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ABSTRACT

Species distribution models (SDMs) are emerging as essential tools in the equipment of many ecologists;

they are  useful  in  exploring species  distributions  in  space and time and in answering an assortment  of

questions related to historical biogeography, climate change biology and conservation biology. Given that

arthropod distributions are strongly influenced by microclimatic conditions and microhabitat structure, they

should be an ideal candidate group for SDM research, especially generalist predators because they are not

directly dependent on vegetation or prey types. However, most SDM studies of animals to date have focused

either  on broad samples  of  vertebrates  or  on arthropod species  that  are  charismatic  (e.g.  butterflies)  or

economically  important  (e.g.  vectors  of  disease,  crop  pests  and  pollinators).  By  means  of  a  systematic

bibliometric  approach,  we  targeted  the  literature  published  on  key  terrestrial  arthropod  predators  (ants,

ground  beetles  and  spiders),  chosen  as  a  model  to  explore  challenges  and  opportunities  of  species

distribution  modelling  in  mega-diverse  arthropod  groups.  We  show that  the  use  of  SDMs to  map  the

geography of terrestrial arthropod predators has been a recent phenomenon, with a near-exponential growth

in the number of studies over the past 10 years and still limited collaborative networks among researchers.

There is  a  bias  in studies towards charismatic  species and geographical  areas that  hold lower levels of

diversity but greater availability of data, such as Europe and North America. To overcome some of these data

limitations, we illustrate the potential of modern data sources (citizen science programmes, online databases)

and new modelling approaches (ensemble of small models, modelling above the species level). Finally, we

discuss areas of research where SDMs may be combined with dispersal models and increasingly available

phylogenetic and functional data to obtain mechanistic descriptions of species distributions and their spatio-

temporal shifts within a global change perspective.

Keyword: bibliometrics; climate change; ecological niche models; MaxEnt; niche-based models; predicted 

distribution; social network analysis; statistical modelling
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INTRODUCTION

A mainstream topic  in  ecology,  biogeography and conservation  biology is  the extent  to  which

climatic conditions affect species performance (Colinet et al. 2015, Rezende and Bozinovic 2019),

which together with geographical and historical constraints ultimately modulates species niches and

observed  range  boundaries  (Thomas  2010).  Obtaining  a  nuanced  understanding  of  the  factors

conditioning species  distributions  has  gained new urgency amid the current  climate  emergency

(Ripple et al. 2020), insofar as changing climatic conditions are determining fast redistributions of

species along latitudinal,  elevational and other spatial  gradients  (Chen et al.  2011, Lenoir et al.

2020). As global  climate change redefine the geography of life, we are becoming spectators of a

large-scale experiment of complex ecological responses  (Walther et al. 2002), where interactions

among previously isolated species can quickly occur (Krosby et al. 2015), invasions of novel areas

by  alien  species  are  becoming  routine  (Hellmann  et  al.  2008,  Liu  et  al.  2020) and  unnoticed

extinctions are potentially taking place on a daily basis (Hughes et al. 2004, Barnosky et al. 2011,

Cardoso et al. 2020b). Therefore, mapping the diversity of life has never been so urgent.

Over the years, ecologists  and statisticians have developed a wide  range of methods for

modelling the niches and distribution of species in space and time, several of which fall under the

umbrella of correlative species distribution models or ecological niche models (defined in Box 1).

For  simplicity,  we will  hereafter  refer  to  these  as  ‘species  distribution  models’  (SDMs),  while

redirecting the interested readers to key semantic  and theoretical  discussions (e.g.  Peterson and

Soberón, 2012; Sillero, 2011; Warren, 2012). Researchers have used SDM techniques for mapping

the distribution of organisms in a variety of systems, although the number of applications across

habitats and the tree of life have not been equal.  For example, while the use of SDMs has grown

exponentially in the terrestrial realm from the early 2000s onward (Lobo et al. 2010, Robinson et al.

2011,  Araújo  et  al.  2019),  applications  in  systems  where  three-dimensionality  is  an  important

feature  – e.g. marine ecosystems  (Robinson et al. 2017, Melo-Merino et al. 2020), tree canopies
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(Burns et al. 2020), soils  (Schröder 2008) and caves  (Mammola and Leroy 2018) – have lagged

behind. Also, applications of SDMs in animals have concentrated mostly on vertebrates  (Titley et

al. 2017), while studies on invertebrate groups remain scarcer, although recently increasing (Figure

1).

The paucity of SDM studies is possibly related to a number of arthropod-specific modelling

challenges. First, arthropods often are small organisms that move in small spatial scales, strongly

influenced by microclimatic conditions and microhabitat structure (Pincebourde and Woods 2020).

These  characteristics  are  hardly  captured  by  the  ubiquitous  bioclimatic  variables  derived  from

remote sensing at relatively large spatial scales (e.g.  Potter et al., 2013). Second, arthropods often

have short  life  cycles  with  wide  population  abundance  fluctuations  from season to  season and

strong  metapopulation  dynamics,  making  it  difficult  to  determine  what  their  real,  constantly

changing,  range  is.  Thus,  arthropods pose particular  modelling  challenges  that  add to  the  ones

already present for vertebrates, but they should also offer opportunities for future SDM research as

data and new methods are made available (Maino et al. 2016).

Here, we conducted a systematic mapping of the literature to synthesize trends in the use of

SDMs  in  arthropod  research.  We  explored  these  topics through  the  lens  of  the  literature  on

dominant  terrestrial  arthropod  predators:  ants (c.  30,000  described  species; Parr  et  al.,  2017),

ground beetles  (c.  39,300 species;  Lorenz,  2020),  and spiders (c.  49,000 species;  World Spider

Catalog, 2020). We begin by conducting a systematic literature search focused on SDM use in our

focal group. Then, to put our survey in perspective, we compare the volume of literature with that

on other key terrestrial invertebrate and vertebrate groups. By means of bibliometric analyses, we

explore  the  geography of  SDM applications  and networks  of  collaborations  among researchers

working on terrestrial arthropod predators. Subsequently, we review the main areas of application

of  SDMs  in  terrestrial  arthropod  research,  highlighting  which  ecological  factors  emerged  as

important in driving predicted distribution patterns. Building upon this quantitative evidence, we
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discuss  challenges  and  opportunities  of  SDM  research  on  terrestrial  arthropod  predators  and

delineate potential future lines of enquiry as well as promising areas of research where SDMs may

be combined with other modelling tools and data  sources to obtain mechanistic  descriptions of

species distributions and their shifts within a global change perspective.
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Box 1. A general definition of SDMs and their domain of applicability

As a broad and general definition, species distribution modeling implies using some statistical algorithms to explore the

relationship between species occurrences (typically geo-referenced localities) and environmental variables (typically

spatial rasters whose cells represent bioclimatic and other habitat and environmental conditions). Once this relationship

is  determined, the model is used to  characterize the ecological niche of a given species by projecting a probability

surface into a geographical space to represent its potential range of distribution (Guisan et al. 2017). These models can

be construed using a wide range of algorithms, from simple logistic regression up to sophisticated techniques based on

machine learning (Elith et al. 2011, Ryo et al. 2020) and other artificial intelligence methods (Cardoso et al. 2020a) .

