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ABSTRACT 1 

1. The genus Gambusia represents approximately 45 species of polyandrous livebearing fishes 2 

with reversed sexual size dimorphism (i.e. males smaller than females) and with copulation 3 

predominantly via male coercion. Male body size has been suggested as an important sexually 4 

selected trait, but despite abundant research, evidence for sexual selection on male body size in 5 

this genus is mixed.  6 

2. Studies have found that large males have an advantage in both male-male competition and 7 

female choice, but that small males perform sneaky copulations better and at higher frequency 8 

and thus may sire more offspring in this coercive mating system. Here, we synthesized this 9 

inconsistent body of evidence using pre-registered methods and hypotheses.  10 

3. We performed a systematic review and meta-analysis of summary and primary (raw) data 11 

combining both published (n = 19 studies, k = 106 effect sizes) and unpublished effect sizes (n = 12 

17, k = 242) to test whether there is overall selection on male body size across studies in 13 

Gambusia. We also tested several specific hypotheses to understand sources of heterogeneity 14 

across effects.  15 

4. Meta-analysis revealed an overall positive correlation between male size and reproductive 16 

performance (r = 0.23, 95% confidence interval: 0.10 – 0.35, n = 36, k = 348, 4514 males, three 17 

Gambusia species). Despite high heterogeneity, the large-male advantage appeared robust across 18 

all measures studied (i.e. female choice, mating success, paternity, sperm quantity and quality), 19 

and was considerably larger for female choice (r = 0.43, 95% confidence interval: 0.28 – 0.59, n 20 

= 14, k = 43). Meta-regressions found several important factors explaining heterogeneity across 21 

effects, including type of sperm characteristic, male-to-female ratio, female reproductive status, 22 

and environmental conditions. We found evidence of publication bias; however, its influence on 23 
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our estimates was attenuated by including a substantial amount of unpublished effects, 24 

highlighting the importance of open primary data for more accurate meta-analytic estimates.  25 

5. In addition to positive selection on male size, our study suggests that we need to rethink the 26 

role and form of sexual selection in Gambusia and, more broadly, to consider the ecological 27 

factors that affect reproductive behaviour in livebearing fishes. 28 

 29 

Keywords: Gambusia affinis, Gambusia geiseri, Gambusia holbrooki, intersexual selection, 30 

mate choice, mosquitofish, reproductive success, sexual coercion 31 
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1. INTRODUCTION  32 

Body size is one of the most important traits affecting the fitness of organisms (Roff, 33 

2002). Larger females are often more fecund than smaller females, while larger males may 34 

outcompete smaller males for access to females and are preferred by females in many species 35 

(Andersson, 1994; Roff, 2002). An outstanding example of large-male advantage can be found in 36 

pinnipeds, where selection has led to males of some species being up to seven times heavier than 37 

females (Lindenfors et al., 2002). Nonetheless, the largest are not always the most successful. 38 

For example, trade-offs between small and large male body size led to an intermediate-sized-39 

male advantage and stabilizing selection in midges (Neems et al., 1998). Furthermore, negative 40 

selection on male body size has been found in several fly species (McLachlan & Allen, 1987) 41 

and waders (Blomqvist et al., 1997), in which small males outperform large males in aerobatic 42 

display. In most species, we do not yet understand if and how body size is selected for and how 43 

intraspecific variation in body size is maintained.  44 

Sexual size dimorphism denotes a difference in adult body size between males and 45 

females of the same species. Female-biased sexual size dimorphism (i.e. females larger than 46 

males) is also called reversed sexual size dimorphism despite females being usually the larger 47 

sex in the majority of species except most birds and mammals (Blanckenhorn, 2005). An 48 

extreme case of reversed sexual size dimorphism is observed in a family of livebearing fishes, 49 

Poeciliidae, in which males of some species are among the smallest living vertebrates (Pilastro et 50 

al., 1997; Bisazza, 1993). Within this family, the genus Gambusia contains approximately 45 51 

species of promiscuous fishes with generally non-descript appearance (Froese & Pauly, 2000). 52 

Unlike most fishes, they show internal fertilization with males using a gonopodium, an 53 

intromittent organ that transfers sperm into the female gonopore (Constanz, 1989). Whether 54 
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courtship occurs is unclear (Martin, 1975; Bisazza & Marin, 1991); however, it appears that 55 

males commonly bypass female cooperation and forcibly inseminate females via coercive mating 56 

tactics (i.e. ‘gonopodial thrusting’; Itzkowitz, 1971; Martin, 1975; McPeek, 1992; Bisazza, 1993; 57 

Bisazza & Marin, 1995). Males can perform about one gonopodial thrust per minute (Wilson, 58 

2005), and this incessant male harassment seemingly lowers female fitness by reducing foraging 59 

efficiency as well as increasing predation risk and energy expenditure (Dadda et al., 2005; 60 

