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Abstract 14 

Western countries are less frequently implicated in illegal wildlife trade (IWT), contrasted with other 15 

transnational consumers, yet substantial evidence suggests that they contribute prominently. Live 16 

animal smuggling presents a suite of biosecurity concerns, including invasive species and disease risks. 17 

Here, we compared the live alien reptile species smuggled to Australia (75 species) to the legal trade of 18 

live reptile species in the United States (US) and constructed a Bayesian regularized model to predict the 19 

species most likely to be of greatest future smuggling risk to Australia. Australia has particularly strict 20 

import laws barring the entry and keeping of alien reptiles and maintains detailed biosecurity seizure 21 

records. Almost all smuggled reptile species were found in the legal US exotic pet market (98.6%), and 22 

we observed an average time lag of 4.2 years between a species first appearing in the US market and its 23 

subsequent detection in Australia. A species popularity in US pet stores, popularity on international 24 

online markets, and the number of years in US import-export records were all positively associated with 25 

the probability of species being smuggled to Australia. Our predictive model provides a much-needed 26 

early-warning guide for future biosecurity enforcement of the IWT and provides a framework for 27 

anticipating future trends in wildlife smuggling.  28 

  29 
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Main 30 

The illicit transnational wildlife trade poses a severe conservation threat as well as a biosecurity and 31 

health risk to trading and recipient countries (Karesh et al. 2005;  Scheffer et al. 2019; Pyšek et al. 2020). 32 

While considerable attention has focused on the scale of wildlife trade in non-Western countries (largely 33 

for consumptive practices of traditional medicine and food; ‘t Sas-Rolfes et al. 2019; Biggs et al. 2016; 34 

Margulies et al. 2019; Nijman 2010), much less research has been conducted on the roles of very large 35 

Western wildlife markets for driving similar practices. This is despite the fact that Western use of wildlife 36 

has been equally long-standing (Smith et al. 2009; Eskew et al. 2020); even for species popularly 37 

associated with non-Western practices (e.g., pangolin leather trade in the United States; Heinrich et al. 38 

2019). Furthermore, while much of the existing focus on illegal trade of animals has focused on the 39 

smuggling of a small number of high-profile products and derivatives (e.g., ivory, rhino horn, pangolin 40 

scales) there exists an enormous global trade in live animals – for which reptile species are particularly 41 

popular (Bush et al. 2014; Auliya et al. 2016; Lockwood et al. 2019; Marshall et al. 2020). 42 

The live animal trade is of considerable concern given both accelerating biodiversity loss and the 43 

biosecurity risk from harvesting and transporting wildlife (Gore et al. 2020). Notably, the exotic pet trade 44 

is a leading pathway of new biological invasions for vertebrates (Hulme 2009; Capinha et al. 2017; 45 

Lockwood et al. 2019). In addition, the global transport of live animals presents a genuine risk for 46 

panzootics, including the global outbreak of the chytrid fungi due to live trade of pet amphibians (Kolby 47 

et al. 2014; O’Hanlon et al. 2018). Clearly, it is desirable to prevent the entry of these species prior to 48 

them causing environmental damage (Lodge et al. 2016). Indeed, prevention is recognized as the ideal 49 

and most cost-effective way to avoid new alien species establishing (Leung et al. 2012; Lodge et al. 50 

2016).  51 

To avoid the negative impacts caused by alien species efforts to evaluate the probability of 52 

establishment, and the invasion risk of incoming species, are a biosecurity priority (Keller et al. 2007; 53 
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McGeoch et al. 2016). Risk assessments are integral in shaping the management of the import and 54 

keeping of alien species (i.e., Bomford et al. 2009; Gordon et al. 2016), yet there is a paucity of 55 

predictive research aimed at characterizing illegally smuggled species in order to pre-empt future 56 

threats and drive biosecurity decision-making. One reason for the lack of research on wildlife smuggling 57 

is due to its illicit and occluded nature, which makes it extremely difficult to observe directly (Gnambs 58 

and Kaspar 2015). Using alternative sources of data to predict the identity of likely smuggled species is 59 

highly desirable (e.g., wildlife seizure data; Hitchens & Blakeslee 2020).  60 

Here, we test if the popularity of exotic reptiles in the United States (US), and internationally, 61 

can predict the identity of reptiles smuggled into Australia (Figure 1). Australia currently imposes strict 62 

regulations on the importation of wildlife, effectively banning the import of all alien reptile species (DEE 63 

2020). Yet, biosecurity records indicate a continuous stream of alien reptiles smuggled into Australia 64 

since 2000 (Henderson et al. 2011; Toomes et al. 2019). We hypothesize that the United States (US) is 65 

the best available proxy for the ‘Western’ live pet trade as it contributes the largest volume and most 66 

diverse set of live pets globally and, importantly, keeps detailed records of wildlife imports and exports 67 

(Eskew et al. 2020). We posit that species found in the US market consist of the majority of the species 68 

desired as pets in Western countries, including Australia (Toomes et al. 2020). Using a Bayesian 69 

regularized logistic model, we assessed the relationship between the probability of a reptile species 70 

being smuggled into Australia with the species’ frequency in the US trade, along with other trait-, 71 

taxonomy- and trade-based covariates. Finally, we use our model to forecast priority-risk species (i.e., 72 

species not reported smuggled into Australia but for which our model predicts a high probability of 73 

being smuggling). Our innovative modelling approach and resulting outcomes provide a unique early-74 

warning capability for agencies tasked with anticipating, detecting, and preventing illegal wildlife trade. 75 
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Results 76 

Seventy-five (75) reptile species were reported as smuggled into Australia between 1999 and 2016 77 

(Figure 1b). All but one of these smuggled species were also found in the US trade (Astrochelys yniphora, 78 

from 1,263 species, excluding Australian natives; Figure 1a). We observed an average delay of 4.2 years 79 

(standard deviation = 6.1 years) between being first traded in the US and subsequent interception in 80 

Australia, this delay differed by taxonomic clade (Figure 1c).  81 

Our Bayesian regularized model performed and predicted very well, with a training ROC AUC 82 

median value of 0.94 (standard error of ± 0.02) and test ROC AUC of 0.88 (± 0.05). Further, all examined 83 

diagnostic metrics indicated that the model fitted and predicted the data adequately (Figure 2; Appendix 84 

