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Abstract 

For centuries, ecologists and evolutionary biologists have used images such as drawings,            

paintings and photographs to record and quantify the shapes and patterns of life. With the               

advent of digital imaging, biologists continue to collect image data at an ever-increasing rate.              

This immense body of data provides insight into a wide range of biological phenomena,              

including phenotypic trait diversity, population dynamics, mechanisms of divergence and          

adaptation, and evolutionary change. However, the rate of image acquisition frequently           

outpaces our capacity to manually extract meaningful information from images. Moreover,           

manual image analysis is low-throughput, difficult to reproduce, and typically measures only            

a few traits at a time. This has proven to be an impediment to the growing field of phenomics                   

- the study of many phenotypic dimensions together. Computer vision (CV), the automated             

extraction and processing of information from digital images, provides the opportunity to            

alleviate this longstanding analytical bottleneck. In this review, we illustrate the capabilities of             

CV as an efficient and comprehensive method to collect phenomic data in ecological and              

evolutionary research. First, we briefly review phenomics, arguing that ecologists and           

evolutionary biologists can effectively capture phenomic-level data by taking pictures and           

analyzing them using CV. Next we describe the primary types of image-based data, review              

CV approaches for extracting them (including techniques that entail machine learning and            

others that do not), and identify the most common hurdles and pitfalls. Finally, we highlight               



 

recent successful implementations and promising future applications of CV in the study of             

phenotypes. In anticipation that CV will become a basic component of the biologist’s toolkit,              

our review is intended as an entry point for ecologists and evolutionary biologists that are               

interested in extracting phenotypic information from digital images.  

From phenotypes to phenomics 

Faced with the overwhelming complexity of the living world, most life scientists confine their              

efforts to a small set of observable traits. Although a drastic simplification of organismal              

complexity, the focus on single phenotypic attributes often provides a tractable, operational            

approach to understand biological phenomena, e.g. phenotypic trait diversity, population          

dynamics, mechanisms of divergence and adaptation and evolutionary change. However,          

there are also obvious limitations in how much we can learn from studying small numbers of                

phenotypes in isolation. Evolutionary and conservation biologist Michael Soulé was one of            

the first to demonstrate the value of collecting and analyzing many phenotypes at once in his                

early study of the side-blotched lizard (Uta stansburiana; (Soulé, 1967)); reviewed in Houle             

et al. (2010)). While doing so, he defined the term “phenome” as “the phenotype as a whole”                 

(Soulé, 1967). Phenomics, by extension, is the comprehensive study of phenomes. In            

practice, this entails collecting and analyzing multidimensional phenotypes with a wide range            

of quantitative and high-throughput methods (Bilder et al., 2009). Given that biologists are             

now attempting to understand increasingly complex and high dimensional relationships          

between traits (Walsh, 2007), it is surprising that phenomics still remains underutilized (Fig.             

1), both as methodological approach and as an overarching conceptual and analytical            

framework (Houle et al., 2010).  

Phenomic datasets are essential if we are to understand some of the most             

compelling but challenging questions in the study of ecology and evolution. For instance,             

phenotypic diversity can fundamentally affect population dynamics (Laughlin et al., 2020),           
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community assembly (Chesson, 2000) and the functioning and stability of ecosystems           

(Hooper et al., 2005). Such functional diversity (Petchey and Gaston, 2006) is ecologically             

extremely relevant, but can be hard to quantify exactly, because organisms interact with their              

environment through many traits of which a large portion would need to be measured              

(Villéger et al., 2008; Blonder, 2018). Moreover, natural selection typically does not operate             

on single traits, but on multiple traits simultaneously (Lande and Arnold, 1983; Phillips and              

Arnold, 1999), which can lead to correlations (Schluter, 1996; Sinervo and Svensson, 2002;             

Svensson et al., 2021) and pleiotropic relationships between genes (Visscher and Yang,            

2016; Saltz et al., 2017). Phenotypic plasticity, which is increasingly recognized in mediating             

evolutionary trajectories (Pfennig et al., 2010), is also an inherently multivariate phenomenon            

involving many traits and interactions between traits, so it should be quantified as such              

(Morel-Journel et al., 2020). Put simply: if we are to draw a complete picture of biological                

processes and aim to understand their causal relationships at various levels of biological             

organization, we need to measure more traits, from more individuals and a wider range of               

different species. 

High dimensional phenotypic data are also needed for uncovering the causal links            

between genotypes, environmental factors, and phenotypes, i.e. to understand the          

genotype-phenotype map (Houle et al., 2010; Orgogozo et al., 2015). The advent of             

genomics - high throughput molecular methods to analyze the structure, function or evolution             

of an organism's genome in parts or as a whole (Church and Gilbert, 1984; Feder and                

Mitchell-Olds, 2003) - has already improved our understanding of many biological           

phenomena. This includes the emergence and maintenance of biological diversity          

(Seehausen et al., 2014), the inheritance and evolution of complex traits (Pitchers et al.,              

2019), and the evolutionary origin of key metabolic traits (Ishikawa et al., 2019). Thus,              

accessible molecular tools have lowered the hurdles for discovery-based genomic research           

and shifted the focus away from the study of observable organismal traits and phenotypes              
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towards their molecular basis. However, a similar “moonshot-programme” for the phenotype,           

i.e. an ensemble of phenomics methods that matches genomics in their comprehensiveness,            

is still lacking (Freimer and Sabatti, 2003). The growing mismatch in how efficiently             

molecular and phenotypic data are collected may hamper further scientific progress in            

ecological and evolutionary research (Houle et al., 2010; Orgogozo et al., 2015;            

Lamichhaney et al., 2019). 

Following previous calls for phenomic research programmes (Bilder et al., 2009;           

Houle et al., 2010; Furbank and Tester, 2011), some recent studies have collected             

phenotypic data with high dimensionality and on a massive scale, for example, in plants              

(Ubbens and Stavness, 2017), animals (Cheng et al., 2011; Kühl and Burghardt, 2013;             

Pitchers et al., 2019) and microbes (Zackrisson et al., 2016; French et al., 2018). All of these                 

studies use some form of image analysis to quantify external (i.e. morphology or texture) and               

internal phenotypes (e.g. cells, bones or tissue), or behavioral phenotypes and           

biomechanical properties (e.g. body position, pose or movement). Such data represents           

phenomics in a narrow sense: the collection of (external, internal, behavioral) phenotypic            

data on an organism-wide scale (Houle et al., 2010). In addition, many biologists also use               

image analysis to detect presence and absence of organisms (e.g. within a population,             

community or environment; e.g. by means of camera traps or satellite images), or to identify               

species (by experts or algorithms). While species monitoring and taxonomic identification           

constitutes an important and rapidly growing discipline on its own (Norouzzadeh et al., 2018;              

Wäldchen and Mäder, 2018; Høye et al., 2020), this review focuses on the extraction of               

phenotypic data from digital images as a key methodological approach for the study of              

phenomes (Houle et al., 2010). 

Previous work has supplied us with an immense body of image data that has              

provided insight into a wide range of biological phenomena, yet when biologists manually             

extract phenotypes from images for phenomic-scale research, they confront several main           
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bottlenecks (Houle et al., 2003; Gerum et al., 2017; Ubbens and Stavness, 2017). A major               

constraint when working with large amounts of images (~1000 or more) is processing time              

and cost. Manual extraction of phenotypic data from images is slow and it requires trained               

domain experts whose work is extremely expensive. Moreover, the collection of such metrics             

in a manual fashion entails subjective decisions by the researcher, which may make it prone               

to error, and certainly makes reproducibility difficult. Last, manually measured traits tend to             

be low-dimensional measurements of higher dimensional traits. For example, external colour           

traits, such as human eye colour phenotypes, are often scored as discrete categories (e.g.              

brown vs blue phenotypes), whereas pixel level information (number of brown vs. blue             

pixels) can provide a continuous phenotypic metric (Liu et al., 2010). Such quantitative,             

high-dimensional data can provide insight into previously hidden axes of variation, and may             

help provide a mechanistic understanding of the interplay of phenotypes, their genetic            

underpinnings, and the environment. 