Iglesias‐Carrasco et al., 2019). Gambusia shows considerable inter- and intraspecific male size 61 

variation, making them an often-used model to study male body size selection (Zulian et al., 62 

1995; Deaton, 2008). However, despite abundant research, evidence of size-dependent sexual 63 

selection is mixed.  64 

Low detection and increased agility in performing gonopodial thrusts have been proposed 65 

as explanations for the apparent mating advantage of small males, and thus, for the existence of 66 

reversed sexual size dimorphism in Gambusia (Hughes, 1985). Laboratory experiments have 67 

found that smaller males perform thrusts at higher frequency (Bisazza & Marin, 1995), are more 68 

likely to inseminate females (Pilastro et al., 1997; but see Head et al., 2015b), and may sire more 69 

offspring than larger males in eastern mosquitofish (Gambusia holbrooki; Head et al., 2017). 70 

However, large male size may confer an advantage in intrasexual competition. For instance, 71 

large males have been observed to monopolize access to females and prevent other males from 72 

attempting gonopodial thrusting in both eastern and western mosquitofish (Gambusia affinis; 73 

Bisazza & Marin, 1995; Hughes, 1985) and to be more likely to sire offspring than small males 74 

in eastern mosquitofish (Booksmythe et al., 2016). It has also been observed that female 75 

presence can incite aggressive behaviour among eastern mosquitofish males and that larger 76 

males were more likely to be aggressive and dominant (Itzkowitz, 1971).  77 
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There is also evidence that Gambusia females may still exercise some control via pre- 78 

and postcopulatory female choice (Bisazza, 1993). At the precopulatory level, eastern and 79 

western mosquitofish females were found to preferentially associate with large males (Hughes, 80 

1985; McPeek, 1992; Chen et al., 2018). At the postcopulatory level, Gambusia females can 81 

store sperm for months, and a single brood can have multiple paternity (Constanz, 1989; Zane et 82 

al., 1999; Head et al., 2017), suggesting that sperm competition is likely intense. Larger males 83 

have been found to produce more sperm in a number of poeciliid species, including eastern 84 

mosquitofish (Locatello et al., 2008; O’Dea et al., 2014; Vega‐Trejo et al., 2019). However, 85 

Head et al. (2015b) found a nonlinear selection on male sperm count in eastern mosquitofish, 86 

where males with an intermediate sperm count were more successful at insemination than those 87 

with higher or lower sperm counts. Furthermore, sperm quality might trade off with sperm 88 

quantity (Head et al., 2007). Sperm quality traits such as longevity, viability, morphology, and 89 

velocity influence fertilization success under sperm competition in many species (Garcı́a-90 

González & Simmons, 2005; Boschetto et al., 2011; Birkhead & Pizzari, 2002). Although body 91 

size may be negatively correlated with sperm quality due to trade-offs between body 92 

growth/maintenance and sperm quality (Evans et al., 2003; Locatello et al., 2008), the 93 

relationship between male size and sperm quality in Gambusia is unclear (Locatello et al., 2008; 94 

Vega‐Trejo et al., 2019).  95 

Several environmental factors have been suggested to mediate the body size-fitness 96 

relationship in Gambusia, leading to context-dependency. The operational sex ratio (i.e. the ratio 97 

of sexually receptive males to females) is often proposed as an important factor mediating sexual 98 

selection across species by altering the opportunity for selection (Emlen & Oring, 1977; 99 

Kvarnemo & Ahnesjö, 1996; but see Klug et al., 2010; Jennions et al., 2012; meta-analysis: Rios 100 
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Moura & Peixoto, 2013). In coercive mating systems, male-biased operational sex ratios can be 101 

particularly costly to males and lead to increased opportunity for selection on male traits 102 

(Cureton et al., 2010). For instance, more male-biased ratios resulted in elevated male-male 103 

interference (e.g. chasing) and reduced number of gonopodial thrusts in western mosquitofish 104 

(Smith & Sargent, 2006). Furthermore, male-biased ratios have been suggested both to benefit 105 

large males (Bisazza & Marin, 1995) and to play no role in the relationship between male body 106 

size and reproductive success in eastern mosquitofish (Head et al., 2017).  107 

In sum, there is conflicting evidence for male body size selection in Gambusia. 108 

Frequency-dependent selection may maintain male body size polymorphism (Pilastro et al., 109 