Given  the  large  variety  of  life  histories  and  data  sources,  the  best  modelling algorithm and approach  necessarily

changes, with no universal best solutions (Qiao et al. 2015). 

Whereas the first paper relying on species distribution modelling is now over three decades old [e.g. the first

applications of the algorithm BIOCLIM can be traced back to 1986 (Booth 2018)], there has been an acceleration in the

use of these tools in just the last two decades (Araújo et al., 2019; Lobo et al., 2010; Figure 1). This trend was probably

due to the increase in data (Zhang 2017, Wüest et al. 2020) and easy to use, often automated, statistical packages that

perform species distribution modelling (reviewed in Angelov, 2019). These methods have become popular in the toolkit

of many ecologists, being useful to answer a range of questions. Not only are SDMs routinely used to describe species

distributions, they have also proved important to assist and complement taxonomic studies (Rödder et al. 2010) and to

set conservation agendas (Guisan et al. 2013). Furthermore, given that these models are transferable in space and time

(Yates et al. 2018), they find applications in studies on climate change (Dormann 2007, Santini et al. 2020), historical

biogeography (Peterson 2009), and invasion biology (Peterson 2003, Liu et al. 2020), among other topics.

6

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124



METHODS

Systematic search of SDM papers and analyses

Between 20 and 24 November 2020, we searched on the Web of Science (Clarivate Analytics) for

articles relying on SDMs to predict  distributions of terrestrial  arthropod predators (ants, ground

beetles  and spiders)  and,  for  comparative  purposes,  other  terrestrial  vertebrate  and invertebrate

groups (Table 1). For each taxonomic group considered, we found and extracted papers using the

following general query:

TS=(“family  name(s)”  OR “vernacular  name(s)”)  AND  TS=("Species  distribution  model*"  OR "Ecological  niche

model*" OR "Bioclimatic envelope model*" OR “Niche model*” OR “Distribution model*” OR “Habitat suitability

model*”)

where TS denotes a search for ‘Topic’ and the asterisk (*) is a regular expression used to match all

words including that string of characters (e.g. ‘model*’ matches ‘models’, ‘modelling’, ‘modelled’,

etc.). See Appendix 1 for the list of families and vernacular names. 

We exported all results into the online review application Rayyan (Ouzzani et al., 2016) for

title,  keywords,  and abstract  screening,  whereby we excluded by-catches  of papers not actually

dealing with SDMs or our model species (e.g. our search for the keyword ‘spiders’ also captured

papers dealing with spider monkeys, genus Ateles) (Table 1). Furthermore, for ants, ground beetles

and spiders, we manually inspected all papers to extract specific data. We recorded the geographical

extent of each study and all the species modelled. We classified the type of predictors used, their

resolution, and the SDM algorithm(s) and modelling protocol employed. Specifically, we coded the

modelling protocol under three main categories:  single algorithm, when studies just applied one

modelling technique; ensemble of models, when the authors applied a plethora of algorithms and

took the consensus between them (Araújo and New, 2007); and no-silver bullet (Qiao et al., 2015),

when  the  authors  applied  a  number  of  algorithms  and  chose  the  best  performing  one(s)  for
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projecting  the  distribution.  Finally,  we  read  each  study  and  summarized  the  key  results  (see

Appendix 2 for a full list of extracted information).

Data analysis

We conducted analyses in R 3.6.3 (R Core Team, 2020) and visualized data using the  ggplot2 R

package (Wickham,  2009) and QGIS (Open Source Geospatial  Foundation  Project,  2020).  The

complete  data  set  and  R  code  used  for  the  analyses  is  available  on  GitLab

(https://gitlab.com/DenisLafage/sdm_review).

We  analysed  bibliometric  data  regarding  ants,  ground  beetles,  and  spiders  with  the

bibliometrix R package (Aria and Cuccurullo 2017). In order to map the production of articles per

country for each group, we assigned articles to a country based on the affiliations of all the authors

at the time when each article was published. In order to identify the most influential papers for

researchers  dealing  with  modelling  of  macro-arthropod  distributions,  we  used  a  weighted  co-

citation network. Initially introduced for bibliometric research, co-citation networks have proved

useful to identify key literature items acting as bridges between disciplines  (Trujillo  and Long,

2018). A particular article is included in the network when it is cited by at least two papers from the

dataset under study  (Batagelj  and Cerinšek 2013). The number of co-citations is the number of

times two articles are cited together. Furthermore, we built a collaboration network to identify the

existence of bridges among scientists working on ants, ground beetles and spiders.

Caveats in the interpretation of the survey

Some caveats need to be made when interpreting the results of this research weaving. Due to our

search strategy in the Web of Science and selection of keywords (Appendix A), we did not capture

all possible studies on SDMs dealing with our focal groups. For example, we missed some studies

on taxonomy that  used  SDMs to  assist  species  delimitations,  since  these  rarely  mentioned  the
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methodology  in  their  keywords,  title  or  abstract.  Similarly,  SDMs  have  recently  begun  to  be

routinely used for assessing terrestrial arthropod risk of extinction against International Union for

Conservation of Nature criteria (e.g. Branco et al., 2019; Fukushima et al., 2019; Seppälä et al.,

2018b,  2018a,  2018c,  2018d),  but  most  of  these  studies  were  missed  for  the  same  reason.

Furthermore,  for  many  groups,  especially  vertebrates,  the  authors  may  not  mention  the  higher

taxonomic ranks included in our query but exclusively the species/genus/family, which will not be

captured. We also acknowledge that our search was not exhaustive since we only included articles

in English (Konno et al. 2020) and we used a single database, Internet browser, and location for the

search (Pozsgai et al. 2020). 