In this review we extol computer vision (CV - for a definition of terms in italics see                 

Box 1), the automatic extraction of meaningful information from images, as a promising             

toolbox to collect phenotypic information on a massive scale. The field has blossomed in              

recent years, producing a diverse array of computational tools to increase analytic efficiency,             

data dimensionality, and reproducibility. This technological advancement should be         

harnessed to produce more phenomic datasets, which will make our conclusions and            

inferences about biological phenomena more robust. We argue that CV is poised to become              

a basic component of the data analysis toolkit in ecology and evolution, enabling             

researchers to collect and explore phenomic-scale data with fewer systematic biases (e.g.            

from manual collection). Our review is intended to provide an entry point for ecologists and               

evolutionary biologists to the automatic and semi-automatic extraction of phenotypic data           

from digital images. We start with a general introduction to CV and its history, followed by                

some practical considerations for the choice of techniques based on the given data, and              
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finish with a list of some examples and promising open-source CV tools that are suitable for                

the study of phenotypes. 

The structure of digital images  

A two dimensional image is an intuitive way to record, store, and analyze organismal              

phenotypes. In the pre-photography era, ecologists and evolutionary biologists used          

drawings to capture the shapes and patterns of life, later to be replaced by analog               

photography, which allowed for qualitative assessment and simple, often only qualitative           

analysis of phenotypic variation. With the advent of digital photography, biologists could            

collect phenotypic data at unprecedented rates using camera stands, camera traps,           

microscopes, scanners, video cameras, or any other instrument with semiconductor image           

sensors (Goesele, 2004; Williams, 2017). Image sensors produce two-dimensional raster          

images (also known as bitmap images), which store incoming visible light or other             

electromagnetic signals into discrete, locatable picture elements - in short: pixels (Fig.            

2)(Fossum and Hondongwa, 2014). Each pixel contains quantitative phenotypic information          

that is organized as an array of rows and columns, whose dimensions are also referred to as                 

“pixel resolution” or just “resolution”. An image with 1000 rows and 1500 columns has a               

resolution of 1000 x 1500 (= 1 500 000 pixels, or 1.5 megapixels). The same applies for                 

digital videos, which are simply a series of digital images displayed in succession, where the               

frame rate (measured as frames per second = fps) describes the speed of that succession.  

On the pixel level, images or video frames can store variable amounts of information,              

depending on the bit depth, which refers to the number of distinct values that a pixel can                 

represent (Fig. 2). In binary images, pixels contain information as a single bit, which can take                

exactly two values - typically black or white (21 values = 2 intensity values). Grayscale               

images from typical consumer cameras have a bit depth of 8, thus each pixel can take a                 

value between 0-255 (28 values = 256 intensity values), which typically represents a level of               
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light intensity, also referred to as pixel intensity. Colour images are typically composed of at               

least three sets of pixel arrays, also referred to as channels, each of which contain values for                 

either red, green or blue (RGB; Fig. 2). Each channel, when extracted from an RGB image,                

is a grayscale representation of the intensities for a single colour channel. Through the              

combination of pixel values at each location into triplets, colours are numerically            

represented. Today the industrial standard for colour images is 24-bit depth, in which each              

colour channel has a bit depth of 8 and thereby can represent 256 colours (Fig. 1). Thus,                 

24-bit RGB images can represent over 16 million colour variations in each pixel (224 = 256 x                  

256 x 256 = 16 777 216 intensity values), which already greatly surpasses the estimated                

2.28 millions of colour variations that humans can perceive (Pointer and Attridge, 1998).  

Today, high resolution image sensors are an affordable way to store externally visible             

phenotypic information, like colour and shape. However, advanced image sensors can also            

combine information from different spectra other than the visible light, like infrared radiation,             

which can be used to quantify individual body temperatures. With thermal image sensors,             

biologists can estimate body surface temperatures, which are correlated with internal (core)            

body temperatures (Tattersall and Cadena, 2010), particularly in small animals like insects            

(Tsubaki et al., 2010; Svensson et al., 2020). Thermal imaging, or thermography, offers new              

opportunities for ecophysiological evolutionary research of how animals cope with heat or            

cold stress in their natural environments (Fig. 5B) (Tattersall et al., 2009; Tattersall and              

Cadena, 2010; Svensson and Waller, 2013). Fluorescence spectroscopy is another way to            

quantify phenotypes in high throughput and with high detail. For example, plate readers             

typically used in microbial and plankton research, can combine light in the visible spectrum              

with images containing information of cell fluorescence or absorbance to an “image stack”             

(Roeder et al., 2012). Image stacks and the inclusion of multiple spectral channels provide a               

promising avenue of research towards capturing a more complete representation of the            

phenotype (Fig 4A) (Hense et al., 2008; Di et al., 2014). 
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A brief introduction to computer vision 

CV is an interdisciplinary field at the intersection of signal processing and machine learning              

(Fig. 4) (Mitchell, 1997), which is concerned with the automatic and semiautomatic extraction             

of information from digital images (Shapiro and Stockman, 2001). CV-based extraction of            

phenotypic data from images can include a multitude of different processing steps that do              

not follow a general convention, but can be broadly categorized into preprocessing,            

segmentation, and measurement (Fig. 3). These steps do not depict a linear workflow, but              

are often performed iteratively (e.g. preprocessing often needs to be adjusted according to             

segmentation outcomes) or in an integrated fashion (e.g. relevant data can already be             

extracted during preprocessing or segmentation). 

Preprocessing: Preparing an Image for Further Processing 

Independent of how much care has been taken during image acquisition, preprocessing is             

an important step to prepare images for the CV routines to follow. There is a wealth of image                  

processing techniques that can be applied at this stage, such as transformations to reduce              

or increase noise (e.g. gaussian blur) or enhance contrast (e.g. histogram adjustment).            

Images can also be masked or labeled as a way to filter the image so that subsequent steps                  

are applied to the intended portions of each image. Defining the appropriate coordinate             

space (i.e. pixel-to-mm ratios) is also part of preprocessing. Finally, certain machine learning             

techniques such as deep learning require an enormous amount of data, which may require              

data augmentation: the addition of slightly modified copies of existing data or the addition of               

newly created synthetic data (Shorten and Khoshgoftaar, 2019). Overall, preprocessing          

tasks are highly specific to the respective study system, image dataset or computer vision              

technique, and may initially require some fine-tuning by the scientist to ensure data quality,              

which, however, can typically be automated afterwards.  
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Segmentation: separation of “foreground” from “background” 

The central step in any phenotyping or phenomics related CV pipelines is the segmentation              

of images into pixels that contain the desired trait or feature (foreground) and all other pixels                

(background). In its most basic form, segmentation of grayscale images can be done by              

simple signal processing algorithms, such as a threshold (Zhang and Wu, 2011) or             

watershed (Beucher, 1979). Similarly, feature detection algorithms examine pixels and their           

adjacent region for specific characteristics or key points, e.g. whether groups of pixel form              

edges, corners, ridges or blobs (Rosten and Drummond, 2006). Videos or multiple images of              

the same scene provide an additional opportunity for segmentation: foreground detection           

can detect changes in image sequences to determine the pixels of interest (e.g. a specimen               

placed in an arena, or animals moving against a static background), while subsequent             

background subtraction isolates the foreground for further processing (Piccardi, 2004).          

Finally, object detection describes the high level task of finding objects (organisms, organs,             

structures, etc.) in an image, which is typically addressed through classical machine learning             

or deep learning (see section “A History of Computer Vision Methods”) (LeCun et al., 2015;               

Heaton, 2020; O’Mahony et al., 2020). In classical machine learning, features have to be first               

engineered or extracted from a training dataset using feature detectors, then used to train a               

classifier, and finally applied to the actual dataset (Mitchell, 1997). Deep learning algorithms             

are a family of machine learning methods based on artificial neural networks that “learn”              

what constitutes the object of interest during the training phase (LeCun et al., 2015; Heaton,               

2020). With sufficient training using labeled images (and in some cases unlabelled images -              

see Box 2), deep learning-powered object detection algorithms can be highly accurate and             

often greatly outperform pre-existing object recognition methods (Krizhevsky et al., 2012;           

Alom et al., 2018) - in some cases even human experts, for example, when identifying               

species (Buetti-Dinh et al., 2019; Valan et al., 2019; Schneider et al., 2020b). Each of these                

approaches has advantages and limitations, which mostly depend on the noise level within             
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the images, the size of the dataset, and the availability of computational resources (see              

section “Practical considerations for CV” and Fig. 5). 

Measurement: extraction of phenotypic data 

CV can retrieve a multitude of phenotypic traits from digital images in a systematic and               

repeatable fashion (see Table 1 and Table 2). In the simplest case, CV may measure traits                

that are established in a given study system, such as body size (e.g. length or diameter) or                 

colour (e.g. brown phenotype vs blue phenotype). In such cases, switching from a manual              

approach to a semi- or fully automatic CV approach is straightforward, because the target              

traits are well embedded in existing statistical and conceptual frameworks. The main benefits             

from CV are that costly manual labor is reduced and that the obtained data becomes more                

reproducible, because the applied CV analysis pipeline can be stored and re-executed.            