1997). Nonetheless, environmental and ecological factors such as population density, sex ratio, 110 

habitat complexity, photoperiod, and temperature are at play, and could exert different selective 111 

pressures, leading to context-dependency. Here, we performed a systematic review and meta-112 

analysis combining published and unpublished data to test whether (and how) there is sexual 113 

selection on male body size in Gambusia, and to understand the sources of heterogeneity. Our 114 

hypotheses and predictions, which we pre-registered prior to data collection (Kim et al., 2019), 115 

were: 116 

1. Since most copulations in Gambusia seemingly involve forcible inseminations that 117 

bypass female cooperation and small males seem to be more successful at it, we expect 118 

that overall, small males show higher reproductive performance than large males. Thus, 119 

we predict that male size and reproductive performance are negatively correlated across 120 

studies, but we expect this overall effect to be small and uncertain with high 121 

heterogeneity in effect sizes.  122 
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2. We expect the association between male size and reproductive performance to be 123 

context-dependent. Specifically, we predict a positive correlation when: (a) females can 124 

choose between males without physical interaction (e.g. in dichotomous female mate 125 

choice test); (b) experimental density is low, allowing large males to physically dominate 126 

small males; (c) habitat complexity is high, allowing females to avoid or reduce sexual 127 

harassment, and thus to be preferentially choosy; (d) sex ratio is male-biased due to 128 

increased male-male competition. Regarding postcopulatory selection, we predict (e) a 129 

negative correlation between male size and sperm quality due to a trade-off between 130 

growth and reproductive allocation, but (f) a positive correlation between male size and 131 

sperm quantity.  132 

3. Since we expect that female reproductive potential plays a role in male reproductive 133 

behaviour, (a) we predict larger effect sizes when females are either virgin or postpartum 134 

than when they are gravid. Additionally, we expect the association between male size and 135 

reproductive performance to be strengthened by male reproductive motivation. Therefore, 136 

(b) we predict larger effect sizes when males are kept separated from females prior to the 137 

experiment than when they are kept with females. Last, since the mating system is similar 138 

across Gambusia species, (c) we do not predict large differences among species.  139 

 140 

2. METHODS 141 

2.1 PROTOCOL  142 

The study protocol was pre-registered on the Open Science Framework prior to data 143 

collection (Kim et al., 2019). The pre-registration specified our a priori hypotheses, search 144 
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methods, and confirmatory and exploratory analysis plan. Unless stated otherwise, we adhered to 145 

these plans. The Preferred Reporting Items for Systematic reviews and Meta-Analyses 146 

(PRISMA) is a minimum set of items designed to help authors report systematic reviews and 147 

meta-analyses in a transparent manner, which we followed where relevant (Moher et al., 2009; 148 

Figure S2.3). All data processing, analysis, and presentation were conducted using R v.3.6.3 (R 149 

Core Team, 2020).  150 

2.2 INFORMATION SOURCES AND SEARCH 151 

We performed a systematic literature search to find published studies in English from all 152 

years. Three blocks of search keywords were designed to search for the genus (i.e. Gambusia), 153 

the predictor (i.e. body size estimates), and the response of interest (i.e. proxies for fitness and 154 

reproductive performance) in titles, abstracts, and keywords. Searches were conducted on 21st 155 

January 2019. See Supporting Information S1 for full details about the search. 156 

2.3 STUDY SELECTION & ELIGIBILITY CRITERIA 157 

Our searches on Web of Science Core Collection and PubMed yielded 278 and 97 158 

records, respectively, which were combined and deduplicated using the R package ‘revtool’ 159 

v.0.3.0 (Westgate, 2018). The titles and abstracts of 310 unique records were screened using 160 

Rayyan (Ouzzani et al., 2016). Ninety records passed the title-and-abstract screening and were 161 

subjected to full-text screening. Full-text records varied in their specific research questions, but 162 

studies were included as long as they fulfilled the criteria of measuring male size (standard 163 

length, total length, body mass) and any measure of reproductive performance (see below) for 164 

any species in genus Gambusia (see decision trees in Figure S2.1 and S2.2; more information 165 

below). Full-text screening identified 55 studies meeting our inclusion criteria (PRISMA 166 

diagram in Figure S2.3). All titles, abstracts, and full-texts were double-screened to reduce 167 
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potential individual biases, with the primary screener (BK) screening all records and secondary 168 

screeners (NPM, AST) each independently screening 50%. Conflicting decisions were 169 

collectively discussed and resolved. 170 

Studies where animals were exposed to environmental pollutants and/or pharmaceuticals 171 

(e.g. endocrine disrupting chemicals such as fluoxetine) were excluded because even very low 172 

levels of exposure can affect morphology and reproductive behaviour (Saaristo et al., 2013); 173 

however, data from non-exposed control groups from those studies were included, if available. 174 

Studies where male fish were size-matched in trials were excluded because potential effects of 175 

male body size were effectively eliminated, whereas studies testing non-size related hypotheses 176 

were included as long as males were not size-matched.  177 

Four categories of outcome measures were considered measures of male reproductive 178 

performance: female choice, mating success, sperm characteristics (quantity and quality), and 179 

paternity (number of offspring sired). In some cases, female choice was measured as the number 180 

of approaches made toward males or the number of arching displays by females (n = 3 studies, k 181 

= 12 effects), but the predominant female choice measure was association time in dichotomous 182 

mate choice tests (n = 13, k = 31). Female association preferences have been shown to be 183 

indicative of the likelihood of reproducing with preferred males in a poeciliid (Walling et al., 184 

