study system or organism (e.g. 983 

PlantCV or WorMachine), most CV applications apply techniques that are generally applicable 984 

to any type of phenotypic data contained in digital images.  985 

Name Year Reference Repository Purpose Application 
type 

Description Techniques 

AutoMorph 2018 (Hsiang et 
al. 2018) 

https://githu
b.com/HullL
ab/AutoMor
ph 

object 
detection 
and 
feature 
extraction 

Python 
package 

High throughput 
segmentation 

Signal 
processing 

ClickPoints 2017 (Gerum et al. 
2017) 

https://githu
b.com/fabry
lab/clickpoi
nts 

labelling, 
label 
evaluation 

Python 
package 

Interactive 
labelling tool 

signal 
processing 

DeepMerkat 2018 (Weinstein 
2015) 

https://githu
b.com/bw4s
z/DeepMee
rkat 

object 
detection, 
classificati
on 

Python Background 
subtraction and 
image 
classification for 
stationary 
cameras in 
ecological videos 

Signal 
processing, 
deep 
learning 

EB-Net 2020 (Le et al. 
2020) 

https://githu
b.com/linhle
vandlu/CNN
_Beetles_L
andmarks 

keypoint 
and 
feature 
detection 

Python Insect 
morphometrics 

deep 
learning 

ImageJ 2012 (Schindelin 
et al. 2012) 

https://fiji.sc
/; 
https://imag
ej.nih.gov/ij/
download.ht
ml 

multi-
purpose 

standalone Comprehensive, 
multi-purpose 
image processing 
library 

manual 
processing, 
signal 
processing, 
classic 
machine 
learning, 
feature 
extraction 

ML-morph 2020 (Porto and 
Lysne Voje 
2020) 

https://githu
b.com/agpo
rto/ml-
morph 

landmark 
detection; 
geometric 
morphom
etrics 

Python 
package 

High throughput 
morphometrics 

Classic 
machine 
learning, 
ensemble 
Methods 

MotionMeerkat 2015 (Weinstein 
2015) 

https://githu
b.com/bw4s
z/DeepMee
rkat 

motion 
tracking 

Python 
package/ 
standalone 

Deep learning 
driven motion 
detection 

Signal 
processing, 
deep 
learning 

Phenopype 2020 (Lürig 2018) https://githu
b.com/mlue
rig/phenopy
pe 

object 
detection, 
feature 
extraction, 
motion 
tracking 

Python 
package 

Computer vision 
library with high 
throughput 
workflows 

signal 
processing 
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PlantCV 2017 (Gehan et al. 
2017) 

https://githu
b.com/danf
orthcenter/p
lantcv 

object 
detection 
and 
feature 
extraction; 
spectral 
analysis 

Python 
package 

Plant phenotyping 
library 

signal 
processing, 
classic 
machine 
learning 

Scan-o-matic 2016 (Zackrisson 
et al. 2016) 

https://githu
b.com/Scan
-o-
Matic/scano
matic 

object 
detection 
and 
feature 
extraction 

Python 
package 

Microbial 
phenotyping 
platform 

Signal 
processing 

Trackdem 2017 (Bruijning et 
al. 2018) 

https://githu
b.com/marj
oleinbruijnin
g/trackdem 

motion 
tracking 
and blob 
counting 

R package Behavioral 
analysis pipeline 

Signal 
processing 

WingMachine 2003 (Houle et al. 
2003) 

https://www
.bio.fsu.edu
/~dhoule/So
ftware/ 

keypoint 
and 
feature 
detection 

standalone Drosophila wing 
morphometrics 

Signal 
processing, 
feature 
extraction 

WorMachine 2018 (Hakim et al. 
2018) 

https://githu
b.com/ada
mhak/WorM
achineClien
t 

object 
detection 
and 
feature 
extraction 

Matlab Integrated image 
processing and 
feature extraction 

Signal 
processing, 
classic 
machine 
learning; 
deep 
learning 
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Boxes 990 

Box 1 - Glossary of terms relevant for computer vision and machine learning in ecology and 991 

evolution used in this review. Terms in this list are printed in italic when first mentioned in the 992 

main text. 993 

 994 

bit depth number of values a pixel can take (e.g. 8 bit = 2^8 = 256 values) 

computer vision technical domain at the intersection of signal processing, machine learning, 
robotics and other scientific areas that is concerned with the automated extraction 
of information from digital images and videos. 