As a result, our estimation of the volume of the literature on the focal groups should be

taken as an approximation of the real number of studies. While we operated under the assumption

that  the  biases  were  homogeneously  distributed  across  all  taxonomic  groups,  allowing  us  to

compare them and to draw general inferences, still the comparison of absolute numbers of studies

across taxa (Figure 1) should be taken with caution.
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SURVEY RESULTS

Volume of scientific production in comparison to other groups

By comparing the volume of SDM literature on vertebrates versus invertebrates, we observed a

similar exponential increase in the number of studies for both groups, with an inflection point after

2010 (Figure 1a). However,  the total  number of studies was greater  for vertebrates  (67%) than

invertebrates,  despite vertebrates accounting for a considerably lower number of species. Among

invertebrates, the largest fraction of studies focused on Diptera (8.2%). Other well-studied groups

were butterflies (6.4%), non-carabid beetles (5.8%), and Apoidea (2.5%). Our three focal groups

were  comparatively  less  studied  (0.7,  1.7  and  1.9%  for  ground  beetles,  spiders  and  ants,

respectively); all three of them began to be the focus of SDM research after 2005, with the number

of studies steadily increasing from this point (Figure 1b).

Geography of scientific production

The geography of studies, as inferred from author affiliations, revealed how production of SDM

papers on ants, ground beetles and spiders is mostly concentrated in North and South America and

Europe (Figure 2). There were, however, some conspicuous differences among groups. For ants,

modelled species are mostly in North and South America, and Europe (Appendix C), and 15 studies

modelled species distribution worldwide. For spiders and ground beetles, most studies focused on

European  species  (Appendices  E  and  G),  and  only  three  and  one  studies/y,  respectively,  had

worldwide  coverage.  There  were  considerably  more  ant  species  which  have  been studied  with

SDMs than spiders and ground beetles (Appendices D, F, H).

Most influential papers

The co-citation network allowed us to identify key articles co-cited by the studies included in our

survey (Figure 3). As expected, most co-cited papers were methodological rather than  arthropod-
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specific  papers.  The  top-cited  papers  were  Phillips  et  al.  (2006) and  Hijmans  et  al.  (2005),

respectively the reference for the algorithm MaxEnt and for the most widely used global climate

database  (WorldClim).  Among the  less  co-cited  but  still  influential  papers,  there  were  several

references to phylogenetic methods, suggesting that a number of articles are potentially integrative

research using multiple lines of evidence to deal with species delimitation (Ross et al. 2010, Ferretti

et al. 2019) and historical biogeography (e.g., Solomon et al. 2008, Magalhaes et al. 2014, Planas et

al. 2014, Mammola et al. 2015). 

Collaboration network

Network analysis revealed highly structured collaboration hubs around the three groups of interest

(Figure 4). Observed collaboration hubs were strongly bound but limited in size, with only four

cases of inter-group collaborations (ants–ground beetles, ants–spiders and ground beetles–spiders).

Two cases were  the result of multi-taxa studies  (Christman et al., 2016; Jiménez-Valverde et al.,

2009) and  two were  related  to  authors  involved  in  articles  dealing  with  two different  groups:

Williams S.E.  (Steiner et al. 2008, Staunton et al. 2014)  and Peterson A.T.  (Roura-Pascual et al.

2004, 2006, 2009, Peterson and Nakazawa 2008, Planas et al. 2014).

Paper topics

Articles dealing with ants primarily focused on climate change (33.9% of studies) and invasion

biology (30.4%). Many studies often dealt with both topics simultaneously (23.2%) as these topics

often go hand-in-hand, with researchers seeking to predict  the future spread of alien species in

climate change scenarios.

The research spectrum of articles dealing with spiders was more diversified, with studies

using  SDMs  to  explore  the  environmental  drivers  of  species  distribution  (28.6%),  to  predict

distributions under future climate change (33.4%), to assist species delimitation (26.8%), as well as
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other miscellaneous topics (19.6%). Contrary to ants, only 7.1% of studies on spiders dealt with

invasion biology, probably on account of the reduced number of globally important known invasive

spiders (Nentwig 2015). 

Finally, the focus of articles dealing with ground beetles was almost entirely climate change

(52.6%)  and  the  drivers  of  species  distribution  (36.8%),  with  only  two papers  dealing  with

biological invasions. 

Algorithms used

A large majority of articles used a single algorithm (for ants, ground beetles and spiders

79.6,  94.7,  80.4%, respectively)  or ensemble  (24.1,  5.3 and 14.3%, respectively)  for modelling

species  distributions,  whereas  no silver bullet  use was sporadic and only used in spider-related

articles (7.1%). A total of 33 different algorithms were used in the studies we reviewed. For all

taxonomic groups, MaxEnt was the most used algorithm (Figure 5), as also emphasized by the co-

citation network (Figure 3). This is a recurrent pattern in the latest SDM research, as found for the

research in other animal groups (e.g. bats; Razgour et al., 2016). This trend is probably due to the

fact  that  MaxEnt  is  a  presence-only  technique,  thus  allowing  users  to  overcome  some  of  the

difficulties associated with obtaining reliable absence data in the light of imperfect detection (e.g.

Ward  and  Stanley,  2013).  Moreover,  MaxEnt  has  proved  to  be  a  robust  species  distribution

modelling technique according to comparative studies [e.g. Elith et al., 2006 – a highly co-cited

reference in our dataset as shown in Figure 3 (Phillips and Dudík 2008)]. 

 Surprisingly, the simple technique of logistic regression (i.e. a Bernoulli generalized linear

model) was sporadically used, even before MaxEnt release in 2004. This may be a true pattern but

also an artefact resulting from our keyword search. In fact, the idea that logistic regressions based

on distribution records are de facto an SDM is relatively recent (Peterson 2006, Elith and Leathwick

2009).
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Variables used in the models and their importance in explaining distribution patterns

Bioclimatic  variables  were  by  far  the  most  used  predictors  to  model  and  explain  species

distributions (Table 2) for the three focal groups. The mean variable resolution was rather similar

for ants and ground beetles [respectively 314.9 arc.sec (max = 1.4 arc.sec) and 414.7 arc.sec (max =

0.05 arc.sec)]. The mean resolution was higher for spiders (171.7 arc.sec (max = 1.4 arc.sec). This

is partly due to broad availability of free high-resolution climatic variables [e.g. CHELSA (Karger

et al.,  2017), CliMond (Kriticos et al.,  2012) and WorldClim 2 (Fick and Hijmans, 2017)], and

partly reflects the true importance of climate as a limiting factor for species distribution (Muñoz and

Bodensteiner  2019),  especially  climatic  extremes  (Román-Palacios  and  Wiens  2020).  Climatic

variables, in fact, were systematically selected as important in virtually all analysed studies (Table

2).

Topography, soil and land use, and habitat  variables are used less often, possibly due to

greater limitations in their availability (the mean resolution of these predictors in the data set is c.