However, just as manual measurements require skilled personnel to collect high quality data,             

great care needs to be taken when taking images so that their analysis can provide               

meaningful results (also see section “Image Quality: Collect Images That Are Maximally 

Useful”). It is also possible to increase the number of dimensions without much extra effort               

and without discarding the traditionally measured traits (Table 1). For example, in addition to              

body size, one could extract body shape traits, i.e. the outline of the body itself (i.e. contour                 

coordinates of the foreground), and texture (i.e. all pixel intensities within the foreground).             

Such high dimensional traits can be directly analyzed using multivariate statistics, or            

transformed into continuous low dimensional traits, such as continuous shape features           

(circularity or area), texture features (colour intensity or variation, pixel distribution), or            

moments of the raw data (Table 1).  

A history of computer vision methods 

The field of CV is now close to celebrating its 6th decade. It first emerged in the late 1950s                   

and early 1960s, in the context of artificial intelligence research (Rosenblatt, 1958). At the              
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time, it was widely considered a stepping-stone in our search for understanding human             

intelligence (Minsky, 1961). Given its long history, a wide-variety of CV techniques have             

emerged since its inception, but they all contain variations of the same basic mechanism. CV               

is, from the methodological standpoint, the process of extracting meaningful features from            

image data and then the use of such features to perform tasks, which, as described above,                

may include classification, segmentation, recognition, detection, among others. In this          

section, we will not aim at presenting an all-encompassing review of all CV methods, but               

rather to identify the major trends in the field and highlight the techniques that have proved                

useful in the context of biological research. It is worth noting that even classical CV               

approaches are still routinely used in the modern literature, either in isolation or, most              

commonly, in combination with others. In a large part, methodological choices in CV are              

highly domain-specific (see section Practical considerations for computer vision, Fig. 5, and            

Fig. 4).  

First wave - Hand-crafted features 

The first wave of CV algorithms is also the closest one to the essence of CV, namely, the                  

process of extracting features from images. Starting with the work of Larry Roberts, which              

aimed at deriving 3D information from 2D images (Roberts, 1963), researchers in the 1970s              

and 1980s developed different ways to perform feature extraction from raw pixel data. Such              

features tended to be low-level features, such as lines, edges, texture or lighting, but              

provided us with the initial basic geometric understanding of the data contained in images. A               

notable example of such algorithms is the watershed algorithm. First developed in 1979             

(Beucher, 1979), the watershed algorithm became popular in biological applications in the            

1990s, being initially used to quantify elements and extract morphological measurements           

from microscopic images (e.g., (Bertin et al., 1992; Rodenacker et al., 2000)). This algorithm              

treats images as a topographic map, in which pixel intensity represents its height, and              

attempts to segment the image into multiple separate ‘drainage basins’. Certain           
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implementations of the watershed algorithm are still routinely used in signal processing (Fig.             

4), and can be effectively used to process biological images such as those obtained through               

animal or plant cell microscopy (McQuin et al., 2018). Other initial low-level hand-crafted             

approaches that achieved popularity include the Canny and Sobel filters (edge detectors;            

(Canny, 1986; Kanopoulos et al., 1988)) and Hough transforms (ridge detection; (Duda and             

Hart, 1972)). 

Another approach that gained popularity in the CV literature in the early 1990s was              

principal component analysis (PCA). In a PCA, independent, aggregate statistical features           

are extracted from multidimensional datasets. These can be used, for example, in            

classification. One of the most notable uses of PCA in the context of CV was the eigenfaces                 

approach (Turk and Pentland, 1991). Essentially, Turk and Pentland (1991) noted that one             

could decompose a database of face images into eigenvectors (or characteristic images)            

through PCA. These eigenvectors could then be linearly combined to reconstruct any image             

in the original dataset. A new face could be decomposed into statistical features and further               

compared to other known images in a multidimensional space. Similar pioneering           

approaches emerged in the context of remote sensing research, in which spectral image             

data was decomposed into its eigenvectors ((Bateson and Curtiss, 1996; Wessman et al.,             

1997)). PCA has notably found many other uses in biology (e.g, (Ringnér, 2008).  

In the late 1990s and early 2000s, Scale Invariant Feature Transform (SIFT) (Lowe,             

1999, 2004) and Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) were             

developed. Both SIFT and HOG represent intermediate-level local features that can be used             

to identify keypoints that are shared across images. In both approaches, the first step is the                

extraction of these intermediate-level features from image data, followed by a feature            

matching step that tries to identify those features in multiple images. Finding keypoints             

across images is an essential step in many CV applications in biology, such as object               

detection, landmarking (Houle et al., 2003), and image registration (Mäkelä et al., 2002).             
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These intermediate-level features have several advantages over the lower-level features          

mentioned above, most notably the ability to be detected in a wide-variety of scales, noise               

and illumination. Another key aspect of SIFT and HOG features is that they are generally               

invariant to certain geometric transformations, such as uniform scaling and simple affine            

distortions.  

Second wave - Initial machine-learning approaches 

While the use of hand-crafted features spurred much of the initial work in CV, soon it                

became apparent that without image standardization, those low- and intermediate-level          

features will often fall short of producing sufficiently robust CV algorithms. For example,             

images belonging to the same class can often look very different and the identification of a                

common set of shared low-level features can prove to be quite challenging. Consider, for              

instance, the task of finding and classifying animals in images: two dog breeds can look               

quite different, despite belonging to the dog class (e.g. Chihuahua vs. Bernese mountain             

dog). As such, while the initial feature-engineering approaches were essential for the            

development of the field, it was only with the advent of machine-learning that CV acquired               

more generalizable applications. 

Machine learning algorithms for CV can be divided in two main categories (but see              

Box 2): supervised and unsupervised (Geoffrey Hinton, Terrence J. Sejnowski, 1999).           

Unsupervised algorithms attempt to identify previously unidentified patterns on unlabeled          

data. In other words, no supervision is applied to the algorithm during learning. While it can                

be argued that PCA was one of the first successful unsupervised learning algorithms applied              

directly to CV, here we group PCA with “first wave” tools due to its use as a feature                  

extractor. Other unsupervised learning algorithms commonly used in CV include clustering           

techniques, such as k-means (Lloyd, 1982) and gaussian mixture models (GMM) (Reynolds            

and Rose, 1995). Clustering algorithms represented some of the first machine learning            

approaches for CV. Their aim is to find an optimal set of objects (or components) that are                 
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more similar to each other than to those in other sets. This type of approach allowed                

researchers to find hidden patterns embedded in multidimensional data, proving useful for            

classification and segmentation tasks. For example, GMM has been extensively used to            

classify habitat using satellite image data (Zhou and Wang, 2006), to segment MR brain              

images (Greenspan et al., 2006), and classification of animals from video (Edgington et al.,              

2006), to name a few.  

However, it is in the supervised domain that machine learning for CV has been most               

successful (Heileman and Myler, 1989). In supervised learning approaches, the user           

supplies labeled training data in the form of input-output pairs (Box 2). The ML algorithm               

iteratively “learns” a function that maps input into output for the labeled training data. Among               

the initial supervised approaches for CV, Support Vector Machines (SVM) were by far the              

most common approach (Cortes and Vapnik, 1995). Given a certain image dataset and their              

corresponding labels (e.g., classes in a classification task), SVMs find the feature space that              

maximizes the separation between the classes of interest (referred to as hyperplane). An             

essential aspect of SVMs is that such learned decision boundaries separating the classes             

can be nonlinear in the original feature space, allowing the model to separate classes that               

would not be separable by a purely linear technique (Cortes and Vapnik, 1995). Support              

vector machines have been widely used in ecological research, e.g. for image classification             

(Sanchez-Hernandez et al., 2007) and image recognition (Hu and Davis, 2005), among            

others. 

Third wave - Ensemble methods 

While SVMs were extremely successful in CV and spurred much of the supervised work that               

happened afterwards, it became clear by the early 2000s that single estimators often             

underperformed approaches combining the predictions of several independent estimators,         

an approach known as ensemble methods (Krogh and Others, 1996; Dietterich, 2000).            

Ensemble methods represent a slightly different philosophical approach to machine learning,           
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in which multiple models are trained to solve the same task and their individual results are                

combined to obtain an even better model performance. Several ensemble methods have            

been developed in the literature, but they are generally divided in two main families: bagging               

and boosting. 