S1). Popularity in US pet stores, the number of years in the US trade, and international online-85 

marketplace popularity had clear positive effects on smuggling probability (Figure 3a; positive 95% 86 

Credible Intervals that do not overlap with zero). Of the continuous variables, US popularity had the 87 

largest influence on smuggling probability (median effect size around double that of international 88 

popularity). The number of exports and imports to/from the US had a positive relationship with the 89 

smuggling probability, although their effects were slightly uncertain given that their 95% credible 90 

intervals marginally overlapped zero. Adult body mass had no influence on smuggling probability.  91 

Species listed in Appendices I and III of CITES (Convention on International Trade in Endangered 92 

Species of Wild Fauna and Flora) had a higher probability of being smuggled compared to species not 93 

listed in CITES, after controlling for other covariates (Figure 3b). Two reptile families had a clear higher 94 

probability of being smuggled (positive effects with credible intervals not overlapping zero): 95 

Testudinidae and Kinosternidae (Appendix S2).  96 

We identified 67 priority-risk species out of 1,189 species in the US trade (6%), which were not 97 

detected as smuggled to Australia but had a high probability of smuggling (Appendix S3). Two species 98 

(panther chameleon, Furcifer pardalis; Brongersma’s short-tailed python, Python brongersmai) had a 99 
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predicted probability above our ‘high’ threshold of being smuggled (Table 2; Figure 4) and 17 species 100 

had a predicted probability above our ‘likely’ threshold (Table 2). 101 

 102 

Discussion 103 

Western countries play a prominent role in the legal and illegal wildlife trade, particularly in exotic pet 104 

keeping (Lockwood et al. 2019; Pyšek et al. 2020). Almost every reptile species recently smuggled to 105 

Australia is found in the US trade. On average, we observed that species were first smuggled to Australia 106 

around 4 years after first appearing in the US trade. It is our interpretation that the recent demand for 107 

illegal species has therefore originated from species already present in the Western pet trade rather 108 

than ‘new’ emerging or fanciful species. This information can be readily incorporated by practitioners to 109 

access and anticipate risk.  110 

  Geographically distant countries are connected through the trade of their commodities, 111 

including wildlife (Fukushima et al. 2020). Here, we provide the first evidence that market-level 112 

indicators of legal wildlife trade in one country (US) have a strong predictive power to discern which 113 

species are smuggled into another Western country (Australia). Demand for popular species in other 114 

countries may be fueled by global connectedness and facilitated by the Internet and related social 115 

media (Tow 2004; Nijman 2020). Part of global connectedness includes live species displayed in 116 

zoological parks and gardens (zoos). Interestingly, of the 48 priority-risk species identified here (i.e., not 117 

yet smuggled to Australia), 16 (33%) are currently housed in Australian zoos (including one ‘high’ risk 118 

species: P. brongersmai; Cassey & Hogg 2015). However, household ownership of these pets are illegal 119 

due to Australia’s stringent laws on alien reptile species (Toomes et al. 2020). We found that popularity 120 

on other Western international-internet markets was also positively correlated with reptile smuggling to 121 

Australia, albeit it had a smaller effect than US markets. Thus, the pervasive influence of the US in 122 
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driving the reptile trade appears to be substantial – similar to many other aspects of Westernized 123 

culture (e.g., fashion, music, fast food; Beck et al. 2003). 124 

  Not only is there a demand for popular ‘Western’ species, but there are a subset of those 125 

popular species (in the trade) which are globally threatened by the trade (i.e., CITES listed). Notably, the 126 

one species smuggled to Australia not in the US market (Astrochelys yniphora) is a critically endangered, 127 

CITES Appendix I member of the Testudinidae family and records indicate it is listed on international 128 

reptile markets (Marshall et al. 2020). Further, we found the tortoise family (Testudinidae) had one of 129 

the highest probabilities of smuggling. This finding is in line with other global smuggling records where 130 

Testudinidae is the most heavily smuggled reptile family (TRAFFIC International 2020). Thus, in addition 131 

to the knowledge of the US market, we found it was important to consider taxonomy, CITES listings, and 132 

international market trends when identifying species at high risk of smuggling. While our results pertain 133 

directly to reptile smuggling in Australia, we hypothesize these trends are more broadly relevant to 134 

other traded taxa and other, ‘Western’ markets.  135 

Our model had excellent predictive discrimination, but it does not reveal any causal relationship 136 

between the US or international wildlife markets and Australian smuggling events. Specifically, it is 137 

unclear if or how the US culture of reptile breeding and keeping is driving the Australian desire and 138 

demand for those species. We recommend that comprehensive surveys of pet owners across different 139 

countries are required to elucidate what physical traits or characteristics people find most desirable 140 

(Toomes et al. 2020). Also, it is unknown whether the US is directly responsible for exporting individuals 141 

that ultimately arrive in Australia. Therefore, we suggest new efforts to gather intelligence into the 142 

motivations of wildlife smugglers (e.g., interviews: Gnambs and Kaspar 2015) to better understand the 143 

routes along which smuggling of live animals occurs and develop interventions around this knowledge to 144 

assist enforcement, and prevent future smuggling events (Thomas-Walters et al. 2021).   145 
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We identified several species common in the US and global trade that are of high priority risk for 146 

being smuggled to Australia. We recommend these species (e.g., panther chameleon and Brongersma’s 147 

short-tailed python) be prioritized for risk assessments and be included in surveillance and identification 148 

training for border inspectors.  Further, because the detection of smuggled species is imperfect, these 149 

species may have already been successfully smuggled into Australia but have not yet been detected nor 150 

seized by authorities (Toomes et al. 2019). Thus, it is equally important that our predictive models are 151 

available to surveillance activities for post-border biosecurity practitioners. While our predictions can be 152 

integrated to support existing biosecurity systems in Australia, the models can also be regularly updated 153 

as new information on incursions and market global trends emerge. We suggest continued efforts to 154 

document species incursions to update our understanding of risk. Specifically, we recommend 155 

surveillance of international reptile markets (e.g., Marshall et al. 2020; Stringham et al. 2021) to update 156 

the pool of species that may be smuggled along with their market characteristics.  157 