4.6 km at the equator, much higher than that of bioclimatic variables). Nevertheless, when used,

these non-climatic factors were often selected as important in modelling the distribution (>65% for

ants and >80% for spiders and ground beetles, table 2), suggesting that fine-scale habitat structure

plays a critical role for the ecology of terrestrial arthropods . 

The integration of SDM use with species functional traits and ecophysiological data was

scarce. For ants, 10.2% of articles used traits and 6.2% ecophysiological data. For spiders, 2.4% of

articles used functional traits and none ecophysiological data. For ground beetles, no articles used

functional  traits  or  ecophysiological  data.  In  the  few  instances  where  similar  variables  were

considered, these were not directly incorporated as predictors in the model but rather discussed in

comparison with the modelled distribution. For the three groups, between 20 and 25% of papers

used phylogenies, but as previously they were not incorporated into the models.
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CHALLENGES FOR SDM RESEARCH IN TERRESTRIAL INVERTEBRATES

Taxonomic and geographical biases

While SDM studies based on comprehensive samples of vertebrate species are becoming routine

(e.g.  Liu et al., 2020; Thuiller et al., 2019), our survey emphasizes how just a small fraction of

terrestrial arthropod predators have been subjected to the attention of modellers.  The total volume

of SDM articles was higher for vertebrates than for arthropods, and this difference would be even

greater  if  these numbers are  relativized to  the total  number of known vertebrate  and arthropod

species. This is a typical pattern that is partly explained by the fact that there is more available

information on vertebrates (e.g. distribution data; Troudet et al., 2017) and partly the result of a

cognitive bias in terms of researcher’ subjective preferences for certain taxa over others (Clark and

May 2002) – what has been termed by entomologists  ‘institutional  vertebratism’ or ‘taxonomic

chauvinism’  (Leather 2009a, b). The few available studies on arthropods are drops in the ocean

when considering the number of described and as yet undescribed species of insects (Stork 2018)

and spiders  (Agnarsson et al. 2013). However, taxonomic bias towards certain groups exists also

among articles dedicated to arthropods (e.g.  Cardoso, 2012; Leandro et al.,  2017). For example,

butterflies are among the most studied in SDM studies, which once again may be due to a greater

availability of information (Thomas 2005, van Swaay et al. 2008, Brereton et al. 2011), and which

in turn might be driven by aesthetic characteristics. Other well-studied groups are those relevant

from an economic point of view, such as vectors of diseases (Diptera, 8.9%), crop pests (other

beetles, 6.6%) and pollinators (Apoidea, 3.2%).

As for our focal groups, we found that despite spiders and ground beetles outnumbering ants

in terms of described species, the number of species studied was considerably higher for ants. This

may be linked to the topic of articles, with most papers focusing on one of the numerous invasive

ant species – it is likely that a few globally relevant invasive ant species (e.g. Argentine ant, fire

ant)  allow  myrmecologists  to  obtain  research  funding,  thus  attracting  most  research  attention
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(Holway et al. 2002, Silverman and Brightwell 2008).

Inevitably, the few studies on ants, ground beetles and spiders have often been opportunistic,

largely reflecting the specific interests of the few authors who have ventured to explore the potential

of SDMs in terrestrial arthropod research (Figure 4). For example, this is evident when looking at a

sample of papers on spiders – most studies focused on large-sized, taxonomically unique, and/or

charismatic species (e.g. Decae et al., 2019; Jiménez Valverde et al., 2011; Wang et al., 2018)‐ , taxa

of medical importance  (Planas et al.  2014, Wang et al.  2018, Taucare-Ríos et al.  2018) or taxa

inhabiting peculiar habitats that are the interest of certain authors, like caves (Mammola et al. 2018,

2019, Pavlek and Mammola 2020). 

The paucity  of  multi-taxa  studies  also suggests  a  general  lack of  data  for  less  common

species. In fact, and this is true also for vertebrates, most SDM applications are set in geographical

areas that hold lower levels of diversity but greater availability of data (Europe and North America;

Figure  2).  The  scarcity  of  data  has  been  pointed  out  as  one  of  the  key  limitations  to  our

understanding of the drivers of biodiversity change in invertebrates (Cardoso and Leather 2019), as

summarized in eight so-called  ‘biodiversity  shortfalls’ (Cardoso et  al.  2011, Hortal  et  al.  2015,

Ficetola  et  al.  2019).  SDMs may help us to  combat  some of these impediments  by identifying

unexplored regions of high environmental suitability for improving the geographical gaps in species

distributions  (i.e.  tackling  the Wallacean shortfall),  by identifying  the environmental  drivers  of

these  distributions  (Hutchinsonian  shortfall),  and  even  by  suggesting  suitable  sites  for  further

sampling (Linnean shortfall). However, the SDM construction in itself requires robust and high-

quality distribution data, creating a loop that is difficult to break.

Solutions to alleviate data limitations

Distribution data
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A quick search for any bird species in the Global Biodiversity Information Facility (www.gbif.org)

reminds us that it is unlikely we will ever possess for arthropods the same amount and quality of

data available for vertebrates. Arthropods are simply too ubiquitous in space and time (Stork 2018),

while natural scientists are simply too few (Tewksbury et al. 2014). However, some recent technical

and technological advances may help us to overcome some impediments related to data limitation

and getting close to the goal of modelling the distribution of arthropods with more confidence.

Foremost, there have been recent technical advances in SDMs that may be significant when

it comes to modelling the distribution of poorly known taxa. The emergence of ensemble of small

models has proved promising to optimize the modelling of species for which few occurrences are

available; this is achieved by combining a set of small bivariate models to create a consensus model

that avoids overfitting (details in Breiner et al., 2018, 2015). 

Second, modelling above the species level  (Smith et al. 2019),  for example by integrating

data from related species when their  niche overlap is large  (Qiao et al.  2017), may be a useful

shortcut to overcome a lack of distribution data in many circumstances. 

Furthermore, the information age is characterized by the emergence of a myriad of types of

digital data (summarized in Jarić et al., 2020) that may help to fill distribution data gaps, especially

for easy-to-identify species. It was shown that photo-sharing platforms and smartphone applications

such as iNaturalist are valuable sources of species occurrences (e.g. Unger et al., 2020), even in the

case  of  our  focal  groups  (Wang  et  al.  2018,  Jiménez Valverde  et  al.  2019)‐ .  Citizen  science

programmes are also a valuable source of distribution data, for example about swarms of ants (Hart

et al. 2018a) or common species of spiders (Hart et al. 2018b). Recent modelling exercises based on

similar alternative data sources have demonstrated their utility in obtaining realistic representations

of niches and distributions for easy-to-identify arthropods (Wang et al. 2018, Peña-Aguilera et al.