Bagging approaches combine several models that were trained in parallel through an            

averaging process (Bauer and Kohavi, 1999). Each underlying model is trained           

independently of the others based on a bootstrap resample of the original dataset. As a               

consequence, each model is trained with slightly different and (almost) independent data,            

greatly reducing the variance in the combined model predictions. A classical example of             

bagging approach is the random forest algorithm (Breiman, 2001), in which multiple learning             

trees are fitted to bootstrap resamples of the data and posteriorly combined through mean              

averaging (or majority vote). In biology, bagging approaches have been used for            

environmental monitoring (Mortensen et al., 2007), sample identification (Lytle et al., 2010),            

among others.Boosting, on the other hand, combines learners sequentially rather than in            

parallel (Bauer and Kohavi, 1999). Among boosting algorithms, gradient boosting          

(Friedman, 2000) is one of the most widely used in CV. In gradient boosting, models are                

combined in a cascade fashion, such that a downstream model is fitted to the residuals of                

upstream models. As a consequence, while each individual model in the cascade is only              

weakly related to the overall task, the combined algorithm (i.e., the entire cascade)             

represents a strong learner that is directly related to the task of interest (Friedman, 2000).               

Since this approach, if unchecked, will lead the final model to overfit the training data,               

regularization procedures are usually applied when using gradient boosting.  

Fourth wave – Deep learning 

Deep learning approaches are, at the time of this writing, the state-of-the-art in CV and have                

recently become more accessible through the community-wide adoption of code-sharing          

practices. Deep learning refers to a family of machine learning methods based on             
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hierarchical artificial neural networks, most notably, convolutional neural networks (CNN).          

Networks with dozens or hundreds of hidden layers (i.e. deep neural networks) allow for the               

extraction of high-level features from raw image data (LeCun et al., 2015). While they have               

only recently become widespread, the history of artificial neural networks is at least as old as                

the field of CV itself. One of first successful attempts in the study of artificial neural networks                 

was the perceptron (Rosenblatt, 1958), a computer whose hardware design was inspired by             

neurons, and which was used to classify a set of inputs into two categories. This early work,                 

while successful, was largely restricted to linear functions and therefore could not deal with              

non-linearity, such as XOR functions (Minsky et al., 1969). As a consequence, artificial             

neural network research remained rather understudied until the early 80s when training            

procedures for multi-layer perceptrons were introduced (i.e., backpropagation) (Rumelhart         

and McClelland, 1987). Even then, multi-layer approaches were computationally taxing and           

the hardware requirements represented an important bottleneck to research in neural           

network based CV, which remained disfavored compared to much lighter approaches, such            

as SVMs. 

When compared to the hand-crafted features that dominated the field for most of its              

history, neural networks learn features from the data itself, therefore eliminating the need for              

feature engineering (LeCun et al., 2015). In a large part, deep learning approaches for CV               

have only emerged in force due to two major developments at the beginning of the 21st                

century. On one side, hardware capability greatly increased due to high consumer demand             

for personal computing and gaming. On the other, there was a widespread adoption of the               

internet, leading to an exponential increase in data availability through shared image            

databases and labelled data. Today, deep learning is a general term that encompasses a              

wide-variety of approaches that share an architectural commonality of relying on training            

neural networks with multiple hidden layers (LeCun et al., 2015; O’Mahony et al., 2020).              

However, this superficial similarity hides a considerable array of differences between           
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different algorithms and one could say that the field of deep learning is as diverse as the                 

domains in which CV is applied. In ecology and evolution, deep neural networks have been               

used for essentially any computer vision task, many of each can be seen in other parts of                 

this review. We present some of the most relevant classes of deep learning approaches in               

Box 2. 

Practical considerations for computer vision 

Before taking images 

Measurement Theory: Define Your Traits Thoughtfully 

Defining meaningful phenotypes is deceptively challenging. Traditionally, biologists relied on          

intuition and natural history conventions to define phenotypes without quantitative          

verifications of their relevance for biological questions. When deciding what to measure, we             

suggest that researchers consider measurement theory, a qualitative formalization of the           

relationship between actual measurements and the entity that the measurements are           

intended to represent (Houle et al., 2011). In phenomics using CV, we recommend that              

researchers adhere to the following three principles: i) Ensure that the measurements are             

meaningful in the theoretical context of research questions. ii) Remember that all            

measurements are estimates. Measurements without uncertainties should always be         

avoided. iii) Be careful with units and scale types, particularly when composite values, such              

as the proportion of one measurement over another, are used as a measurement. Wolman              

(2006) and Houle et al. (2011) give details of measurement theory and practical guidelines              

for its use in ecology and evolutionary biology. 

Image quality: collect images that are maximally useful 

As a general rule of thumb, images taken for any CV analysis should have a signal-to-noise                

ratio (SNR) sufficiently high so that the signal (i.e. the phenotypic information) is detectable              

from the image background. High SNR can be achieved by using high resolution imaging              
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devices (e.g. DSLR cameras or flatbed scanners), ensuring that the object is in focus and               

always maintains the same distance to the camera (e.g. by fixing the distance between              

camera and object), and by creating a high contrast between object and background (e.g. by               

using backgrounds that are of contrasting colour or brightness to the organism or object).              

We recommend to iteratively assess suitability of imaging data early on in a project and               

adjust if necessary. This means taking pilot datasets, processing them, measuring traits,            

estimating measurement errors, and then updating the image collection process. Moreover,           

it is good practice to include a colour or size reference whenever possible (e.g. see Fig. 3). It                  

helps researchers to assess if the image has sufficient SNR, increases reproducibility, and             

helps to evaluate measurement bias as we discuss in the next section. 

On measurement error 

Because conventional phenotyping methods are often time-consuming and depend on what           

is possible in a given period of time, biologists are rarely able to evaluate measurement               

errors and deal with them in downstream analyses. A major advantage of CV lies in its ability                 

to assess the (in)accuracy of measurements easily. Formally, measurement inaccuracy is           

composed of imprecision and bias, corresponding to random and systematic differences           

between measured and true values, and can be expressed as the following relationship  

 

inaccuracy = imprecision + bias2 

 

(Grabowski and Porto, 2017; Tsuboi et al., 2020). These two sources of errors characterize              

distinct aspects of a measurement: precise measurements may still be inaccurate if biased,             

and unbiased measurements may still be inaccurate if imprecise (Fig. 6). Measurement            

imprecision can be evaluated by the coefficient of variation (standard deviation divided by             

the mean) of repeated measurements. Bias requires a knowledge of true values. 
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We ultimately need to understand if a measurement is sufficiently accurate to            

address the research question at hand. Repeatability is a widely used estimator of             

measurement accuracy in ecology and evolutionary biology (Wolak et al., 2012), which in             

our notation could be expressed as 

 

repeatability = 1 - inaccuracy
total variance  

 

This expression clarifies that the repeatability depends both on measurement inaccuracy           

and total variance in the data. For example, volume estimates of deer antler from 3D               

photogrammetry have an average inaccuracy of 8.5%, which results in repeatabilities of            

67.8-99.7% depending on the variance in antler volume that a dataset contains (Tsuboi et              

al., 2020). In other words, a dataset with little variation requires more accurate measurement              

to achieve the same repeatability as a dataset with more variation. Therefore, the impact of               

measurement error has to be evaluated in the specific context of data analysis. 

One way to improve measurement precision is to repeat a measurement and take              

their mean as the representative measurement. For example, when measuring deer antler            

volume estimated from 3D photogrammetry (Fig. 5 Panel E) (Tsuboi et al., 2020), it was               

found that 70% of the total inaccuracy arose from the error in scaling arbitrary voxel units                

into real volumetric units. Therefore, by using the mean of two estimates obtained from two               

copies of an image that are scaled twice independently, the inaccuracy dropped to 5.5%.              

However, the opportunity to improve accuracy by repeated measurements is limited if a             

majority of error arises from the stored images themselves. For this reason, we recommend              

always taking repeated images of the same subject at least for a subset of data. This will                 

allow evaluating the magnitude of error due to images relative to the error due to acquisition                

of measurements from images. If the error caused by images is large compared to the error                
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caused by data acquisition, it may be necessary to modify imaging and/or preprocessing             

protocol to increase SNR.  

Assessing measurement bias requires separate treatments. When linear (length) or          

chromatic (color) measurements are obtained from images, it is a good general practice to              

include size and color scales as part of images to estimate bias as the difference between                

known values of imaged scales and measurements obtained through CV (i.e. the reference             

card in Fig. 3). Knowing the true value may be difficult in some cases, such as area or                  

circularity of a trait (Hoffmann et al., 2018), since they are hard to characterize without a CV.                 