2010). Likewise, the number of mating attempts (gonopodial thrusts), the predominant measure 185 

of male mating success, has been shown to be a good predictor of successful copulation 186 

(Bisazza, 1993) and paternity (Deaton, 2008) in mosquitofish. Outcome measures not considered 187 

as measures of male reproductive performance and excluded were male mate choice, male 188 

aggressive behaviour, and male gonadal size or mass. 189 
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2.4 DATA COLLECTION AND EXTRACTION 190 

One observer (BK) performed all data extraction, and secondary observers (NPM, AST) 191 

each independently extracted data from 27% (n = 15, 54% total) of records to verify extraction 192 

and enhance reproducibility. Summary data were extracted from text, tables, or figures in 193 

published articles, and the R package ‘metaDigitise’ v.1.0.1 (Pick et al., 2019) was used to 194 

extract data from figures. Primary (raw) data were obtained directly from authors and from 195 

published (open) datasets, including datasets that, although they contained our variables of 196 

interest (i.e. reproductive performance and male body size), had not been used to test the 197 

relationship between reproductive performance and male body size. Complete data extraction 198 

from published material was possible for 18 studies, and partial extraction from seven additional 199 

studies. Requests for missing or partially reported data were sent to 24 authors of 37 studies via a 200 

standardized e-mail template, from which we obtained data for 11 studies (from nine authors). 201 

Six authors communicated that data were lost, and the remaining nine did not reply. During 202 

author correspondence, it was revealed that Head et al. (2015b) re-analysed a subset of data from 203 

another study (Head et al., 2015a), so the former was excluded from analyses.  204 

2.5 EXTRACTED VARIABLES 205 

Information was extracted regarding the study (publication year, journal, author 206 

information), study subject (species, collection site, fish considered native or invasive at the 207 

collection site, wild or laboratory born, female reproductive status), laboratory maintenance 208 

conditions (fish kept with/without the opposite sex, temperature, photoperiod), experimental 209 

condition (dimension of experimental aquarium, number of female and male fish within 210 

experimental trials, presence/absence of physical interaction among experimental fish, habitat 211 

complexity), and type/unit of experimental variable. The type of male body size trait (standard 212 
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length, total length, body mass) and the type of reproductive performance measure were also 213 

recorded. The complete lists of continuous and categorical moderators are in Table S3.1 and 214 

Table S3.2. 215 

2.6 EFFECT SIZE CALCULATION 216 

We extracted all necessary statistical information to quantify the association between 217 

male size and reproductive performance using Pearson’s correlation coefficients (hereafter r). 218 

Following Jacobs and Viechtbauer (2017), mean differences between small and large fish in 219 

studies that compared male size categories (e.g. dichotomous female choice trials) were 220 

transformed to biserial correlations using the function ‘escalc’ from the R package ‘metafor’ 221 

v.2.4-0 (Viechtbauer, 2010). Biserial correlations are conceptually equivalent and directly 222 

comparable to r (Jacobs & Viechtbauer, 2017). Note that meta‐analyses involving both Pearson’s 223 

and biserial correlation coefficients need to be based on the raw coefficients, which is why we 224 

did not use Fisher’s r-to-z transformation (Jacobs & Viechtbauer, 2017). When there were more 225 

than two male size groups, we specified in the pre-registration that all pairwise correlations 226 

would be calculated; however, this was not a common issue in our dataset (i.e. only two such 227 

designs), so instead, only data from the smallest and the largest groups were extracted to 228 

calculate the biserial correlation.  229 

Where more than one effect size could be calculated from the same data due to the 230 

reporting of multiple statistical outputs, we chose one using the following order of preference: 231 

(1) r; (2) other correlation coefficients (e.g. Spearman’s rho); (3) mean differences between 232 

small and large males (used to calculate biserial correlations as above); (4) R2 from simple or 233 

multiple regression; and (5) inferential statistics (e.g. t-statistic, F-statistic). This order of 234 

preference was chosen to minimize the number of inferential steps (and thus of noise) required to 235 
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transform the reported statistical outputs to our main effect size of interest (i.e. r). Effect sizes 236 

other than r and biserial correlations were converted into r using the equations provided in 237 

Lajeunesse (2013) and Nakagawa and Cuthill (2007; see Table S4). Sampling variances of r (Vr) 238 

were calculated as (1 - r2)2/(n - 1) (Borenstein et al., 2009), and those of biserial correlations 239 

were calculated using the function ‘escalc’ from the R package ‘metafor’ v.2.4-0 (Viechtbauer, 240 