2019). 
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Finally,  the  recent  advances  in  metabarcoding  and especially  environmental  DNA is  of

major  interest  to  overcome  the  issue  of  species  detectability  (Muha  et  al.  2017) and  lack  of

invertebrate taxonomists (Hebert and Gregory 2005). Metabarcoding consists in identifying species

using small DNA sequences that are highly variable between species and weakly variable within a

given  species.  It  is  the  basis  of  the  environmental  DNA  approach  which  consists  in  the

identification of the species present in a given environment using the DNA left  by individuals.

Despite  the  many technical  challenges,  environmental  DNA and metabarcoding  face  becoming

standard survey tools  (Deiner et al.,  2017),  including in our focal groups  (Toju and Baba 2018,

Piper et al. 2019, Kennedy et al. 2020). Their ability to provide reliable absence data and to produce

a massive amount of presence data is predicted to improve the efficiency of SDMs in the near future

(Muha et al. 2017). Recently, for example, the use of environmental DNA has proved useful to

forecast the spread of invasive species (Zhang et al. 2020) or to monitor reintroduction programme

success  (Riaz et  al.  2020). Large-scale projects  including metabarcoding of terrestrial  arthropod

communities [e.g. LIFEPLAN (https://www.helsinki.fi/en/projects/lifeplan) and the Insect Biome

Atlas  (https://www.insectbiomeatlas.com)]  are  currently  taking  place  and  will  provide  an

unprecedented data baseline for SDMs. This will likely trigger the parallel development of tools to

handle the big data era (Hallgren et al. 2016).

Lack of micro-scale environmental predictors

The second impediment that limits our ability to model the distribution of terrestrial arthropods is

the  scarcity  of  relevant  environmental  predictors  at  the  correct  spatial  resolution.  Most

environmental rasters used today for SDMs [e.g. CHELSA (Karger et al., 2017) and WorldClim 2

(Fick and Hijmans, 2017)] achieve a maximum resolution of 30 arcsec (cell size c. 1 km2 at the

equator), which is excellent but might not be enough in the case of invertebrates that are known to

respond to microclimatic characteristics over spatial scales of millimetres to metres (Potter et al.
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2013,  Suggitt  et  al.  2018).  On  a  positive  note,  gigantic  leaps  forward  are  being  made  in  the

development  of  microclimatic  databases  (e.g.,  Kearney et  al.,  2014),  as well  as  approaches  for

downscaling  temperature  data  at  high resolutions  from thermal  images  (Senior  et  al.,  2019) or

airborne light detection and ranging data (George et al. 2015). It is predicted that in the following

years, the use of remote sensing derived data will become the standard for modelling and mapping

the microclimate (Zellweger et al. 2019), especially in invertebrate research where the use of similar

high-resolution data has already proved useful to achieve realistic conservation prioritization (e.g.

Bombi et al., 2019).

Furthermore, our literature survey emphasizes that habitat, soil and other land use variables,

although rarely used, are key features affecting the distribution of invertebrates. However, these are

only rarely considered. As in the case of climatic variables, there is a general paucity of raster data

at  a  meaningful  spatial  resolution.  Once again,  statistical  downscaling and remote sensing may

come to help; for example, the use of high-resolution habitat variables has proved fundamental in

modelling  the  distribution  of  spiders  in  spatially  complex  alpine  rocky lands  (Mammola  et  al.

2019).

Testing new algorithms

Despite the large number of algorithms tested (33), even per article (up to 14), it remains unclear if

one  algorithm rather  than  another  is  more  suitable  for  modelling  the  distribution  of  terrestrial

invertebrates. At the moment, MaxEnt hegemony in SDM research is obvious in our data set. More

empirical  comparisons  of  the  performance  algorithms  in  the  context  of  terrestrial  invertebrates

research would be needed (Qiao et al., 2015; Araujo et al., 2019). 
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OPPORTUNITIES FOR SDM RESEARCH IN TERRESTRIAL INVERTEBRATES

SDMs are often used as a simple, correlative way to estimate species ranges based on the realized

niche,  having  large  uncertainties  and  often  over-  or  underfitting  the  real  distribution.  In  an

influential paper published 15 years ago, it was foreseen that SDMs may offer ‘more than simple

habitat models’ (Guisan and Thuiller 2005), for example by tackling biotic interactions, migration

processes, dispersal limitations, and (meta)population dynamics. 

The challenges faced by conservation biologists today call for the development of more of

these process-based models (or mechanistic models), providing causal explanations for the observed

patterns (e.g.  Briscoe et al., 2019). These can be defined as any model that mechanistically links

model predictions and species fitness, measured either directly or indirectly using functional traits

or  environmental  and  biological  (e.g.  competing  or  mutualistic  species)  interactions  (Kearney

2006).  This  idea was reinforced by a  seminal  paper  by  Kearney and Porter (2009) calling  for

explicitly integrating physiological data in mechanistic niche modelling, but also life history traits

(including  dispersal  abilities,  fitness,  eco-physiological  tolerances)  and  biotic  interactions

(competition, parasitism). 

There are  proportionally  more such studies for plants  and marine invertebrates  (see e.g.

Chardon et al., 2020; Webb et al., 2020) than animals, because large spatial data sets needed for

integrating physiological trait variation are available  (Chown and Gaston 2016).  While all these

applications are  still rare when it comes to terrestrial arthropods (see Maino et al. 2016), recently

there have been studies that have successfully  addressed  biotic  interaction  (Mammola and Isaia

2017),  dispersal  limitations  (Monsimet  et  al.  2020),  and  metapopulations  (Giezendanner  et  al.

2020), thereby showing promising directions for future research. Studies including probability of

survival to different stresses such as cold  (Cuddington et al.  2018) or desiccation  (Barton et al.

2019) were  also  performed  for  particularly  well-known  groups  like  lepidopterans  and  pests.

However, whereas mechanistic models are increasingly available, they have high data demands and
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thus  cannot  be  routinely  used  for invertebrates  (Viterbi  et  al.  2020),  especially  in  terrestrial

arthropods where,  as previously discussed,  the scarcity of data on natural history and the large

number of species are a clear challenge. Some ideas towards a more mechanistic understanding of

arthropod distributions are discussed in the following.

Integration of species attributes and traits in SDMs

Species traits influence the outcome of SDMs in two ways. First, they themselves influence

the distribution of species. Either in the present, past or future, the ability of species to adapt to

certain conditions,  their  history,  their  relation with other species or their  ability  to disperse,  all

influence  species  distribution  and  its  change  in  time.  Second,  their  traits  may  influence  how

complete  or  biased  the  known  distribution  data  are  and  hence  how  adequate  the  modelled

distributions for the different purposes are. Taking into account trait data before, during and after

SDMs is therefore crucial for correct interpretation and to be aware of possible limitations. 