When multiple independent methods to measure the same character exist, we recommend            

using them on sample data to determine the bias of one method relative to the other. 

After taking images 

Selecting a CV pipeline: As simple as possible, as complex as necessary  

When using CV tools there are usually many different ways to collect a specific type of                

phenotypic information from images (Fig. 4). Therefore, one of the first hurdles to overcome              

when considering the use of CV is selecting the appropriate technique from among a large               

and growing set of choices. The continued emergence of novel algorithms to collect, process              

and analyze image-derived data may sometimes make us believe that any “older”            

technology is immediately outdated. Deep learning, specifically CNNs, is a prominent           

example of an innovation in CV that was frequently communicated as so “revolutionary” and              

“transformative” that many scientists believed it would replace all existing methods.           

However, despite the success of CNNs, there are many cases where they are inappropriate              

or unfeasible, e.g. due to small sample sizes, hardware or time constraints, or because of               

the complexity that deep learning implementations entail, despite many efforts to make this             

technology more tractable. We discourage readers from defaulting to using the newest            

technology stacks; rather, we suggest that researchers be pragmatic as to which is the              
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fastest and simplest way to get the phenotypic information of desire from any given set of                

images (Fig. 4, Table 2). 

Begin by considering the size of a given image dataset, whether it is complete or               

whether there will be continued future additions, e.g. as part of a long term experiment or                

field survey. As a rough rule of thumb, if a dataset encompasses only a thousand images or                 

fewer, consider it “small”; if a dataset has thousands to tens of thousands images, consider it                

“large” (see Fig. 4 for methodological suggestions for each case). The next assessment             

should be about the SNR in your images: images taken in the laboratory typically have a                

high degree of standardization, e.g. controlled light environment or background, and thus a             

very high SNR. Field images can also have a high SNR, for example, if they are taken                 

against the sky or if the trait of question is very distinct from the background through bright                 

colouration. If the dataset is “small” and/or has high SNR, it may not be necessary to use the                  

more sophisticated CV tools; instead, signal processing, e.g. threshold or watershed           

algorithms, may already be sufficient for segmentation although typically some pre- and post             

processing is typically still required (e.g. blurring to remove noise, “morphology”-operations           

to close gaps, or masking false positives).  

For large datasets, images with low SNR, or if the information of interest is variable               

across images (e.g traits are photographed from different angles or partially covered up),             

machine learning approaches are probably more suitable. In contrast to signal processing,            

where segmentation results are immediately available, all machine learning image analysis           

pipelines include iterative training and validation phases, followed by a final testing phase.             

Such a workflow can be complex to initiate, but pays off in the long run by providing results                  

that become increasingly robust if more training data is supplied over time. Classic machine              

learning algorithms often require an intermediate amount of training data (500-1000 or more             

images) before they can produce satisfactory results (Schneider et al., 2020a). In this             

category, SVM or HOG algorithms are a good choice when areas of interest do not contrast                
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sufficiently from the surrounding area, for example, when automatically detecting landmarks           

(Porto and Voje, 2020a). Deep learning algorithms require much larger training datasets            

(minimum 1000 to 10000 images), but are less sensitive to noise and idiosyncrasies of the               

foreground. Thus, for large and continuously growing data sets, or for recurring image             

analysis tasks, deep learning has become the standard approach for segmentation (Sultana            

et al., 2020). Deeper networks may increase model accuracy, and thus improve the             

segmentation results, but have an increasing risk of overfitting the contained information -             

i.e. the model is less generalizable to input data. While the implementation of deep learning               

pipelines may require more expertise than other CV-techniques, they can be retrained and             

are typically less domain specific than classic machine learning pipelines (O’Mahony et al.,             

2020). 

Recent examples of computer vision to collect phenomic data 

“Phenomics” as a term has not yet gained widespread attention in the ecological and              

evolutionary biology research communities (Fig. 1), but many biologists are engaged in            

research programmes that are collecting phenomic data, even though it is not called as              

such. Some of them are already using automatic or semi-automatic CV to collect phenotypic              

data. Here we present small a selection of promising applications of CV to answer ecological               

or evolutionary research questions (points matching panels in Fig. 5): 

i. Shape and texture of resource competition traits - Species diversity within           

ecological communities is often thought to be governed by competition for limiting            

resources (Chesson, 2000). However, the exact traits that make species or           

individuals the best competitors under resource limitation conditions are difficult to           

identify among all other traits. In this example, the phenotypic space underlying            

resource competition was explored by implementing different limitation scenarios for          

experimental phytoplankton communities. Images were taken with a plate reader that           

used a combination of visible light and fluorometry measurements (Hense et al.,            
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2008). The images were analyzed using signal processing, which allowed the rapid            

segmentation of several 1000 images by combining information from multiple          

fluorescence emission excitation spectra to an image stack. As a result, over 100             

traits related to morphology (shape, size, and texture) and internal physiology           

(pigment content, distribution of pigments within each cell) were obtained at the            

individual cell level. (Gallego et al., unpublished data) 

ii. Thermal adaptation and thermal reaction norms - Variation in body temperature           

can be an important source of fitness variation (Kingsolver and Huey, 2008;            

Svensson et al., 2020). Quantifying body temperature and thermal reaction norms in            

response to natural and sexual selection allows us to test predictions from            

evolutionary theory about phenotypic plasticity and canalization (Lande, 2009;         

Chevin et al., 2010). However, body temperature is an internal physiological trait that             

is difficult to quantify in a non-invasive way on many individuals simultaneously and             

under natural conditions. Thermal imaging is an efficient and non-invasive method to            

quantify such physiological phenotypes on a large scale and can be combined with             

thermal loggers to measure local thermal environmental conditions in the field           

(Svensson and Waller, 2013; Svensson et al., 2020). 

iii. Stochastically patterned morphological traits - In contrast to homologous,         

landmark-based morphological traits, tissues also form emergent patterns that are          

unique to every individual. The arrangement of veins on the wings of damselflies is              

one such example. By measuring the spacing, angles, and connectivities within the            

adult wing tissue, researchers have proposed hypotheses about the mechanisms of           

wing development and physical constraints on wing evolution (Hoffmann et al., 2018;            

Salcedo et al., 2019). 

iv. Morphometrics and shape of complex structures - Landmark-based        

morphometrics has become a popular tool used to characterize morphological          
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variation in complex biological structures. Despite its popularity, landmark data is still            

collected mainly through manual annotation, a process which represents a significant           

bottleneck for phenomic studies. However, machine-learning-based CV can be used          

to accurately automate landmark data collection in morphometric studies not only in            

2D (McPeek et al., 2008; Porto and Voje, 2020b), but also in 3D (Porto et al., 2020). 

v. Volumes of morphologically complex traits. Many topics in evolutionary ecology          

concerns investment of resources into a particular trait. However, measuring          

energetic investment, either as mass or volume of the target traits, has been             

challenging because many traits are morphologically complex, making it difficult to           

estimate investment from a combination of linear measurements. Photogrammetry is          

a low-cost and fast technique to create 3D surface images from a set of images.               

Using a simple protocol and a free proprietary software, Tsuboi et al. (2020)             

demonstrated that photogrammetry can accurately measure the volume of antler in           

deer family Cervidae. The protocol is still relatively low-throughput due primarily to            

the necessity of high number of images (> 50) per sample, but it allows extensive               

sampling (sensu (Houle et al., 2010)) of linear, area and volumetric measurements of             

antler structures. 

Outlook 

In this review we provided a broad overview of various CV techniques and gave some recent                

examples of their application in ecological and evolutionary research. We presented CV as a              

promising toolkit to overcome the image analysis bottleneck in phenomics. However, to be             

clear, we do not suggest that biologists discontinue the collection of univariate traits like              

body size or discrete colours. Such measures are undoubtedly useful, if they contain             

explanatory value and predictive power. Instead, we propose that CV can help to i) collect               

them with higher throughput, ii) in a more reproducible fashion, and to iii) collect additional               
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traits so we can interpret them in the context of trait combinations. We argue that CV is not                  

bound to immediately replace existing methods, but it simply opens the opportunity to place              

empirical research of phenotypes on a broader base. We also note that CV based              

phenomics can be pursued in a deductive or inductive fashion. In the former case, scientists               

would simply conduct hypothesis driven research including a wider array of traits into causal              

models (Houle et al., 2011); in the latter, they would engage in discovery-based data-mining              

approaches that allow scientists to form hypotheses a posteriori based on the collected data              

(Kell and Oliver, 2004).  