2010). The sample size of each effect size reflected the number of replicates rather than the 241 

number of males. These two numbers were the same except for dichotomous mate choice trials, 242 

in which one female chose between two males, and we assigned the number of females as the 243 

sample size rather than the number of males to avoid artificially inflating sample size. Effect 244 

sizes were coded so that a negative effect size denoted a negative correlation between male size 245 

and reproductive performance, and vice versa.  246 

2.7 MAIN EFFECT MODEL 247 

A multilevel intercept-only meta-analytic model was fitted to estimate the overall effect 248 

size  (i.e. meta-analytic mean) for the association between male size and reproductive 249 

performance using the R package ‘metafor’ v.2.4-0 (Viechtbauer, 2010). Estimates (i.e. means) 250 

are presented with their 95% confidence intervals (CI) in square brackets throughout. 251 

Furthermore, we estimated 95% prediction intervals (PI), which incorporate heterogeneity 252 

(IntHout et al., 2016). Whereas confidence intervals show the range in which the overall effect is 253 

likely to be found, prediction intervals estimate the likely range in which 95% of effects are 254 

expected to occur in similar future (or unknown) studies (IntHout et al., 2016). 255 

All models, including the meta-regressions (see below), included the following random 256 

effects: (i) study ID, which encompasses effect sizes extracted from the same study, (ii) group 257 

ID, which encompasses effect sizes obtained from the same group of fish, (iii) experiment ID, 258 
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which encompasses effect sizes derived from the same experiment, and (iv) effect ID, which 259 

represents residual/within-study variance. Our models included one more random effect (i.e. 260 

group ID) than planned in our pre-registration, but this was considered necessary to account for 261 

this source of non-independence among effect sizes. We ran two additional sensitivity analyses 262 

that showed very similar results: (i) an analysis fitting sampling variances as a variance-263 

covariance matrix assuming a 0.5 correlation between sampling variances from the same 264 

experiment ID (Supporting Information S9); and (ii) an analysis that included an extra random 265 

effect (lab ID) to partition among-laboratory heterogeneity (S10).  266 

For the intercept-only meta-analytic model, we calculated Cochran’s Q and I2
total (Higgins 267 

& Thompson, 2002) and the equivalent for each random effect, as measures of absolute and 268 

relative heterogeneity, respectively. Heterogeneity refers to the unexplained variation among 269 

effect sizes after accounting for sampling variance. 270 

2.8 META-REGRESSIONS FOR TESTING HYPOTHESES   271 

We fitted multilevel meta-regressions to investigate potential effects of moderators on the 272 

relationship between male size and reproductive performance. To test if physical interaction 273 

among individual fish affected the results (Hypothesis 2a), we fitted a meta-regression including 274 

the moderator ‘physical interaction’ (levels: yes, no) for the subset of studies in which female 275 

choice was measured. For experiments where fish could physically interact, we fitted a meta-276 

regression including the following moderators: experimental density (i.e. total number of fish in 277 

the trial divided by the aquarium volume (L); Hypothesis 2b), habitat complexity (levels: low, 278 

high; Hypothesis 2c), and male-to-female ratio (Hypothesis 2d) as well as the interaction 279 

between experimental density and habitat complexity, and the interaction between male-to-280 

female ratio and habitat complexity. Since the latter two meta-regressions tested hypotheses 281 
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related to precopulatory mechanisms, they did not include effect sizes on sperm quantity nor 282 

quality. For the subset of studies that measured sperm quantity and/or quality, we fitted a meta-283 

regression including the type of sperm characteristic as a moderator (levels: quantity, quality; 284 

Hypotheses 2e and 2f).  285 

Due to limited reporting on female reproductive status and male housing conditions in the 286 

literature, we deviated from our pre-registration for hypotheses 3a and 3b (details in Supporting 287 

Information S8). Instead, to test for effects of female reproductive status (Hypothesis 3a), we 288 

fitted a meta-regression with four levels of female status (virgin, gravid, male-deprived, and non-289 

deprived). To test for male housing condition effects (Hypothesis 3b), we fitted a meta-290 

regression including a moderator with two levels (mixed-sex: kept with females, same-sex: kept 291 

separated from females). Last, we fitted a meta-regression including a moderator ‘species’ with 292 

three levels (G. affinis, G. geiseri, and G. holbrooki) to test if effects differed among species 293 

(Hypothesis 3c). 294 

2.9 META-REGRESSIONS FOR EXPLORATORY ANALYSES 295 

Five additional pre-registered exploratory meta-regressions were performed to test 296 

hypotheses related to methodological design, but for which no specific direction was predicted 297 

(Kim et al., 2019). We tested if results differed: (1) depending on the type of male size proxy 298 

used (levels: standard length, total length, body mass); (2) between native and invasive 299 

populations (levels: native, invasive); (3) depending on the fish’s rearing environment (levels: 300 

wild, laboratory); (4) depending on temperature (°C) and photoperiod (i.e. number of daylight 301 

hours per day); and (5) depending on the type of outcome variable (i.e. reproductive performance 302 

measure; levels: female choice, mating success, sperm quality, sperm quantity, paternity). 303 
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For all meta-regressions, we estimated the percentage of heterogeneity explained by the 304 

moderators using R2
marginal (Nakagawa and Schielzeth, 2013). Missing and unreported data were 305 

not included in the meta-regressions (i.e. we ran complete-case analyses). Continuous and 306 

categorical moderators involved in interactions terms (e.g. habitat complexity) were mean-307 

centred to aid interpretation (Schielzeth, 2010). Results of the main effect model and meta-308 

regressions with categorical moderators were graphically represented as orchard plots using the 309 