The recent  upsurge in  open source trait  databases  and projects  [ants (Parr et  al., 2017),

ground beetles (Homburg et al., 2014) and spiders (Lowe et al., 2020)] offers an unprecedented data

baseline to integrate trait variability in modeling exercises and develop mechanistic descriptions of

species distributions  and their  changes through time. Accordingly,  the integration of correlative

distribution analyses and functional approaches has recently been advocated (Mammola et al., 2019;

Thuiller et al., 2009; Wittmann et al., 2016), as it would make it possible to bridge the differences in

biogeography  and  functional  ecology  and  move  towards  the  novel  field  of  ‘functional

biogeography’ (Violle et al., 2014).

Accounting for trait variability 

There are various ways to link correlative SDMs and traits (Kearney and Porter 2009). The

most obvious one is a simple comparison between model outputs and trait variability, including the
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formulation of hypotheses about why these may concur or not.  Example in invertebrates is the

positive relationship between predicted habitat suitability and body size found in spiders (Mammola

et al. 2019), phenotype environment associations observed in butterflies ‐ (Zaman et al. 2019), or the

use of thermal physiology tests to define thermal safe zones in ants (Coulin et al. 2019).

With the aim of obtaining more meaningful and realistic prediction of biodiversity change,

recently  new  modelling  approaches  that  directly  incorporate  phenotypic  plasticity  and  other

functional traits into correlative modelling are being scrutinized (e.g., AdaptR;  Bush et al., 2016;

ΔTraitSDM;  Garzón et  al.,  2019).  Following  these  examples,  which  are  respectively  based  on

dipterans and plants, and considering the recent increase in availability of traits for invertebrates, it

is possible to predict a vast potential for developing trait-based SDMs in invertebrates. 

Linking genetic data and distributions

SDMs have been criticized, among other things, for not taking into account heterogeneity in the

genetic structure of populations within the species range (Hampe and Petit 2005, Smith et al. 2019).

Indeed,  SDMs  generally  assume  uniformity  of  responses  to  climate  but  local  adaptations  and

intraspecific variations have been documented (e.g. Franken et al., 2018; Hereford, 2009). Several

recent  studies  have  demonstrated  that  genetically  informed  SDMs  improve  climate  change

predictions because they incorporate possible local  adaptations  (Marcer et al.  2016, Ikeda et  al.

2017). Instead of building SDMs based on species occurrence defined using standard taxonomy,

one can model the distribution of each genetic unit of the population. The identification of these

units  can  be  achieved  using  traditional  molecular  markers  such  as  amplified  fragment-length

polymorphisms,  micro-satellites,  and  even  Single  Nucleotide  polymorphisms  (see  below).  For

example, in their study, Marcer et al. (2016) built SDMs for each haplotype Arabidopsis thaliana

(Brassicacae)  and found that  even though most  haplotypes  distribution ranges  will  shrank with

global climate change, two of them will expand. Some authors also advocate the use of genetic data
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because it allows production of real absence data (absence of a given genetic cluster), making it

possible to fit logistic regressions and incorporation of endogenous spatial autocorrelation (Gotelli

and Colwell 2011). The recent advances in high-throughput sequencing techniques allow ecologists

to collect single nucleotide polymorphism data  (Peterson et al., 2012) for cluster identification at

reasonable  costs.  Single  nucleotide  polymorphism  provides  fine-scale  resolution  of  population

genetic structure, which can then be incorporated into SDMs. To our knowledge this has rarely been

done on animal populations  (but see Razgour et al., 2018) and has never been done on terrestrial

arthropod species. 

Accounting for dispersal

Using a correlative approach makes the inclusion of complex processes like dispersal more difficult.

While the inclusion of dispersal can improve model fit  (Dormann 2007), dispersal processes are

rarely accounted for in the studies on arthropods. The only such studies either considered dispersal

via the calibration area  (Anderson and Raza 2010, Barve et  al.  2011), by including a buffer of

reachable areas around presences based on species-specific dispersal abilities [e.g. long-distance

dispersal via ballooning for spiders  (Mammola and Isaia 2017)], or relied on more sophisticated

approaches based on kernel distribution [e.g. model of butterfly accounting for both demography

and dispersal via a kernel distribution (Singer et al. 2018)]. 

In general, these are rough estimations, given that dispersal is a complex phenomenon that is

not trivial to integrate into SDMs (Thuiller et al. 2013). Indeed, dispersal is characterized by three

phases  (Clobert  et  al.  2009),  i.e.  departure,  transfer  and  settlement,  that  the  model  should

theoretically  account  for.  Moreover,  several  factors  can  influence  each  of  these  phases  (e.g.

inbreeding,  temperature development,  body condition or starvation;  on spiders see  Bonte et  al.,

2009, 2008b, 2008a), often acting synergistically. 

Different  methods,  with  varying  complexity  levels,  have  been  developed  to  integrate
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dispersal into SDMs. The use of mechanistic models, which is highly data demanding, is not easily

feasible for mega-diverse arthropod groups. Moreover, while models that include dispersal often

outperform simpler models, an increase of the model complexity usually increases the uncertainty

of the prediction (Zurell et al. 2016). Integration of dispersal is thus still largely ignored in SDMs,

not only in the case of arthropods, but even in most studies on vertebrates and plants. It should be

considered, for example in conservation or invasive species studies, to improve predictions in time

by predicting the range of potentially suitable habitat that can be reached.

CONCLUSIONS

Efforts to map the diversity of invertebrate life have been mostly concentrated in the last 10 years,

emphasizing how more and more entomologists and other scientists are beginning to incorporate

SDMs into their research. In the light of our ignorance about the diversity, distribution and life

history of most arthropods, these versatile tools are proving useful to fill some major knowledge

gaps regarding arthropod diversity. The importance of similar endeavours becomes apparent when

considering the accumulating evidence about the silent extinctions of invertebrates (e.g. Cardoso et

al., 2020; Eisenhauer et al., 2019), the limited conservation efforts that are directed towards them

(e.g. Cardoso, 2012; Mammides, 2019; Mammola et al., 2020), and the calls for solutions to these

problems (Harvey et al. 2020, Samways et al. 2020).

Apart from the conservation implications of using SDMs to map arthropod diversity, we

have shown how terrestrial  arthropods may provide opportunities for advancing SDM research.

Given that terrestrial arthropod distributions are strongly influenced by microclimatic conditions

and microhabitat structure, they represent ideal candidates for testing novel modelling approaches.