Although CV based phenomics provides new opportunities for many areas of study,            

we identify several specific fields that will profit most immediately from CV. First, evolutionary              

quantitative genetics will benefit tremendously from increased sample sizes that          

CV-phenomics entails, because the bottleneck of the field has been the difficulty in             

accurately estimating key statistics such as genetic variance covariance matrices and           

selection gradients. The recent discovery of tight matches between mutational, genetic, and            

macroevolutionary variances in Drosophilid wing shape (Houle et al., 2017) is exemplary of a              

successful phenomic project. Second, large-scale empirical studies of the         

genotype-phenotype map will finally become possible, because of the availability of           

high-throughput phenotypic data and analytical framework to deal with big data (Pitchers et             

al., 2019; Zheng et al., 2019; Maeda et al., 2020). Third, studies of fossil time-series will gain                 

opportunities to document and analyze the dynamics of long-term phenotypic evolution with            

unprecedented temporal resolution (Brombacher et al., 2017; Liow et al., 2017). The            

ever-growing technology of CV indicates that these are likely a small subset of unforeseen              

future applications of CV phenomics in our field. Similar to the technological advancements             

in DNA-sequencing that have revolutionized our view of genomes, development and           

molecular evolution in the past decades, we anticipate that the way we look at phenotypic               

data will be changing in the coming years.  
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Just as CV is changing what it means to measure a trait, there is a complementary                

change in what can be considered scientific image data in the first place. Large, publicly               

available image datasets are fertile ground for ecology and evolutionary research. Such            

databases include both popular and non-scientific social media (e.g. Flickr or Instagram), but             

also quality-controlled and vetted natural history and species identification resources with           

global scope and ambitions (e.g. iNaturalist). Successful examples of how such public image             

databases can be useful are in studies aiming to quantify the frequencies variation of              

discrete traits, such as colour polymorphism frequencies in different geographic regions           

(Leighton et al., 2016). These manual efforts in mining available public image resources can              

potentially be replaced in the future using more automated machine learning or CV             

approaches. Similarly, the corpus of published scientific literature is full of image data that              

can be combined and re-analyzed in order to address larger-scale questions (Hoffmann et             

al., 2018; Church et al., 2019a, 2019b). 

Previous calls for phenomics argued that, to make phenomics a successful           

endeavour, it has to be extensive, aiming at measuring many different aspects of the              

phenotypes, as well as intensive, aiming at characterizing each measurement accurately           

with large sample size and with high temporal resolution (Bilder et al., 2009; Houle et al.,                

2010; Furbank and Tester, 2011). We agree with this view, but we also emphasize that               

phenomics is nothing conceptually new in this respect. As discussed above, many            

researchers in our field have already adopted phenomic pipelines, i.e. they are collecting             

high-dimensional phenotypic data on a large scale, but they may not be using the term               

"phenomics". If so, what is the conceptual value and added benefit of explicitly studying              

phenomes? We argue that computer vision and other techniques will facilitate the rigorous             

quantification of phenomes in the same fashion as next generation genomics allows            

scientists to move away from a few markers of interest to simply reading all molecular data                

that is available. While it may not be possible to extract phenomes in a complete fashion                
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(Houle et al., 2010), a "phenomics-mindset" still gives us the opportunity to collect and              

analyze larger amounts of phenotypic data with virtually no extra cost. Taking images and              

analyzing them with computer vision enables biologists to choose freely between conducting            

conventional research of phenotypes, but with higher throughput and in a reproducible            

fashion, or to "harness the power big data" (Peters et al., 2014) for the study of high                 

dimensional phenotypic data.  
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Figures 

Figure 1 - The current state of phenomics research. Left panel: a literature survey using the                

search key “phenomic*" on in a Web of Science topic search (title, keywords, abstract)              

resulted in 1408 papers (on 01/03/2021). Here we show only papers published between             

1990 and before 2021 (1343 papers) for better visual inference. Traditionally phenomics            

approaches are used in agricultural sciences and crop research to maximize yield, as well as               

in human medicine to study drug responses and disorder phenotypes. The black line             

denotes the studies that used computer vision or some sort of image analysis (acquired with               

a topic search among the retrieved papers using the strings "computer vision", "image             

analysis", "image based", "image processing"), indicating that only a small subset of the             

studies uses image analysis. Right panel: a word cloud that was constructed using the 500               

most used keywords from the papers presented in the left panel.  

  

  



 

 

Figure 2 - The structure of digital images. Two-dimensional raster images, as produced by              

most commercially available cameras, are composed of three colour channels red, green,            

blue = RGB), each of which by itself is a grayscale image. The industrial standard for colour                 

representation on the pixel level is 24 bit (224 = 16 777 216 possible colour variations per                 

pixel), which is achieved through additive mixing of each of the 8 bit channels (28 + 28 + 28 ).                    

This enormous range of colour intensities among several million pixels is a potentially very              

high resolution representation of organismal traits, or the organism as a whole. Therefore,             

digital images are a useful medium for phenomics research, as they offer an inexpensive,              

memory efficient and standardizable way to capture, store and analyze complex phenotypes.            

The photograph shows a blue-tip jewel damselfly (Chlorocypha curta) in Cameroon (Africa)            

(image by Erik Svensson).  

 

 

  



 

 

Figure 3 - A typical computer vision workflow using signal processing. 1) Raw image - The                

goal is to detect, count and measure freshwater isopods (Asellus aquaticus, image by Moritz              

Lürig) from the raw image that was taken under controlled laboratory conditions. 2)             

Preprocessing - The operating principle of most signal processing workflows is that the             

objects of interest are made to contrast strongly from all other pixels, meaning that images               

should have a high signal-to-noise ratio (SNR. In this specific case a high SNR is already                

present, because the isopods are much darker than the tray they are sitting on and much                



 

larger than the fecal pellets and other detritus around them. To further increase the SNR,               

gaussian blur blends pixels in a given neighborhood (=kernel size), which effectively            

removes the smaller dark objects. The reference card gets excluded manually, and can be              

used to convert pixels to millimeters and to correct the colour space. 3) Segmentation -               

Using a thresholding algorithm all connected pixels that are above a specific grayscale value              

and larger than a specified area are designated foreground (white) and all pixels become              

background (black). The output from this step is referred to as a “binary mask”. 4)               

Measurement - Now the white pixels from the binary mask can be used to locate the areas                 

of interest in the raw image and to extract information from them. Discrimination between              

multiple instances of the same class is referred to as instance segmentation.  



 

Figure 4 - Computer vision (CV) methods overview - which is the right one for my data? A)                  

CV is a field at the intersection of machine learning and signal processing which is               

concerned with the automatic and semiautomatic extraction of information from digital           

images. B) Decision tree for CV methods: begin by considering the size of a given image                

dataset, whether it is complete, e.g. after an experiment, or whether there will be continued               

future additions, e.g. as part of a long term experiment or field survey. The next assessment                

should be about the signal-to-noise ratio (SNR) in your images: images taken in the              

laboratory typically have a high degree of standardization and thus a very high SNR, which               

makes them suitable for a signal processing approach. In contrast to signal processing,             



 

where segmentation results are immediately available, all machine learning image analysis           

pipelines include iterative training and validation phases, followed by a final testing phase.             

Such a workflow can be complex to initiate, but pays off in the long run by providing                 

segmentation results that become increasingly robust if more training data is supplied over             

time. Deep learning algorithms require large training datasets (several 1000s to 10000s) and             

a powerful graphics processing unit (GPU), but are less sensitive to noise and idiosyncrasies              

of the foreground. Thus, for large and continuously growing data sets, or for recurring image               

analysis tasks, deep learning has become the standard approach for segmentation. 



 

Figure 5 - Different types of high dimensional phenotypic data that are collected using a fully                

or semi-automatic computer vision approach. A) Morphology and fluorescence traits of           

phytoplankton communities are represented through a combination of shape features (e.g.           

circularity, perimeter length, area) and texture features (e.g. blob intensity and distribution            

within the cell) from images showing fluorescence intensity (images by Irene Gallego and             

Moritz Lürig). B) In ostriches (Struthio camelus), surface temperatures of bare body parts             

without feathers (necks and legs) are detected using signal processing (image by Erik             

Svensson). C) Signal processing approach that captures individual domains of a damselfly            

wing via thresholding (image by Masahito Tsuboi). D) Ensemble-based approach to shape            

prediction of individual zooids within a bryozoan colony (image by Arthur Porto) E) 3D image               

of the skull of extinct deer Eucladoceros dicranios from which we can measure linear, area,               

and volumetric measurements of antler features (image by Masahito Tsuboi).  