R package ‘orchaRd’ v.0.0.0.9000 (Nakagawa et al., 2020). Meta-regressions with continuous 310 

moderators were plotted with the R package ‘ggplot2’ v.3.3.2 (Wickham, 2016).  311 

2.10 PUBLICATION BIAS TESTS 312 

To test for small-study bias, we fitted a multilevel meta-regression with sample size as a 313 

moderator (Nakagawa & Santos, 2012). Likewise, to test for time-lag bias in the published 314 

literature (Jennions & Møller, 2002; Koricheva & Kulinskaya, 2019), we fitted a multilevel 315 

meta-regression including the year of publication as a moderator in the subset of effect sizes 316 

categorized as ‘published’ (Sánchez-Tójar et al., 2018). Furthermore, the source of data was 317 

included as a moderator (levels: published, unpublished) in a meta-regression to test whether 318 

effect sizes were larger in published than unpublished effects (Sánchez-Tójar et al., 2018; Moran 319 

et al., 2020). We categorized supplementary material (i.e. open datasets) as ‘unpublished’ 320 

whenever the specific research question/hypothesis of the study did not involve male size per se, 321 

but male size was nevertheless measured and provided, because we did not expect to find 322 

publication bias regarding male body size in these effects. Additionally, whether results were 323 

reported completely or incompletely (e.g. missing effect sizes, relationships reported as simply 324 

‘non-significant’, etc.) was included as a moderator (levels: complete, incomplete) in a meta-325 

regression to test whether effect sizes were larger in studies that incompletely reported results. 326 
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Last, we originally intended to test whether data collected by observers blind to male size led to 327 

smaller effect sizes than data collected by observers not blind to male size (see Holman et al., 328 

2015), but we did not encounter any study using blind data collection regarding male size, so this 329 

pre-registered hypothesis was not tested.  330 

 331 

3. RESULTS 332 

Overall, 348 effect sizes were obtained from 36 studies including 179 groups of fish 333 

tested in 216 experiments (4514 male fish in total). Median and mean sample sizes were 16 and 334 

35, respectively (range: 3 – 294; only three data points had a sample size of three). Data were 335 

available only for three species: G. affinis (n = 7 studies, k = 29 effects), G. geiseri (n = 1, k = 5), 336 

and G. holbrooki (n = 29, k = 314; map of collection sites shown in Figure S5.1).  337 

3.1 MAIN EFFECT MODEL (HYPOTHESIS 1) 338 

Contrary to our hypothesis, the intercept-only model revealed a positive association 339 

between male size and reproductive performance (r = 0.23 [0.10 – 0.35], 95% PI = -0.69 – 1.15, 340 

p < 0.001, n = 36, k = 348; Figure 1). That is, our meta-analysis suggests that there is positive 341 

selection on male size in Gambusia. Nonetheless, absolute (Q = 5484, p < 0.001) and relative 342 

heterogeneity (I2
total = 92.2% [85.3 – 95.7]) were high. When I2

total was partitioned, 33.0% [23.7 343 

– 41.2] was attributed to study ID, 53.1% [40.8 – 60.9] to group ID, 6.2% [0.8 – 11.9] to 344 

experiment ID, and 0.0% [0.0 – 1.8] to effect ID. 345 

 346 
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 347 

Figure 1. Male size appears positively selected across included effects. Orchard plot of the meta-348 

analytic model, showing the meta-analytic mean, 95% CI (thick whisker), 95% PI (thin whisker), 349 

and individual effect sizes scaled by their precision (circles). 350 

 351 

3.2 META-REGRESSIONS FOR TESTING HYPOTHESES 352 

3.2.1 Physical Interaction (Hypothesis 2a) 353 

The size-reproductive performance correlation was positive in both presence (r = 0.18 354 

[0.01 – 0.35], p = 0.015, n = 19, k = 171) and absence (r = 0.38 [0.16 – 0.59], p < 0.001, n = 14, 355 

k = 37) of physical interaction between males and females during mate choice tests. Effect sizes 356 

tended to be larger in absence than in presence, but that difference was not statistically 357 

significant (p = 0.105). The moderator explained 2.3% of heterogeneity (R2
marginal = 0.023).  358 

3.2.2 Experimental Density (Hypothesis 2b), Habitat Complexity (Hypothesis 2c) and Male-to-359 

Female Ratio (Hypothesis 2d) 360 

For experiments where fish were allowed to physically interact, the size-reproductive 361 

performance correlation did not seem to be affected by experimental density, male-to-female 362 
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ratio, or the interaction between those and habitat complexity (Table S6.1). Effect sizes tended to 363 

be stronger in more complex habitats, but a subsequent non-pre-registered meta-regression 364 

including habitat complexity as the only moderator showed that the difference between low (r = 365 