Finally, our results provide context and guidance for other countries who seek to ban the 158 

importation of alien species to avoid their accompanying biosecurity risks (i.e., introduction of invasive 159 

species and disease). In the absence of: (i) the underlying motives of smugglers; and (ii) quantitative 160 

information on the consumer demand for illegal species, our approach provides a path to increase the 161 

effectiveness of biosecurity efforts, which seek to curb illegal wildlife trade. Considering the data we 162 

used was relatively easy to obtain and publicly available, future application to other countries and taxa is 163 

possible and highly desirable.  164 

Methods 165 

Data Sources & Explanatory Variables 166 

To identify species illegally smuggled into Australia, we used the recently compiled dataset from Toomes 167 

et al. (2019). This dataset is a comprehensive collation of all recorded alien vertebrate incursions to 168 
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Australia from 1999 to 2016. Each record contains the species, the pathway (i.e., smuggled, stowaway, 169 

or unknown), whether the incursion occurred at the Australian border or post border, and the date of 170 

the incursion. We did not consider stowaway incursions as they represent the accidental transport of 171 

species; and therefore are not actively smuggled illegal species. For the same reason, we excluded post-172 

border at-large (i.e., found in the wild) incursions for species that have only otherwise been recorded as 173 

stowaways.  174 

To represent the composition of species present in the ‘Western’ pet trade, we used two US 175 

trade datasets: (1) live imports and exports to/from the US; and (2) US reptile pet store inventories. The 176 

US is a dominant marketplace in the exotic pet trade (Harfoot et al. 2018), and places little to no legal 177 

restrictions on what species can be traded (Smith et al. 2009). The US import-export record of live 178 

animals is compiled by the US Fish and Wildlife Services under the Law Enforcement Management 179 

Information System (LEMIS; see Romagosa 2009 for details). Entries to this dataset are recorded by 180 

trained officers who inspect each shipment of wildlife entering or leaving the US. Furthermore, unlike 181 

most countries, LEMIS records every animal/animal-derived product entering and leaving the US. Thus, 182 

LEMIS is one of the most complete live animal import-export records of any country globally (Eskew et 183 

al. 2020), and our records span from 1999 to 2016. For the second dataset, we used data collected from 184 

a web scraping effort that spans 5 years of online US reptile pet stores (2012 – 2016; Stringham & 185 

Lockwood 2018). We excluded native Australian species from both the US trade and Australian 186 

smuggling datasets. For each dataset, we resolved species names and higher-level taxa to the GBIF 187 

(Global Biodiversity Information Facility) taxonomic database (GBIF 2020). This resulted in 1,263 species 188 

in the US trade and 75 species smuggled to Australia. We calculated the time lag between the year a 189 

species was first recorded as traded in the US market (first year of import or export) compared to the 190 

first year the species is recorded as smuggled to Australia by Toomes et al. (2019).  191 
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We tested eight explanatory variables (i.e., covariates) in our statistical model (Table 1; 192 

Appendices S4 – S6), which we hypothesized to influence smuggling probability. The first five continuous 193 

covariates are market-level indicators of abundance or popularity in the US and international live-reptile 194 

trade: imports and exports (respectively) to/from the US (number of individuals; from LEMIS dataset); 195 

the number of years either exported or imported to/from the US (from LEMIS dataset); the number of 196 

listings recorded in US pet stores (i.e., US popularity; Stringham & Lockwood 2018); and the number of 197 

listings recorded on international online reptile marketplaces (i.e., international popularity; Marshal et 198 

al. 2020). These internet marketplaces include countries that speak English, German, French, Spanish, 199 

and Japanese (Marshall et al. 2020). We predicted that the more traded or popular a species is, the 200 

more likely it will be smuggled into Australia. Secondly, we used the CITES listings (Appendices I, II, III) as 201 

a categorical covariate. We predicted heavily-traded species faced with extinction risk (i.e., CITES listed) 202 

will be more likely to be smuggled (Courchamp et al. 2006). We used the adult mass as a species-level 203 

trait, by compiling mass information from several life history databases (sensu Stringham & Lockwood 204 

2018). We predicted that size will be positively related to smuggling, as larger species are more desired 205 

as pets (Mohanty & Measey 2019). Finally, we included the taxonomic family as a random effect 206 

because we predicted there to be differences in smuggling rates due to the desire for certain taxa over 207 

others, which might not be fully accounted for by the other covariates in the model (e.g., Pythons are 208 

the most traded snake family; Hienrink et al. 2020).   209 

Statistical analysis 210 

We performed a Bayesian regularized logistic regression, with presence of alien species in Australia as 211 

the response variable and the aforementioned explanatory variables. Bayesian regularization allows for 212 

the inclusion of multiple covariates in a model while avoiding over-fitting by shrinking the coefficients of 213 

those relatively unimportant covariates towards zero (O’Hara & Sillanpää 2009; Hooten & Hobbs 2015). 214 

Those covariates whose posterior coefficient estimates are centered around zero contribute little to the 215 
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final structure of the model. We considered taxonomic family to be a random effect (i.e., random 216 

coefficient) in our model. We imputed values for mass as some species had missing values (37% missing 217 

data). We used five-fold cross validation to evaluate the explanatory (training dataset) and predictive 218 

(testing dataset) capacities of our model and to derive coefficient estimates and predicted probabilities 219 

of each species in the dataset. We standardized all of the continuous covariates by subtracting their 220 

mean and dividing by their standard deviations prior to analyses. The standardization was independent 221 

for the training and testing datasets. To evaluate the model’s fit to the data and its predictive abilities, 222 

we calculated the following diagnostic metrics on both the training and testing datasets: ROC AUC (Area 223 

Under the Receiver Operating Characteristic Curve), Bayesian p-values, uniformity of residuals, presence 224 

of outliers, dispersion, and zero inflation. A model with a ROC AUC value greater than 0.8 is considered 225 

to have excellent discrimination abilities (Mandrekar 2010). For detailed methods on the Bayesian 226 

modelling methods, data imputation, and diagnostic metrics refer to Appendix S1. 227 