So far this potential is still largely unexploited and thus we have discussed some recent avenues of

research where the integration of different data sources may lead to mechanistic descriptions of key

processes associated with species distributions. We are certain that our suggestions are a drop in the

ocean  when  compared  with  what  is  currently  available  in  terms  of  modelling  possibilities  –
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methodological advances in SDM-related theory are so quick that often it is difficult to keep pace.

As brand new solutions to describe patterns and processes associated with species distribution are

becoming  available,  we  hope  that  this  review  will  succeed  in  highlighting  the  potential  of

arthropods  in  SDM research  and,  in  the  future,  that  we will  more  often  see  them involved  as

protagonists in these developments.
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TABLES

Table 1: Number of articles returned by the queries on Web Of Science (WOS) and number of
articles kept after title, keywords and abstract screening. 

Group # papers WOS # papers kept
Spiders (Araneae) 74 55
Ground beetles (Carabidae) 32 24
Ants (Formicidae) 108 51
Other arachnids 37 34
Mites and ticks (Acari) 159 110
Molluscs (Gasteropoda) 164 121
Flies (Diptera) 454 320
Grasshoppers and crickets (Orthoptera) 59 34
Beetles other than Carabidae (Coleoptera) 313 183
Butterflies (Lepidoptera) 391 253
Dragonflies and damselflies (Odonata) 50 42
Bees (Apoidea) 116 81
Reptiles (Reptila) 529 347
Amphibians (Amphibia) 652 412
Mammals (Mammalia) 854 617
Birds (Aves) 1411 930
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Table 2: Percentage of studies predicting distribution in the past, present and future, using different
types  of predictor  variables  and where a given predictor  variable  type was selected in the best
models (values in brackets).

     

Ants Ground beetles Spiders

Projection Past 10.7 22.2 21.4

Present 87.5 61.1 96.4

Future 28.6 22.2 19.6

Predictor variables Climate 92.9 (100) 77.8 (100) 98.2 (100)

Soil 19.6 (65) 27.8 (100) 10.7 (80)

Geology 5.4 (0) 11.1 (0) 10.7 (33.3)

Topography 25.0 (73.6) 27.8 (100) 41.1 (80)

Habitat 28.6 (73.9) 38.9 (100) 21.4 (80)

Mechanistic 
explanations

Species traits 8.9 0.0 3.6

Ecophysiology 5.5 0.0 0.0
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FIGURE CAPTIONS

Figure  1:  Cumulative  number  of  articles  per  year.  a)  Comparison  between  arthropods  and
vertebrates; b) comparison between main arthropod groups.

Figure 2: Production of studies per country for the three groups. Papers were attributed to a country
based on the affiliations of the authors using the bibliometrix package.

Figure 3: Weighted co-citation network for the top 30 cited papers in the entire data set (ants,
ground beetles and spiders). The size of the vertex is proportional to the number of articles citing a
given reference. The colours of the links and vertex reflect citation clusters. The colour of the text
corresponds to the paper theme.

Figure 4: Collaboration network between authors. Colours represent clusters of collaboration and
pictograms the group targeted. For readability, the network is restricted to those papers with at least
one author having two articles in the data set.  This represents 64 articles (out of 103) and 211
authors (out of 355).

Figure 5: Number of articles using a given algorithm for species distribution models by year and
group. To improve readability, only algorithms used at least five times in the entire data set are
shown. ANN: artificial neural network; CT: classification tree; FDA: flexible discriminant analysis;
GAM:  generalized  additive  model;  GARP:  genetic  algorithm  for  rule-set  production;  GBM:
generalized boosting model; GLM: generalized linear model; MARS: multiple adaptive regression
spline; MaxEnt: maximum entropy.
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SUPPLEMENTARY MATERIAL FOR

Challenges and opportunities of species distribution modeling in terrestrial arthropods

Mammola et al.

Appendix S1. Queries on the Web of Science. Queries were made between 20 and 24 November
2020. TS denotes search for “Topic” and the asterisk (*) is a regular expression indicating to match
all words including that string of characters (for example, “spider*” matches “spider”, “spiders”,
“spiderling(s)”, etc.).

l Acari:  TS= ("Acari"  or  "tick"  or  "mites")  AND TS=("Species  distribution  model*"  OR
"Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt" OR “Niche
model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Amphibians:  TS=  ("amphib*"  or  "anura"  or  "urodela"  or  "caudata"  or  "frog*"  or
“salamander*” or “newt*”) AND TS=("Species distribution model*" OR "Ecological niche
model*"  OR  "Bioclimatic  envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR
“Distribution model*” OR “Habitat suitability model*”) 

l Ants: TS= ("Formicidae" OR "Ants” OR “Ant”) AND TS=("Species distribution model*"
OR  "Ecological  niche  model*"  OR  "Bioclimatic  envelope  model*"  OR  "MaxEnt"  OR
“Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Bees: TS= ("Apoidea*" OR "bee" or "bees") AND TS=("Species distribution model*" OR
"Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt" OR “Niche
model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Birds:  TS= ("bird*" or "aves") AND TS=("Species distribution model*" OR "Ecological
niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt" OR “Niche model*” OR
“Distribution model*” OR “Habitat suitability model*”) 

l Butterflies: TS= ("butterfl*" OR "lepidoptera*" or “moth*) AND TS=("Species distribution
model*" OR "Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt"
OR “Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Coleoptera  except  ground beetles:  TS=  ("beetle*"  OR "coleoptera"  NOT "Carabidae"
NOT "Carab*") AND TS=("Species distribution model*" OR "Ecological niche model*"
OR "Bioclimatic envelope model*" OR "MaxEnt" OR “Niche model*” OR “Distribution
model*” OR “Habitat suitability model*”)

l Diptera: TS= ("diptera*" OR "fly" OR "flies" OR "mosquitoe*" or "midge*" or "gnats")
AND TS=("Species distribution model*" OR "Ecological niche model*" OR "Bioclimatic
envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR  “Distribution  model*”  OR
“Habitat suitability model*”) 

l Gasteropoda: TS= ("Gastropod*" or “snail*” or “slug*”) AND TS=("Species distribution
model*" OR "Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt"
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OR “Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Ground  beetles:  TS=  ("Carabidae*"  OR  "Carabid*")  AND  TS=("Species  distribution
model*" OR "Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt"
OR “Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Mammals:  TS=  ("mammal*"  or  "Monotremata"  or  "Dermoptera"  or  "Chiroptera"  or
"Primates"  or  "Pholidota"  or  "Lagomorpha"  or  "Rodentia"  or  "Carnivora"  or
"Tubulidentata" or "Proboscidea" or "Hyracoidea" or "Perissodactyla" or "Artiodactyla" or
"Didelphimorphia"  or  "Scandentia"  or  "Paucituberculata"  or  "Microbiotheria"  or
"Dasyuromorphia"  or  "Peramelemorphia"  or  "Notoryctemorphia"  or  "Diprotodontia"  or
"Macroscelidea" or "Afrosoricida" or "Erinaceomorpha" or "Soricomorpha" or "Cingulata"
or "Pilosa") AND TS=("Species distribution model*" OR "Ecological niche model*" OR
"Bioclimatic  envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR  “Distribution
model*” OR “Habitat suitability model*”)