0.10 [-0.11 – 0.30], p = 0.354, n = 15, k = 144) and high habitat complexity (r = 0.23 [-0.05 – 366 

0.50], p = 0.115; n = 6, k = 27) was not statistically significant (p = 0.383; R2
marginal = 0.008). In 367 

contrast, an additional non-pre-registered meta-regression that included male-to-female ratio as 368 

the only moderator showed that, as predicted, the more male-biased the population, the better 369 

reproductive performance of large males (intercept = 0.14 [-0.05 – 0.33], p = 0.137; slope = 0.13 370 

[0.02 – 0.25], p = 0.022; n = 19, k = 171; R2
marginal = 0.104; Figure 2). Since the latter two meta-371 

regressions were not pre-registered, the results should be interpreted cautiously.  372 

 373 

 374 

Figure 2. Large males showed greater reproductive performance in more male-biased 375 

populations. The solid line represents the model estimate, shading represents the 95% CI, and 376 

individual effect sizes are scaled by their precision. 377 

 378 
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3.2.3 Sperm Quantity and Quality (Hypotheses 2e & 2f) 379 

Male size and sperm quantity were positively correlated (r = 0.17 [0.09 – 0.24], p < 380 

0.001, n = 10, k = 74), while the estimate for sperm quality was small and its 95% CI overlapped 381 

zero (r = 0.04 [-0.04 – 0.12], p = 0.316, n = 8, k = 66). Indeed, the difference between quantity 382 

and quality was statistically significant (p < 0.001; Figure 3A), and the type of sperm 383 

characteristic as a moderator explained 8.8% of the heterogeneity (R2
marginal = 0.088). 384 
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Figure 3. Orchard plots showing that A) Male size was positively correlated with sperm quantity 386 

but not quality; B) Female reproductive status did not strongly influence the correlation; C) The 387 

correlation did not differ substantially across Gambusia species; D) The correlation was 388 

generally positive across male reproductive performance measures in Gambusia species. Note 389 

that, although paternity contains more effect sizes than the other levels, only four studies 390 

measured paternity. Plots show means, 95% CI (thick whisker), 95% PI (thin whisker), and 391 

individual effect sizes scaled by their precision (circles). 392 

 393 

3.2.4 Female Reproductive Status (Hypothesis 3a) 394 

The size-reproductive performance correlation was positive in all four levels of female 395 

reproductive status, but the 95% CIs overlapped zero in virgin (r = 0.18 [-0.07 – 0.44], p = 0.160, 396 

n = 7, k = 84) and non-deprived females (r = 0.15 [-0.22 – 0.52], p = 0.414, n = 3, k = 10), while 397 

they did not in gravid (r = 0.46 [0.04 – 0.88], p = 0.031, n = 3, k = 8) and male-deprived females 398 

(r = 0.28 [0.03 – 0.52], p = 0.026, n = 8, k = 31; Figure 3B). Post-hoc Wald tests revealed no 399 

statistically significant differences between those four levels of female reproductive status (p > 400 

0.282 in all cases), and the moderator explained 3.0% of heterogeneity (R2
marginal = 0.030). 401 

3.2.5 Male Housing Condition (Hypothesis 3b) 402 

The size-reproductive performance correlation was positive in both mixed-sex (r = 0.38 403 

[0.18 – 0.57], p < 0.001, n = 10, k = 98) and same-sex housing conditions (r = 0.16 [0.01 – 0.32], 404 

p = 0.038, n = 17, k = 164). Contrary to our hypothesis, effect sizes tended to be larger in mixed-405 

sex than in same-sex conditions (p = 0.091). Male housing conditions explained 5.3% of 406 

heterogeneity (R2
marginal = 0.053). 407 
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3.2.6 Species (Hypothesis 3c) 408 

The size-reproductive performance correlation was positive in all three species, although 409 

the 95% CI substantially overlapped zero in G. geiseri (G. affinis: r = 0.31 [0.00 – 0.62], p = 410 

0.048, n = 7, k = 29; G. geiseri: r = 0.08 [-0.62 – 0.78], p = 0.829, n = 1, k = 5; G. holbrooki: r = 411 

0.22 [0.08 – 0.35], p = 0.002, n = 29, k = 314). As predicted, the differences across species were 412 

not statistically significant (p > 0.515 in all cases; Figure 3C), and the moderator explained only 413 

0.4% of heterogeneity (R2
marginal = 0.004). 414 

3.3 META-REGRESSIONS FOR EXPLORATORY ANALYSES 415 

3.3.1 Type of Male Size Proxy 416 

The size-reproductive performance correlation was positive and similar regardless of the 417 

type of male size proxy used (p > 0.949 in all cases; R2
marginal = 0.000): standard length (r = 0.22 418 