To investigate ‘priority’ risk species, we examined the species with the highest predicted 228 

smuggling probability (from our model) but which, to date, have not been detected as smuggled into 229 

Australia. To identify these species, we calculated the threshold value that maximizes the kappa statistic 230 

along with its upper and lower 95% quantiles (from cross-validation). From these thresholds, we 231 

allocated species with a predicted probability above the upper threshold a label of ‘high risk’, above the 232 

median threshold ‘likely risk’ and above the lower threshold ‘low risk’ (Figure 2).  233 

 234 

Data Availability 235 

Data and code is available for peer review and will be publicly available upon publication.  236 

 237 
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Tables 357 

Table 1.  358 

Explanatory variables explored and their hypothesized influence on smuggling probability. Each variable 359 

contained no missing data (n = 1,264) except for mass where n = 796 (See appendix for imputation 360 

details). For a visual representation of variable distributions, see Figure S1. 361 

Explanatory 
variable 

Description 
Hypothesized influence 
on smuggling 

Value range: 
Median/mean 

(5 – 95 quantile) 

exports 
Total number of individuals 
exported from the US 

Positive 
20/82,012 

(0 – 44,307) 

imports 
Total number individuals 
imported to the US  

Positive 
71/12,546 

(0 – 65,984) 

years 
Number of years found in 
US import or export 
records 

Positive 
6.0/7.2 
(1 – 15) 

US popularity 
Number of listings in US 
pet stores 

Positive 
0/54 

(1 – 336) 

international 
popularity 

Number of listings from 
international online reptile 
marketplaces 

Positive 
31/192 

(0 – 1,580) 

mass 
The median mass (g) of a 
species 

Positive 
181/2,267 

(2 – 15,174) 

CITES 
The CITES listing status of a 
species (categorical, 
including not listed species) 

Positive with increasing 
protection status  

- 

family 
The taxonomic family of a 
species 

Mixed, dependent on 
family 

- 

362 
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Table 2.  363 

Reptile species not previously detected as smuggled to Australia, but having a high-predicted probability of being smuggled to Australia (‘high’ 364 

and ‘likely’ species shown). For CITES, roman numerals (I, II, III) represent the CITES Appendix for which the species is listed. NL stands for “Not 365 

Listed” in a CITES Appendix.  366 

Species 

Median 

predicted 

probability 

Family 

Exports 

from 

US 

No. years 

traded in 

US 

US 

popularity 

International 

popularity 
CITES 

Furcifer pardalis 0.87 Chamaeleonidae 1855 15 782 3683 II 

Python brongersmai 0.73 Pythonidae 2047 11 410 3083 II 

Pyxis arachnoides 0.61 Testudinidae 172 7 0 197 I 

Phelsuma laticauda 0.54 Gekkonidae 331 15 202 2796 II 

Epicrates maurus 0.51 Boidae 643 14 242 1901 II 

Pyxis planicauda 0.50 Testudinidae 151 5 0 20 I 

Malacochersus tornieri 0.48 Testudinidae 66 14 164 845 II 

Indotestudo elongata 0.44 Testudinidae 37 13 173 796 II 

Graptemys pseudogeographica 0.40 Emydidae 1580703 15 139 572 III 

Kinixys homeana 0.40 Testudinidae 1119 16 182 75 II 

Eunectes murinus 0.38 Boidae 620 15 189 1812 II 

Varanus exanthematicus 0.38 Varanidae 15301 16 243 1451 II 

Trioceros jacksonii 0.36 Chamaeleonidae 2045 16 653 1399 II 

Chelonoidis niger 0.35 Testudinidae 2 1 0 3 I 
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Species 

Median 

predicted 

probability 

Family 

Exports 

from 

US 

No. years 

traded in 

US 

US 

popularity 

International 

popularity 
CITES 

Chironius carinatus 0.34 Colubridae 6 13 0 2833 NL 

Corallus hortulanus 0.34 Boidae 1714 15 136 1376 II 

Physignathus cocincinus 0.33 Agamidae 109683 15 517 579 NL 

Lygodactylus williamsi 0.31 Gekkonidae 270 3 174 698 I 

Lampropeltis mexicana 0.31 Colubridae 3718 15 345 717 NL 

367 
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Figures368 

 369 

Figure 1.   370 

The Western exotic pet trade in relation to smuggled reptile species to Australia. (a) The United States 371 

legally imports and exports millions of individual reptiles annually. Of the 1,264 species recorded in the 372 

US trade (excluding Australian natives), (b) 74 species have been illegally smuggled to Australia. Thus, all 373 

but one of the 75 species smuggled to Australia are found in US trade (in import-export records or in pet 374 

stores). (c) The majority of smuggled species had a time delay between when it was first traded in the 375 

US to when it was detected as smuggled to Australia. The globe in-between panels (a) and (b) represents 376 
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the  undocumented trade that occurs in other countries. We excluded five species from panel (c), 377 

detected as smuggled to Australia prior to being traded in the US (7% of all smuggled species; Appendix 378 

S7). Colored icons denote the four reptile clades: gray (Crocodilia), purple (Lacertilia), pink (Serpentes), 379 

and green (Testudines). Popular smuggled species pictured in (b) include (from left to right) the corn 380 

snake (Pantherophis guttatus), leopard gecko (Eublepharis macularius), and red-eared slider (Trachemys 381 

scripta elegans). Photo of corn snake by: Jthatt~enwiki; leopard gecko: Matt Reinbold; and red-eared 382 

slider: Massimo Lazzari.    383 
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 384 

 385 

Figure 2.    386 

Median predicted probability output from our Bayesian regularized model for species recorded as 387 

smuggled to Australia (n = 75) and not smuggled to Australia (n = 1,189). The middle line of each box 388 

depicts the median value while the lower and upper lines of each box depicts the 25th and 75th 389 

percentile, respectively. Red dotted lines indicate the risk thresholds for categorizing priority species.  390 