 

 

Figure 6 - Schematic illustration of bias and imprecision. X-axis represents phenotypic            

values and Y-axis represents number of observations. The gaussian curve shows the            

distribution of repeated measurements of the same specimen. Dashed line is the true             

estimate, and the variance of measurements around the true estimate is the imprecision.             

The true value may deviate systematically from the true estimate (long-dashed line). The             

difference between true estimate and true value is the bias. 

 

 

  



 

Tables 

Table 1 - Classes of phenotypic data. Depending on the research question, scientists define              

their phenotypes of interest using specific or abstract, low or high dimensional traits (see              

section “On measurement theory”). The human eye excels at rapidly recognizing externally            

visible phenotypes (e.g. benthic vs. limnetic morphotypes of fish), but has difficulties            

discerning what constitutes such phenotypes. Computer vision offers an objective way to            

collect any data type with high efficiency and reproducibility. For instance, by breaking down              

low dimensional traits (e.g. red vs. blue phenotype) into continuous low or high dimensional              

metrics (e.g. degree of red- or blueness), the decision of what constitutes a phenotype              

becomes more reproducible.  

 

 

  

Trait type Low dimensional High dimensional 

Specific / directly 
measurable  

Size, discrete colour (“brown 
phenotype” vs. “blue 
phenotype”) and morphotype 
scoring (e.g. benthic vs 
limnetic) 

Shape coordinates, texture 
maps, landmarks  

Abstract / derived Shape (e.g. circularity, area) 
and texture features (e.g. 
mean, SD, uniformity) , 
moments, principal 
components, hypervolumes 

Matrices, activation maps 



 

Table 2 - Select examples of recent open source computer vision libraries with a              

biology-context. Although typically first developed for a particular study system or organism            

(e.g. PlantCV or WorMachine), most CV applications apply techniques that are generally            

applicable to any type of phenotypic data contained in digital images.  

Name Year Reference Repository Purpose Application 
type 

Description Techniques 

AutoMorph 2018 (Hsiang et 
al., 2018) 

https://github
.com/HullLa
b/AutoMorph 

object 
detection 
and 
feature 
extractio
n 

Python 
package 

High 
throughput 
segmentation 

Signal 
processing 

ClickPoints 2017 (Gerum et 
al., 2017) 

https://github
.com/fabryla
b/clickpoints 

labelling, 
label 
evaluatio
n 

Python 
package 

Interactive 
labelling tool 

Signal 
processing 

DeepMerkat 2018 (Weinstein 
2015) 

https://github
.com/bw4sz/
DeepMeerka
t 

object 
detection
, 
classifica
tion 

Python Background 
subtraction 
and image 
classification 
for stationary 
cameras in 
ecological 
videos 

Signal 
processing, 
deep learning 

EB-Net 2020 (Le et al., 
2020) 

https://github
.com/linhlev
andlu/CNN_
Beetles_Lan
dmarks 

keypoint 
and 
feature 
detection 

Python Insect 
morphometric
s 

Deep learning 

ImageJ 2012 (Schindelin 
et al., 
2012) 

https://fiji.sc/
; 
https://image
j.nih.gov/ij/d
ownload.htm
l 

multi 
purpose 

standalone Comprehensiv
e, 
multi-purpose 
image 
processing 
library 

Manual 
processing, 
signal 
processing, 
classic 
machine 
learning, 
feature 
extraction 

ML-morph 2020 (Porto and 
Voje, 
2020a) 

https://github
.com/agport
o/ml-morph 

landmark 
detection
; 
geometri
c 
morpho
metrics 

Python 
package 

High 
throughput 
morphometric
s 

Classic 
machine 
learning, 
ensemble 
Methods 

https://paperpile.com/c/zP7O3b/08ObT
https://paperpile.com/c/zP7O3b/08ObT
https://github.com/HullLab/AutoMorph
https://github.com/HullLab/AutoMorph
https://github.com/HullLab/AutoMorph
https://paperpile.com/c/zP7O3b/IvVjm
https://paperpile.com/c/zP7O3b/IvVjm
https://github.com/fabrylab/clickpoints
https://github.com/fabrylab/clickpoints
https://github.com/fabrylab/clickpoints
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://paperpile.com/c/zP7O3b/6CZVu
https://paperpile.com/c/zP7O3b/6CZVu
https://github.com/linhlevandlu/CNN_Beetles_Landmarks
https://github.com/linhlevandlu/CNN_Beetles_Landmarks
https://github.com/linhlevandlu/CNN_Beetles_Landmarks
https://github.com/linhlevandlu/CNN_Beetles_Landmarks
https://github.com/linhlevandlu/CNN_Beetles_Landmarks
https://paperpile.com/c/zP7O3b/M39Rc
https://paperpile.com/c/zP7O3b/M39Rc
https://paperpile.com/c/zP7O3b/M39Rc
https://paperpile.com/c/zP7O3b/WTTPl
https://paperpile.com/c/zP7O3b/WTTPl
https://paperpile.com/c/zP7O3b/WTTPl
https://github.com/agporto/ml-morph
https://github.com/agporto/ml-morph
https://github.com/agporto/ml-morph


 

 

 

 

  

MotionMeer
kat 

2015 (Weinstein, 
2015) 

https://github
.com/bw4sz/
DeepMeerka
t 

motion 
tracking 

Python 
package/ 
standalone 

Deep learning  
driven motion  
detection 

Signal 
processing, 
deep learning 

Phenopype 2020 (Lürig, 
2018) 

https://github
.com/mluerig
/phenopype 

object 
detection
, feature  
extractio
n, motion  
tracking 

Python 
package 

Computer 
vision library  
with high  
throughput 
workflows 

Signal 
processing 

PlantCV 2017 (Gehan et  
al., 2017) 

https://github
.com/danfort
hcenter/plan
tcv 

object 
detection 
and 
feature 
extractio
n; 
spectral 
analysis 

Python 
package 

Plant 
phenotyping 
library 

Signal 
processing, 
classic 
machine 
learning 

Scan-o-mati
c 

2016 (Zackrisson 
et al.,  
2016) 

https://github
.com/Scan-o
-Matic/scano
matic 

object 
detection 
and 
feature 
extractio
n 

Python 
package 

Microbial 
phenotyping 
platform 

Signal 
processing 

Trackdem 2017 (Bruijning 
et al.,  
2018) 

https://github
.com/marjole
inbruijning/tr
ackdem 

motion 
tracking 
and blob  
counting 

R package Behavioral 
analysis 
pipeline 

Signal 
processing 

WingMachin
e 

2003 (Houle et  
al., 2003) 

https://www.
bio.fsu.edu/~
dhoule/Soft
ware/ 

keypoint 
and 
feature 
detection 

standalone Drosophila 
wing 
morphometric
s 

Signal 
processing, 
feature 
extraction 

WorMachine 2018 (Hakim et  
al., 2018) 

https://github
.com/adamh
ak/WorMach
ineClient 

object 
detection 
and 
feature 
extractio
n 

Matlab Integrated 
image 
processing 
and feature  
extraction 

Signal 
processing, 
classic 
machine 
learning; 
deep learning 

https://paperpile.com/c/zP7O3b/dEZWw
https://paperpile.com/c/zP7O3b/dEZWw
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://github.com/bw4sz/DeepMeerkat
https://paperpile.com/c/zP7O3b/rvCmQ
https://paperpile.com/c/zP7O3b/rvCmQ
https://github.com/mluerig/phenopype
https://github.com/mluerig/phenopype
https://github.com/mluerig/phenopype
https://paperpile.com/c/zP7O3b/UZ548
https://paperpile.com/c/zP7O3b/UZ548
https://github.com/danforthcenter/plantcv
https://github.com/danforthcenter/plantcv
https://github.com/danforthcenter/plantcv
https://github.com/danforthcenter/plantcv
https://paperpile.com/c/zP7O3b/JPjBi
https://paperpile.com/c/zP7O3b/JPjBi
https://paperpile.com/c/zP7O3b/JPjBi
https://github.com/Scan-o-Matic/scanomatic
https://github.com/Scan-o-Matic/scanomatic
https://github.com/Scan-o-Matic/scanomatic
https://github.com/Scan-o-Matic/scanomatic
https://paperpile.com/c/zP7O3b/LVjqO
https://paperpile.com/c/zP7O3b/LVjqO
https://paperpile.com/c/zP7O3b/LVjqO
https://github.com/marjoleinbruijning/trackdem
https://github.com/marjoleinbruijning/trackdem
https://github.com/marjoleinbruijning/trackdem
https://github.com/marjoleinbruijning/trackdem
https://paperpile.com/c/zP7O3b/6PFEY
https://paperpile.com/c/zP7O3b/6PFEY
https://www.bio.fsu.edu/~dhoule/Software/
https://www.bio.fsu.edu/~dhoule/Software/
https://www.bio.fsu.edu/~dhoule/Software/
https://www.bio.fsu.edu/~dhoule/Software/
https://paperpile.com/c/zP7O3b/ySPIp
https://paperpile.com/c/zP7O3b/ySPIp
https://github.com/adamhak/WorMachineClient
https://github.com/adamhak/WorMachineClient
https://github.com/adamhak/WorMachineClient
https://github.com/adamhak/WorMachineClient


 

Boxes 

Box 1 - Glossary of terms relevant for computer vision and machine learning in ecology and                

evolution used in this review. Terms in this list are printed in italic when first mentioned in the                  

main text. 