convolution mathematical operation by which information contained in images are abstracted. 
Each convolutional layer produces a feature map, which is passed on to the next 
layer. 

deep learning machine learning methods based on neural networks. supervised learning = 
algorithm learns input features from input-output pairs (e.g. labelled images). 
unsupervised = algorithm looks for undetected patterns (e.g. images without 
labelling) 

feature a measurable property or pattern. can be specific (e.g. edges, corners, points) or 
abstract (e.g. convolution via kernels), and combined to vectors and matrices 
(feature maps) 

feature 
detection 

methods for making pixel-level or pixel-neighborhood decisions on whether parts of 
an image are a feature or not 

foreground all pixels of interest in a given image, whereas the background constitutes all other 
pixels. the central step in computer vision is the segmentation of all pixels into 
foreground and background 

hidden layer a connected processing step in neural networks during which information is 
received, processed (e.g. convolved), and passed on to the next layer 

kernel a small mask or matrix to perform operations on images, for example, blurring, 
sharpening or edge detection. the kernel operation is performed pixel wise, sliding 
across the entire image. 

labelling typically manual markup of areas of interest in an image by drawing bounding 
boxes or polygons around the contour. can be multiple objects and multiple classes 
of objects per image. can also refer to assigning whole images to a class (e.g. 
relevant for species identification) 

machine 
learning 

subset of artificial intelligence: the study and implementation of computer 
algorithms that improve automatically through experience. (Mitchell 1997) 

measurement 
theory 

concerns the relationship between measurements and nature so that inferences 
from measurements reflect the underlying reality intended to be represent (Houle et 
al. 2011). 

neural network deep learning algorithms that use multi layered ("deep") abstractions of information 
to extract higher level features from input via convolution 
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object detection methods for determining whether a pixel region constitutes an object that belongs 
to the foreground or not, based on its features 

phenome the phenotype as a whole (sensu Soulé 1967) 

phenomics the acquisition of high-dimensional phenotypic data on an organism-wide scale 

phenotype a single trait or a specific set of traits that are part of the phenome 

pixel short for picture element; the smallest accessible unit of a digital raster image. 
Pixels have finite values (=intensities), e.g. 256 in an 8-bit grayscale image. 

segmentation the classification of all pixels in an image into foreground and background, either 
manually by labelling the area of interest, or automatically, by means of signal 
processing or machine learning algorithms. semantic segmentation = all pixels of a 
class, instance segmentation = all instances of a class 

signal 
processing 

technically correct: digital image processing (not to be confused with image 
analysis or image editing). subfield of engineering that is concerned with the 
filtering or modification of digital images by means of algorithms and filter matrices 
(kernels), 

signal-to-noise 
ratio (SNR) 

describes the level of the pixels containing the desired signal (i.e. the phenotypic 
information) to all other pixels. Lab images typically have a high SNR, field images 
a low SNR. 

threshold 
algorithm 

pixel-intensity based segmentation of images, e.g. based on individual pixel 
intensity (binary thresholding) or their intensity with respect to their neighborhood 
(adaptive thresholding). creates a binary mask which contains only black or white 
pixels 

training data representative image dataset to train a machine learning algorithm. can be created 
manually by labelling images, or semi-automatic by using signal processing for 
segmentation. can contain single or multiple classes 

watershed 
algorithm 

the segmentation of images by treating the pixels as a topographic map of basins, 
where bright pixels have high elevation and dark pixels have low elevation. 