  391 
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392 

Figure 3.  393 

Bayesian regularized model median coefficient estimates and 95% credible intervals. (a) Continuous 394 

covariate coefficient estimates. (b) CITES, categorical covariate coefficient estimates. The CITES 395 

Appendix I, II, III coefficient estimates are relative to the model intercept, representative of species not 396 

listed in CITES. Therefore, CITES Appendix I and III show clear positive increases in smuggling probability 397 

(95% credible intervals do not overlap zero) compared to species not listed in CITES (the intercept).  398 

  399 
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 400 

Figure 4.  401 

Four species with no records of smuggling to Australia but which have the highest predicted probability 402 

of being smuggled from our Bayesian regression. From left to right, row wise: Furcifer pardalis (Panther 403 

chameleon); Python brongersmai (Brongersma's short-tailed python); Pyxis arachnoides (Spider 404 

tortoise); and Phelsuma laticauda (Gold dust day gecko). Photo of F. pardalis by: Charles J. Sharp; P. 405 

brongersmai: Tontan Travel; P. arachnoides: Klaus Rudloff; and P. laticauda: Jasen Leathers.  406 

 407 
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Appendix S1.  428 

Details on statistical model, model selection, and data imputation 429 

 430 

S1.1 Statistical analysis 431 

We modelled the detection of a reptile species i in Australia (either not detected 0, or detected 432 

1) as a function of the continuous and categorical covariates via a Bayesian logistic regression with the 433 

following generic structure: 434 

 435 

deti ~ Bernoulli(pi),        (1) 436 

logit(pi) = βnc Inc + βeca1 Ieca1 + βeca2 Ieca2 + βeca3 Ieca3 + βfs,i + ∑ 𝛽𝑐𝑗
6
𝑗=1 𝑋𝑗,𝑖,  (2) 437 

 438 

where pi was the probability of presence of species i in Australia, βnc was the effect of the species not 439 

being classified in CITES, Inc was a variable indicating whether the species is classified in CITES or not (1 or 440 

0, respectively),  βeca1 was the effect of the species being included in CITES Appendix 1, Ieca1 was a variable 441 

indicating whether the species is included or not in CITES Appendix 1 (1 or 0, respectively),  βeca2 was the 442 

effect of the species being included in CITES Appendix 2, Ieca2 was a variable indicating whether the species 443 

is included or not in CITES Appendix 2 (1 or 0, respectively), βeca3 was the effect of the species being 444 

included in CITES Appendix 3, and Ieca3 was a variable indicating whether the species is included or not in 445 

CITES Appendix 3 (1 or 0, respectively). βfs,i were the coefficient of taxonomic family s to which species i 446 

belongs, and βcj were the coefficients of the six continuous covariates, and Xj,i were the six continuous 447 

covariates. Note that we tested models with five and six continuous covariates (see details below). The 448 

effects of the species being included in a CITES Appendix were measured with respect to the effect of not 449 

being classified in any CITES categories, βnc. Therefore, for example, we calculated βeca1 = βca1 - βnc, and so 450 

on for the other two CITES appendices.  451 
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 452 

S1.2 Model selection  453 

Our modelling aim was to retain the highest number possible of covariates to construct an 454 

informative model with high predictive and explanatory abilities. However, this approach runs the risk of 455 

over-fitting and covariate collinearity, which can bias the coefficient estimates and lead to a model with 456 

poor predictive power. In particular, the number of US listings and the total number of Internet listings 457 

can be correlated since the first can be thought as a subset of the latter. To account for these potential 458 

issues, we fitted nine Bayesian logistic regressions in which we varied the number of continuous covariates 459 

included and the statistical approaches for dealing with collinearity and overfitting (Table S1.A). All the 460 

statistical approaches involved different methods for defining the prior distributions and estimating the 461 

coefficients of the continuous covariates, whereas all the categorical covariates (CITES appendices and 462 

family coefficients) were always included in the models. We explored three different statistical procedures 463 

(Table S1.A): (i) multivariate normal priors ~ MVN(0, Σ), where Σ was the covariate coefficient variance-464 

covariance matrix. We used a relatively uninformative Wishart prior for the matrix Σ, with the variances 465 

(diagonal values) set to 10 and the covariances (off-diagonal values) set to 0 (i.e., no correlation between 466 

the covariates); (ii) Bayesian regularization, where we used a Laplace prior for the coefficients of the 467 

continuous covariates,   ~Laplace(0, b), with a shared scale parameter, b ~ uniform(0, 10). This method 468 

shrinks the posterior estimate of the coefficients of those covariates that contribute relatively little to the 469 

model towards zero, resulting in a regularized model (O’Hara & Sillanpää 2009; Hooten & Hobbs 2015); 470 

and, (iii) the inclusion of indicator variables alongside the coefficients of each covariate j (O’Hara & 471 

Sillanpää 2009; Kéry & Royle 2016): 472 

 473 

  indj ~ Bernoulli(pkj),      (3) 474 

 βkcj ~ normal(0, σicj
2 = 10),     (4) 475 
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 βcj = indj βikcj,       (5) 476 

 477 

where indj indicated whether the covariate was included (1) or not (0) in each iteration of the Bayesian 478 

MCMC, pkj was the probability of inclusion of covariate j, βkcj was the coefficient of the covariate j 479 

regardless of whether it was included in the model during each iteration, and βcj was the coefficient of the 480 

covariate j weighted by its inclusion in the MCMC iteration. The values of indj and pkj serve to weight the 481 

importance of each covariate.  482 

From our set of nine candidate models (Table S1.A), we selected the one that maximized the cross-483 

validated predictive log-score (Hobbs & Hooten 2015). This scoring function is the most appropriate when 484 

the goal is to find the model with the best predictive abilities (Hobbs & Hooten 2015). To estimate the 485 

cross-validated predictive log-score for each model, we used a five-fold cross-validation approach. In each 486 

fold, we left out 30% of the dataset (testing dataset; 379 out of 1,264 observations) and estimated the 487 

mean of the log-probability of the value of the probability of detection for those observations as predicted 488 

from a model fitted to the remaining 70% of observations (training dataset; 889 observations). We did 489 

not choose observations at random to assign to the testing and training dataset given the low prevalence 490 

in the dataset that could lead to biased results. Instead, our design ensured that the proportion of 1s and 491 