l Myriapods:  TS=  ("Chilopod*"  or  "Centiped*"  or  "Myriapod*"  or  "Milliped*"  OR
"Diplopod*" OR Pauropod* OR "Symphyl*" OR "pseudocentiped*") AND TS=("Species
distribution model*" OR "Ecological niche model*" OR "Bioclimatic envelope model*" OR
"MaxEnt" OR “Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Odonates:  TS=  ("Odonat*"  OR  "dragonfl*"  OR  "damselfl*")  AND  TS=("Species
distribution model*" OR "Ecological niche model*" OR "Bioclimatic envelope model*" OR
"MaxEnt" OR “Niche model*” OR “Distribution model*” OR “Habitat suitability model*”) 

l Orthoptera:  TS=  ("Orthoptera*"  OR "Grasshopper*"  or  "locust*"  or  "cricket*")  AND
TS=("Species  distribution  model*"  OR  "Ecological  niche  model*"  OR  "Bioclimatic
envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR  “Distribution  model*”  OR
“Habitat suitability model*”)

l Other  arachnids:  TS=  ("Opilion*"  OR  "Scorpion*"  OR  "Pseudoscorpio*"  OR
"Amplypyg*"  OR  "Solifug*"  OR  "Palpigrad*"  OR  "whip  scorpion*"  OR  "Microwhip
scorpion*" OR "harvestman" OR "camel spider*" OR "wind scorpion*" OR "sun spider*"
OR "solifug*") AND TS=("Species distribution model*" OR "Ecological niche model*" OR
"Bioclimatic  envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR  “Distribution
model*” OR “Habitat suitability model*”)

l Reptila: TS= ("reptil*" or "snake*" or "lizard*" or "turtle*" or "crocodyl*" or "squamata")
AND TS=("Species distribution model*" OR "Ecological niche model*" OR "Bioclimatic
envelope  model*"  OR  "MaxEnt"  OR  “Niche  model*”  OR  “Distribution  model*”  OR
“Habitat suitability model*”)

l Spiders:  TS=  (“Araneae”  OR “Spider*”)  AND  TS=("Species  distribution  model*"  OR
"Ecological niche model*" OR "Bioclimatic envelope model*" OR "MaxEnt" OR “Niche
model*” OR “Distribution model*” OR “Habitat suitability model*”) 
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Appendix S2: List of information collected for ant, ground beetle and spider papers selected.

Article 
information CODE Arbitrary code relating paper to taxa information

TITLE Article title

JOURNAL Journal in which the paper was published

DOI Digital Object Identifier

AUTHORS List of authors

YEAR Year of publication

GEOGRAPHIC AREA Area covered by the SDM

PURPOSE Purpose of the paper

MODELLING_ALGORITHM Modelling algorithm used in the SDM

MODELLING_APPROACH Single, ensemble, or no silver bullet approach for algorithm

PAST_PROJECTION Past projection of the distribution (0/1)

PRESENT_PROJECTION Present projection of the distribution (0/1)

FUTURE_PROJECTION Future projection of the distribution (0/1)

CLIMATIC_VAR Climatic variables used as predictors (0/1)

GEOLOGICAL_VAR Geological variables used as predictors (0/1)

SOIL_VAR Soil variables used as predictors (0/1)

HABITAT_VAR Habitat variables used as predictors (0/1)

TOPOGRAPHIC_VAR Topographic variables used as predictors (0/1)

HISTORICAL_VAR Historical variables used as predictors (0/1)

BIOTIC_INTERACTIONS_VAR Biotic interactions effect included in the SDM (0/1)

VAR_RESOLUTION Predictor variables resolution

TRAITS Species traits included in the SDM

PHYLOGENETIC_DATA Phylogenetic data used in the paper

ECOPHYSIOLOGICAL_DATA Ecophysiological variables used in the paper

NOTES Remarks

Taxa 
information CODE Arbitrary code relating paper to taxa information

FAMILY Family of the species studied

GENUS Genus of the species studied

SPECIES Species studied

ENDEMIC Is the species studied endemic of the area (0/1)

ALIEN Is the species studied considered by the authors as alien

HABITAT Species habitat

PAST_SHIFT Is the past distribution larger/shifted than the present (0/1)

PAST_SMALLER Is the past distribution smaller than the present (0/1)

FUTURE_DECLINE Is the future distribution smaller than the present (0/1)

FUTURE_SHIFT Is the distribution forecasted to shift compared to the present (0/1)

FUTURE_EXPANSION Is the future distribution larger than the present (0/1)

CLIMATIC_VAR_SEL Were climatic variables selected among the best predictors (0/1)

GEOLOGICAL_VAR_SEL Were geological variables selected among the best predictors (0/1)

SOIL_VAR_SEL Were soil variables selected among the best predictors (0/1)

HABITAT_VAR_SEL Were habitat variables selected among the best predictors (0/1)

TOPOGRAPHIC_VAR_SEL Were topographic variables selected among the best predictors (0/1)

HISTORICAL_VAR_SEL Were historical variables selected among the best predictors (0/1)
BIOTIC_INTERACTIONS_VAR_S
EL Were biotic variables selected among the best predictors (0/1)

NOTES Remarks
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Figure S1. Distribution of the number of ant studies (for 250 km side hexagon). For each study the
distribution of each species resulting from SDM were mapped on the hexagon grid. 
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Figure S2. Distribution of the number of ant species (for 250 km side hexagon). For each study the
distribution of each species resulting from SDM were mapped on the hexagon grid. 
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Figure S3. Distribution of the number of spider studies (for 250 km side hexagon). For each study
the distribution of each species resulting from SDM were mapped on the hexagon grid. 
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Figure S3. Distribution of the number of spider species (for 250 km side hexagon). For each study
the distribution of each species resulting from SDM were mapped on the hexagon grid. 
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Figure S4. Distribution of the number of ground beetles studies (for 250 km side hexagon). For
each study the distribution of each species resulting from SDM were mapped on the hexagon grid. 
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Figure S5. Distribution of the number of ground beetles species (for 250 km side hexagon). For
each study the distribution of each species resulting from SDM were mapped on the hexagon grid. 
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