 

bit depth number of values a pixel can take (e.g. 8 bit = 2^8 = 256 values) 

computer vision technical domain at the intersection of signal processing, machine learning,          
robotics and other scientific areas that is concerned with the automated extraction            
of information from digital images and videos. 

convolution mathematical operation by which information contained in images are abstracted.          
Each convolutional layer produces a feature map, which is passed on to the next              
layer. 

deep learning machine learning methods based on neural networks. supervised learning =          
algorithm learns input features from input-output pairs (e.g. labelled images).          
unsupervised = algorithm looks for undetected patterns (e.g. images without          
labelling) 

feature a measurable property or pattern. can be specific (e.g. edges, corners, points) or             
abstract (e.g. convolution via kernels), and combined to vectors and matrices           
(feature maps) 

feature 
detection 

methods for making pixel-level or pixel-neighborhood decisions on whether parts of           
an image are a feature or not 

foreground all pixels of interest in a given image, whereas the background constitutes all other              
pixels. the central step in computer vision is the segmentation of all pixels into              
foreground and background 

hidden layer a connected processing step in neural networks during which information is           
received, processed (e.g. convolved), and passed on to the next layer 

kernel a small mask or matrix to perform operations on images, for example, blurring,             
sharpening or edge detection. the kernel operation is performed pixel wise, sliding            
across the entire image. 

labelling typically manual markup of areas of interest in an image by drawing bounding             
boxes or polygons around the contour. can be multiple objects and multiple classes             
of objects per image. can also refer to assigning whole images to a class (e.g.               
relevant for species identification) 

machine 
learning 

subset of artificial intelligence: the study and implementation of computer          
algorithms that improve automatically through experience. (Mitchell 1997) 

measurement 
theory 

a conceptual framework that concerns the relationship between measurements and          
nature so that inferences from measurements reflect the underlying reality intended           
to be represented (Houle et al. 2011). 

neural network deep learning algorithms that use multi layered ("deep") abstractions of information           
to extract higher level features from input via convolution 



 

 

 

 

 

 

 

  

  

object detection methods for determining whether a pixel region constitutes an object that belongs            
to the foreground or not, based on its features 

pixel short for picture element; the smallest accessible unit of a digital raster image.             
Pixels have finite values (=intensities), e.g. 256 in an 8-bit grayscale image. 

segmentation the classification of all pixels in an image into foreground and background, either             
manually by labelling the area of interest, or automatically, by means of signal             
processing or machine learning algorithms. semantic segmentation = all pixels of a            
class, instance segmentation = all instances of a class 

signal 
processing 

technically correct: digital image processing (not to be confused with image           
analysis or image editing). subfield of engineering that is concerned with the            
filtering or modification of digital images by means of algorithms and filter matrices             
(kernels), 

signal-to-noise 
ratio (SNR) 

describes the level of the pixels containing the desired signal (i.e. the phenotypic             
information) to all other pixels. Lab images typically have a high SNR, field images              
a low SNR. 

threshold 
algorithm 

pixel-intensity based segmentation of images, e.g. based on individual pixel          
intensity (binary thresholding) or their intensity with respect to their neighborhood           
(adaptive thresholding). creates a binary mask which contains only black or white            
bixels 

training data representative image dataset to train a machine learning algorithm. can be created            
manually by labelling images, or semi-automatic by using signal processing for           
segmentation. can contain single or multiple classes 

watershed 
algorithm 

the segmentation of images by treating the pixels as a topographic map of basins,              
where bright pixels have high elevation and dark pixels have low elevation. 



 

Box 2 - An overview of the main deep learning architectures and approaches. 

Families of network topologies 

A. Deep convolutional network - A large and common family of neural networks            
composed an input layer, an output layer and multiple hidden layers. These networks             
feature convolution kernels that process input data and pooling layers that simplify            
the information processed through the convolutional kernels. For certain tasks, the           
input can be a window of the image, rather than the entire image. 

B. Deconvolutional Network - A smaller family of neural networks that perform the            
reverse process when compared to convolutional networks. It starts with the           
processed data (ie., the output of the convolutional network) and it aims to separate              
what has been convoluted. Essentially, it constructs upwards from processed data           
(e.g., reconstructs an image from a label). 

C. Generative Adversarial Network - A large family of networks composed of two            
separate networks, a generator and a discriminator. The generator is trained to            
generate realistic data, while the discriminator is trained to differentiate between           
generated data from actual samples. Essentially, in this approach, the objective is for             
the generator to generate such realistic data that the discriminator cannot tell it apart              
from samples. 

D. Autoencoders - A family of networks is trained in an unsupervised manner. The             
autoencoder aims to learn how to robustly represent the original dataset, oftentimes            
in smaller dimensions, even in the presence of noise. Autoencoders are composed of             
multiple layers, and it can be divided into two main parts: the encoder and the               
decoder. The encoder maps the input into the representation and the decoder uses             
the representation to reconstruct the original input. 

E. Deep Belief Network - A family of generative networks that are composed of             
multiple layers of hidden units, in which there can be connections between layers but              
not within units within layers. Deep belief networks can be conceived as being             
composed of multiple simpler networks, where each subnetwork’s hidden layer acts           
as a visible layer to another subnetwork. 

 

Learning Classes 

 
A. Supervised Learning - Training data is provided when fitting the model. The training             

dataset is composed of inputs and expected outputs. Models are tested by making             
predictions based on inputs and comparing them with expected outputs. 

B. Unsupervised Learning - No training data is provided to the model. Unsupervised            
learning relies exclusively on inputs. Models trained using unsupervised learning are           
used to describe or extract relationships in image data, such as clustering or             
dimensionality reduction. 

C. Reinforcement Learning - The learning process occurs in a supervised manner, but            
not through the use of static training datasets. Rather, in reinforcement learning, the             
model is directed towards a goal, with a limited set of actions it may perform, and                
model improvement is obtained through feedback. The learning itself occurs          



 

exclusively through feedback obtained based on past action. This feedback can be            
quite noisy and delayed. 

D. Hybrid Learning Problems 
Semi-Supervised Learning - Semi supervised learning relies on training datasets          
where only a small percentage of the training dataset is labeled, with the     
remaining images having no label. It is a hybrid in between supervised and 
unsupervised learning, since the model has to make effective use of unlabeled data             
while relying only partially on labeled ones. 
Self-Supervised Learning - Self supervised learning uses a combination of          
unsupervised and supervised learning. In this approach, supervised learning is used           
to solve a pretext task for which training data is available (or can be artificially               
provided), and whose representation can be used to solve an unsupervised learning            
problem. Generative adversarial networks rely on this technique to learn how to            
artificially generate image data. 

 

Other learning Techniques 

 
A. Active Learning - During active learning, the model can query the user during the              

learning process to require labels for new data points. It requires human interaction             
and it aims to being more efficient about what training data is used by the model 

B. Online Learning - Online learning techniques are often used in situations where            
observations are streamed through time and in which the probability distribution of            
the data might drift over time. In this technique, the model is updated as more data                
becomes available, allowing the model itself to change through time. 

C. Transfer Learning - Transfer learning is a useful technique when training a model             
for a task that is related to another task for which a robust model is already available.                 
Essentially, it treats the already robust model as a starting point from which to train a                
new model. It greatly diminishes the training data needs of supervised models and it              
is, therefore, used when the available training data is limited. 

D. Ensemble Learning - As mentioned in the main text, ensemble learning refers to a              
learning technique in which multiple models are trained either in parallel or            
sequentially and the final prediction is the result of the combination of the predictions              
generated by each component. 

 

 

 

 

 

 