0s was the same in the training and testing datasets. Therefore, 30% of 1s and 30% of 0s were randomly 492 

assigned to the testing dataset. We repeated these procedures for each of the five cross-validations folds. 493 

Finally, we obtained the cross-validating predictive log-score of each model by summing over the five 494 

folds. The model with the highest value was considered to be the best in the set of models tested.  495 

 496 

S1.3 Missing data imputation 497 
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We did not have information for 37% of the reptile species (468 of 1,264). We inputted these 498 

missing data within our Bayesian model via a lognormal regression, where we modelled the mass (g) of 499 

reptile species i as: 500 

 massi ~ lognormal(mµi, σl),    (6) 501 

 log(lµi) = α + αfs,i ,    (7) 502 

 503 

where mµi was the log mean of the lognormal distribution, σl was the log standard deviation, α was the 504 

mean species mass on the log scale, and αfs,i was the coefficient of taxonomic family s to which species i 505 

belongs. We used relatively uninformative priors for α ~ uniform(-5, 5), αfs ~ normal(0, σf
2), σf

2 ~ uniform(0, 506 

10), and σl ~ uniform(1, 50). All other Markov Chain Monte Carlo methods (MCMC), including the number 507 

of chains and iterations per chain, followed those described for fitting the Bayesian model.  508 

 509 

S1.4 Model fitting and model explanatory and predictive abilities 510 

We fitted all the models described in the previous section using Bayesian methods as 511 

implemented in package NIMBLE (version 0.10.1) for the R statistical environment (version 3.6.0, de 512 

Valpine et al. 2017; R Development Core Team 2019). All the continuous covariates were standardized by 513 

subtracting the mean and dividing by their standard deviation. This was done independently for the 514 

training and testing dataset. We used relatively uninformative priors for all the coefficients of the 515 

categorical covariates, βnc ~ normal(0, σnc
2 = 10), βeca1 ~ normal(0, σeca1

2 = 10),  βeca2 ~ normal(0, σeca2
2 = 10), 516 

βeca3 ~ normal(0, σca3
2 = 10), and βfs,i ~ normal(0, σff

2), σff
2 ~ uniform(0, 10). For the continuous covariates, 517 

we used the priors described in the previous section. For each of the five cross-validation folds, we fitted 518 

the models using three chains with 50,000 iterations each and a thinning of 10. After confirming the 519 

successful mixing and convergence of the chains via the Gelman-Rubin diagnostic (all coefficients <1.1) 520 

and trace plots (Gelman et al. 2013; Hobbs & Hooten 2015), we discarded the first 5,000 iterations of each 521 
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chain as burn-in. This protocol resulted in 45,000 draws of the posterior of each parameter in each cross-522 

validation fold, and a total of 225,000 draws of the posterior of each parameter in our models.  523 

Our model selection exercise revealed that a Bayesian regularized model incorporating all six 524 

continuous covariates was the best one in terms of predictive abilities (Table S1.A). We only used this 525 

model for further statistical inference. We used the same procedures described above, including the five-526 

fold cross-validation methods, number of chains, and iterations to fit the selected model to the detection 527 

data. We evaluated the goodness-of-the-fit and predictive capacities of this model via a battery of 528 

diagnostic tests (Table S1.B). We calculated Bayesian p-values for the testing and training datasets in each 529 

of the five folds (Gelman et al. 2013; Hobbs & Hooten 2015; Kéry & Royle 2016). A Bayesian p-value 530 

compares the values of a goodness-of-fit test, the mean squared error in our case, estimated from the 531 

observed fit of the model with the value of the same test assuming that the statistical model is correct 532 

(Gelman et al. 2013; Conn et al. 2018). Non-extreme Bayesian p-values, i.e., > 0.05 and < 0.95, suggest an 533 

appropriate model. We estimated the Area Under the Receiver Operating Curve (ROC AUC) for the training 534 

and testing datasets in each fold (Swets 1988; Zou et al. 2007). ROC AUC scores can vary from 0.5 535 

(predictive abilities expected by chance) to 1 (perfect predictive abilities). ROC AUC values higher than 0.7 536 

are usually considered indicative of models with good predictive capabilities (Swets 1988). We used the 537 

library ‘pROC’ in R to estimate the ROC AUC scores (Robin et al. 2011).  538 

We performed a series of posterior residual tests during each fold to ensure that our model did 539 

not suffer from statistical issues such as outliers or zero-inflation (Table S1.B). These diagnostics were 540 

based on the posterior scaled residuals, which vary between 0 and 1 and follow a uniform distribution if 541 

the model is adequate (Dunn & Smyth 1996; Gelman et al. 2013; Hooten & Hobbs 2015). The values for 542 

these tests presented in Table S1.B represent p-values, and very low scores (e.g., < 0.05) indicate that the 543 

model had issues for the problem being assessed. These tests were run using package DHARMa for R 544 

(Hartig 2018).  545 
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Table S1.A  579 

Description and predictive abilities of the nine models of the detection of reptile species in Australia 580 

evaluated here. The model with the highest cross-validated score, the second one in our case (in italic, 581 

bold letters), was selected as the best model for further inference and manipulations. 582 