 995 

 996 

 997 
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Box 2 - An overview of the main deep learning architectures and approaches. 1003 
 1004 
Families of network topologies 1005 
 1006 

A. Deep convolutional network - A large and common family of neural networks 1007 
composed an input layer, an output layer and multiple hidden layers. These networks 1008 
feature convolution kernels that process input data and pooling layers that simplify the 1009 
information processed through the convolutional kernels. For certain tasks, the input 1010 
can be a window of the image, rather than the entire image. 1011 

B. Deconvolutional Network - A smaller family of neural networks that perform the 1012 
reverse process when compared to convolutional networks. It starts with the processed 1013 
data (i.e.., the output of the convolutional network) and it aims to separate what has 1014 
been convoluted. Essentially, it constructs upwards from processed data (e.g., 1015 
reconstructs an image from a label). 1016 

C. Generative Adversarial Network - A large family of networks composed of two 1017 
separate networks, a generator and a discriminator. The generator is trained to 1018 
generate realistic data, while the discriminator is trained to differentiate between 1019 
generated data from actual samples. Essentially, in this approach, the objective is for 1020 
the generator to generate such realistic data that the discriminator cannot tell it apart 1021 
from samples. 1022 

D. Autoencoders - A family of networks is trained in an unsupervised manner. The 1023 
autoencoder aims to learn how to robustly represent the original dataset, oftentimes in 1024 
smaller dimensions, even in the presence of noise. Autoencoders are composed of 1025 
multiple layers, and it can be divided into two main parts: the encoder and the decoder. 1026 
The encoder maps the input into the representation and the decoder uses the 1027 
representation to reconstruct the original input. 1028 

E. Deep Belief Network - A family of generative networks that are composed of multiple 1029 
layers of hidden units, in which there can be connections between layers but not within 1030 
units within layers. Deep belief networks can be conceived as being composed of 1031 
multiple simpler networks, where each subnetwork’s hidden layer acts as a visible layer 1032 
to another subnetwork. 1033 

 1034 
Learning Classes 1035 
 1036 

A. Supervised Learning - Training data is provided when fitting the model. The training 1037 
dataset is composed of inputs and expected outputs. Models are tested by making 1038 
predictions based on inputs and comparing them with expected outputs. 1039 

B. Unsupervised Learning - No training data is provided to the model. Unsupervised 1040 
learning relies exclusively on inputs. Models trained using unsupervised learning are 1041 
used to describe or extract relationships in image data, such as clustering or 1042 
dimensionality reduction. 1043 

C. Reinforcement Learning - The learning process occurs in a supervised manner, but 1044 
not through the use of static training datasets. Rather, in reinforcement learning, the 1045 
model is directed towards a goal, with a limited set of actions it may perform, and model 1046 
improvement is obtained through feedback. The learning itself occurs exclusively 1047 
through feedback obtained based on past action. This feedback can be quite noisy and 1048 
delayed. 1049 

D. Hybrid Learning Problems 1050 
Semi-Supervised Learning - Semi supervised learning relies on training datasets 1051 
where only a small percentage of the training  dataset is labeled, with the 1052 
remaining images having no label. It is a hybrid in between supervised  and 1053 
unsupervised learning, since the model has to make effective use of unlabeled data 1054 
while relying only partially on labeled ones. 1055 
Self-Supervised Learning - Self supervised learning uses a combination of 1056 
unsupervised and supervised learning. In this approach, supervised learning is used 1057 
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to solve a pretext task for which training data is available (or can be artificially 1058 
provided), and whose representation can be used to solve an unsupervised learning 1059 
problem. Generative adversarial networks rely on this technique to learn how to 1060 
artificially generate image data. 1061 

 1062 
Other learning Techniques 1063 
 1064 

A. Active Learning - During active learning, the model can query the user during the 1065 
learning process to require labels for new data points. It requires human interaction, 1066 
and it aims to being more efficient about what training data is used by the model 1067 

B. Online Learning - Online learning techniques are often used in situations where 1068 
observations are streamed through time and in which the probability distribution of the 1069 
data might drift over time. In this technique, the model is updated as more data 1070 
becomes available, allowing the model itself to change through time. 1071 

C. Transfer Learning - Transfer learning is a useful technique when training a model for 1072 
a task that is related to another task for which a robust model is already available. 1073 
Essentially, it treats the already robust model as a starting point from which to train a 1074 
new model. It greatly diminishes the training data needs of supervised models and it 1075 
is, therefore, used when the available training data is limited. 1076 

D. Ensemble Learning - As mentioned in the main text, ensemble learning refers to a 1077 
learning technique in which multiple models are trained either in parallel or sequentially 1078 
and the final prediction is the result of the combination of the predictions generated by 1079 
each component. 1080 

 1081 

 1082 
 1083 