Model Covariates Method Predictive log-score 

M1 6 continuous 

covariates 

Inc. US listings & 

Internet listings 

Cross-correlation in 

covariate coefficients 

via a multivariate 

normal prior 

29.33 

M2 6 continuous 

covariates 

Inc. US listings & 

Internet listings 

Bayesian 

regularisation via a 

shared Laplace prior 

29.39 

M3 6 continuous 

covariates 

Inc. US listings & 

Internet listings 

Weighting of covariate 

coefficients via 

indicator variables 

28.77 

M4 5 continuous 

covariates 

Inc. US listings only 

Cross-correlation in 

covariate coefficients 

via a multivariate 

normal prior 

29.31 
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M5 5 continuous 

covariates 

Inc. US listings only 

Bayesian 

regularisation via a 

shared Laplace prior 

29.30 

M6 5 continuous 

covariates 

Inc. US listings only 

Weighting of covariate 

coefficients via 

indicator variables 

29.32 

M7 5 continuous 

covariates 

Inc. Internet listings 

only 

Cross-correlation in 

covariate coefficients 

via a multivariate 

normal prior 

29.31 

M8 5 continuous 

covariates 

Inc. Internet listings 

only 

Bayesian 

regularisation via a 

shared Laplace prior 

29.28 

M9 5 continuous 

covariates 

Inc. Internet listings 

only 

Weighting of covariate 

coefficients via 

indicator variables 

28.95 

  583 
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Table S1.B  584 

Cross-validated explanatory (training dataset) and predictive abilities (testing dataset) of our Bayesian 585 

regularized model of the detection of reptile species in Australia. The values for the diagnostics of the 586 

uniformity of residuals, presence of outliers, dispersion, and zero-inflation are p-values and scores < 0.05 587 

indicate a lack of model fit. All these diagnostic tests suggest that our Bayesian regularized model had 588 

good explanatory and predictive capacities.  589 

Diagnostic test Training datasets 

Median ± standard error 

95% Credible Intervals 

Testing datasets 

Median ± standard error 

95% Credible Intervals 

Bayesian p-value 0.50 ± 0.01 

(0.49, 0.52) 

0.20 ± 0.14 

(0.13, 0.44) 

AUC ROC 0.94 ± 0.02 

(0.91, 0.96) 

0.88 ± 0.05 

(0.76, 0.95) 

Uniformity of residuals 0.28 ± 0.25 

(0.10, 0.64) 

0.18 ± 0.07 

(0.15, 0.29) 

Presence of more outliers than 

expected 

1.0 ± 0.00 

(1.00, 1.00) 

1.00 ± 0.00 

(1.00, 1.00) 

Dispersion  0.28 ± 0.07 

(0.20, 0.38) 

0.34 ± 0.24 

(0.09, 0.68) 

Zero-inflation 0.94 ± 0.02 

(0.90, 0.95) 

0.57 ± 0.43* 

(0.04, 0.98) 
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Appendix S2.  590 

Bayesian regularized model median coefficient estimates and the 95% credibility intervals of each 591 

taxonomic family.  592 

 593 



13 
 

Appendix S3.  594 

All 67 priority-risk species and their associated risk, predicted probability, and explanatory variables. 595 

Species 
Risk 

scenario 

Median 

predicted 

probability 

Family 

Imports 

to 

US 

Exports 

from 

US 

No. 

years 

traded 

in 

US 

US 

popularity 

International 

popularity 
CITES 

Adult 

mass 

(g) 

Furcifer pardalis high 0.87 Chamaeleonidae 17799 1855 15 782 3683 II 42 

Python 

brongersmai 
high 0.73 Pythonidae 13669 2047 11 410 3083 II 8144 

Pyxis arachnoides likely 0.61 Testudinidae 1000 172 7 0 197 I 301 

Phelsuma laticauda likely 0.54 Gekkonidae 31902 331 15 202 2796 II 3 

Epicrates maurus likely 0.51 Boidae 1108 643 14 242 1901 II 1306 

Pyxis planicauda likely 0.50 Testudinidae 686 151 5 0 20 I 573 

Malacochersus 

tornieri 
likely 0.48 Testudinidae 4402 66 14 164 845 II 394 

Indotestudo 

elongata 
likely 0.44 Testudinidae 798 37 13 173 796 II 1150 

Graptemys 

pseudogeographica 
likely 0.40 Emydidae 16337 1580703 15 139 572 III 1477 

Kinixys homeana likely 0.40 Testudinidae 27744 1119 16 182 75 II 791 

Eunectes murinus likely 0.38 Boidae 8553 620 15 189 1812 II 85250 

Varanus 

exanthematicus 
likely 0.38 Varanidae 372240 15301 16 243 1451 II 12211 
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Species 
Risk 

scenario 

Median 

predicted 

probability 

Family 

Imports 

to 

US 

Exports 

from 

US 

No. 

years 

traded 

in 

US 

US 

popularity 

International 

popularity 
CITES 

Adult 

mass 

(g) 

Trioceros jacksonii likely 0.36 Chamaeleonidae 9016 2045 16 653 1399 II 31 

Chelonoidis niger likely 0.35 Testudinidae 1 2 1 0 3 I NA 

Chironius carinatus likely 0.34 Colubridae 90 6 13 0 2833 NL 1906 

Corallus hortulanus likely 0.34 Boidae 66995 1714 15 136 1376 II 1906 

Physignathus 

cocincinus 
likely 0.33 Agamidae 1190981 109683 15 517 579 NL 162 

Lygodactylus 

williamsi 
likely 0.31 Gekkonidae 1299 270 3 174 698 I 2 

Lampropeltis 

mexicana 
likely 0.31 Colubridae 73 3718 15 345 717 NL NA 

Sanzinia 

madagascariensis 
low 0.28 Boidae 13 0 3 0 550 I 1965 

Kinixys erosa low 0.27 Testudinidae 838 10 14 139 40 II NA 

Manouria emys low 0.27 Testudinidae 2092 109 14 130 166 II 26000 

Crotalus durissus low 0.26 Viperidae 1108 113 15 3 254 III 1150 

Apalone spinifera low 0.26 Trionychidae 1109 695617 15 135 960 III 4765 

Terrapene carolina low 0.25 Emydidae 27 109 14 279 1573 II 372 

Varanus rudicollis low 0.24 Varanidae 5793 106 15 265 1225 II 629 

Gonyosoma 

oxycephalum 
low 0.22 Colubridae 6087 495 15 344 264 NL 5399 
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Species 
Risk 

scenario 

Median 

predicted 

probability 

Family 

Imports 

to 

US 

Exports 

from 

US 

No. 

years 

traded 

in 

US 

US 

popularity 

International 

popularity 
CITES 

Adult 

mass 

(g) 

Kinosternon baurii low 0.22 Kinosternidae 53 26847 13 135 237 NL 143 

Shinisaurus 

crocodilurus 
low 0.22 Shinisauridae 186 4 11 1 188 I 150 

Acrantophis 

madagascariensis 
low 0.22 Boidae 0 5 3 0 190 I NA 

Indotestudo 

forstenii 
low 0.21 Testudinidae 1980 15 13 2 492 II 1503 

Batagur baska low 0.21 Geoemydidae 4 0 1 0 44 I NA 

Morenia ocellata low 0.20 Geoemydidae 0 1 1 0 0 I NA 

Manouria impressa low 0.20 Testudinidae 350 10 12 121 10 II 2850 

Ahaetulla prasina low 0.20 Colubridae 5394 186 15 158 942 NL 2974 

Python molurus low 0.20 Pythonidae 5473 279 10 13 2523 II 14735 

Apalone ferox low 0.19 Trionychidae 757 2645155 15 139 104 III 11872 

Aldabrachelys 

gigantea 
low 0.19 Testudinidae 1012 158 15 0 312 II 73417 

Boiga dendrophila low 0.18 Colubridae 2341 140 14 134 1094 NL 6107 

Rhinoclemmys 

pulcherrima 
low 0.18 Geoemydidae 32810 28616 15 158 285 NL 1310 

Staurotypus 

triporcatus 
low 0.17 Kinosternidae 578 2047 15 0 202 NL 4200 

Staurotypus salvinii low 0.16 Kinosternidae 902 2110 15 0 163 NL 900 
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Species 
Risk 

scenario 

Median 

predicted 

probability 

Family 

Imports 

to 

US 

Exports 

from 

US 

No. 

years 

traded 

in 

US 

US 

popularity 

International 

popularity 
CITES 

Adult 

mass 

(g) 

Phelsuma grandis low 0.16 Gekkonidae 31 7 3 532 1257 II 21 

Varanus albigularis low 0.15 Varanidae 13047 343 15 308 459 II 5602 

Naja naja low 0.15 Elapidae 591 74 15 0 187 II 1498 

Chelonoidis 

chilensis 
low 0.15 Testudinidae 594 52 13 0 23 II 3181 

Heosemys grandis low 0.14 Geoemydidae 455 6 8 331 30 II NA 

Gekko vittatus low 0.14 Gekkonidae 102642 6716 15 249 650 NL 19 

Anolis carolinensis low 0.14 Dactyloidae 10274 1057094 15 253 1362 NL 2 

Pituophis 

melanoleucus 
low 0.14 Colubridae 27 4120 15 144 553 NL 6407 

Platysternon 

megacephalum 
low 0.13 Platysternidae 1020 62 7 0 105 I NA 

Rhacodactylus 

leachianus 
low 0.13 Diplodactylidae 800 2293 15 367 838 NL 171 

Phelsuma lineata low 0.13 Gekkonidae 10299 285 15 108 1050 II 4 

Micrurus diastema low 0.13 Elapidae 10 1 3 0 2 III NA 

Kinosternon 

scorpioides 
low 0.13 Kinosternidae 9001 9812 12 32 180 NL 266 

Calabaria 

reinhardtii 
low 0.13 Boidae 4736 126 15 149 72 II 183 

Gopherus morafkai low 0.13 Testudinidae 57 2 12 0 3 II 2357 
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Species 
Risk 

scenario 

Median 

predicted 

probability 

Family 

Imports 

to 

US 

Exports 

from 

US 

No. 

years 

traded 

in 

US 

US 

popularity 

International 

popularity 
CITES 

Adult 

mass 

(g) 

Varanus niloticus low 0.12 Varanidae 126742 3666 15 244 328 II 2806 

Candoia aspera low 0.12 Boidae 5110 229 15 121 140 II 384 

Clelia clelia low 0.12 Dipsadidae 91 32 9 0 1774 II 1587 

Varanus jobiensis low 0.12 Varanidae 2298 42 15 261 357 II 1091 

Salvator rufescens low 0.11 Teiidae 18825 1322 15 203 1241 II 4700 

Heosemys spinosa low 0.11 Geoemydidae 3515 45 15 0 159 II 950 

Cyclemys dentata low 0.11 Geoemydidae 14673 752 15 4 90 II 1250 

Vipera ursinii low 0.11 Viperidae 10 0 1 0 31 I 180 

Micrurus 

nigrocinctus 
low 0.10 Elapidae 5 0 1 0 3 III 729 

Kinosternon 

flavescens 
low 0.10 Kinosternidae 24 7936 12 0 71 NL 291 

 596 

 597 
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Appendix S4.  598 

Distributions of explanatory variables: (a) number of exports leaving the US; (b) number of imports 599 

entering the US; (c) number of years in US import/export dataset; (d) adult mass (grams); (e) US 600 

popularity measured as the number of listings counted from US pet stores; (f) international popularity, 601 

measured as the number of listings counted from online international reptile marketplaces; and (g) the 602 

CITES listings. All variables that have log transformed y-axes were transformed using log10(variable + 1) 603 

to visualize zeros in the data, except adult mass where 1 was not added. Each species had no missing 604 

values for all explanatory variables (n = 1,264) except for adult mass (n = 796). 605 

 606 

  607 
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Appendix S5.  608 

Each covariate’s relationship to the presence of being smuggled to Australia (response variable). (a) 609 

Number of listings in US pet stores, (b) the number of exports from the US, (c) the number of imports to 610 

the US, (d) the number of years traded (either exported or imported) in the US, (e) the adult mass in 611 

grams, and (f) the CITES listings where I, II, and III refer to Appendix I, II, or III and NL refers to being not 612 

listed in CITES.  613 

 614 
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Appendix S6.  615 

Number of species by family that have (right column) or have not been (left column) smuggled to 616 

Australia.  617 

 618 

 619 

  620 
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Appendix S7. 621 

Raw data used in analyses. Data will be made public upon publication. Peer reviewers refer to file called 622 

“_reptiles_main_data_clean.csv” for data along with the data dictionary file called “data-623 

dictionary.docx” 624 

  625 
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Appendix S8. 626 

R code for Bayesian model. Code will be made public upon publication. Peer reviewers refer to file 627 

“BayesianRegularizedModel-Script.R”. 628 

 629 

 630 