[0.09 – 0.35], p < 0.001, n = 32, k = 263), total length (r = 0.23 [0.06 – 0.39], p = 0.008, n = 4, k 419 

= 31), and body mass (r = 0.23 [0.09 – 0.36], p = 0.001, n = 7, k = 43).  420 

3.3.2 Origin of Population 421 

The size-reproductive performance correlation was positive for both invasive (r = 0.21 422 

[0.07 – 0.36], p = 0.004, n = 27, k = 274) and native populations (r = 0.26 [-0.02 – 0.53], p = 423 

0.069, n = 8, k = 73). That difference was not statistically significant (p = 0.784), and the 424 

moderator explained only 0.1% of heterogeneity (R2
marginal = 0.001).  425 

3.3.3 Rearing Environment 426 

The size-reproductive performance correlation was positive for wild fish (r = 0.27 [0.13 – 427 

0.41], p < 0.001, n = 28, k = 222), but not statistically significantly so for laboratory-bred fish (r 428 

= 0.08 [-0.17 – 0.32], p = 0.551, n =7, k = 125); however, that difference was not statistically 429 

significant (p = 0.181). Rearing environment explained 3.9% of heterogeneity (R2
marginal = 0.039).  430 
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3.3.4 Temperature and Photoperiod 431 

Neither temperature nor photoperiod seemed to strongly influence the size-reproductive 432 

performance correlation (intercept = 0.26 [0. 12 – 0.41], p < 0.001; temperature = -0.03 [-0.10 – 433 

0.04], p = 0.359; photoperiod = 0.11 [-0.02 – 0.24], p = 0. 101; n = 26, k = 250). However, there 434 

was a tendency for the correlation to be greater with longer hours of daylight, and both 435 

moderators combined explained 5.2% of heterogeneity (R2
marginal = 0.052). 436 

3.3.5 Measures of Male Reproductive Performance 437 

The size-reproductive performance correlation was positive regardless of the measure of 438 

male reproductive performance. However, it was only statistically significant for female choice 439 

(r = 0.43 [0.28 – 0.59], p < 0.001, n = 14, k = 43), mating success (r = 0.16 [0.01 – 0.30], p = 440 

0.035, n = 14, k = 50), and sperm quantity (r = 0.19 [0.03 – 0.36], p = 0.024, n = 10, k = 74), 441 

whereas the estimates for paternity (r = 0.12 [-0.14 – 0.38], p = 0.362, n = 4, k = 115) and sperm 442 

quality (r = 0.04 [-0.13 – 0.21], p = 0.651, n = 8, k = 66) were not statistically significant (Figure 443 

3D). Post-hoc Wald tests showed that the estimate for female choice was statistically 444 

significantly larger than those of the other measures (p < 0.041 in all cases), and the estimate for 445 

sperm quantity was statistically significantly larger than that of sperm quality (p < 0.001). The 446 

measure of reproductive performance explained 6.3% of heterogeneity (R2
marginal = 0.063). 447 

3.4 PUBLICATION BIAS TESTS 448 

Overall, we found some evidence of publication bias in the published literature, the 449 

influence of which was seemingly ameliorated by our approach of including both published and 450 

unpublished effect sizes. Effect sizes tended to become slightly smaller as sample size increased 451 

(i.e. small-study effect; intercept = 0.23 [0.11 – 0.35], p < 0.001; slope = -0.001 [-0.002 – 0.000], 452 

p = 0.082; n = 36, k = 348; R2
marginal = 0.010; Figure 4). This small-study effect became 453 
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prominent when only published effect sizes were considered (Figure S7.1). There was no clear 454 

evidence of time-lag bias (i.e. decline effect) in published effect sizes (intercept = 0.32 [0.05 – 455 

0.59], p = 0.017; slope = -0.002 [-0.024 – 0.020], p = 0.834; n = 19, k = 106; R2
marginal = 0.003). 456 

However, published effect sizes (r = 0.33 [0.16 – 0.51], p < 0.001, n = 19, k = 106) tended to be 457 

larger than unpublished ones (r = 0.12 [-0.05 – 0.29], p = 0.157, n = 17, k = 242), although not 458 

statistically significantly so (p = 0.086; R2
marginal = 0.043; Figure 5). Finally, as expected, studies 459 

reporting data incompletely (r = 0.53 [0.12 – 0.95], p < 0.012, n = 5, k = 29) tended to show 460 

larger effect sizes than studies reporting data in full (r = 0.27 [0.02 – 0.51], p < 0.032, n = 14, k = 461 

77), but that difference was not statistically significant (p = 0.284; R2
marginal = 0.049). 462 

 463 

  464 

Figure 4. Effect sizes became slightly smaller as sample size increased, demonstrating some 465 

evidence of small-study effect. The solid line represents the model estimate, shading represents 466 

the 95% CI, and circles represent individual effect sizes scaled by their precision. 467 
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 468 

Figure 5. Published effect sizes tended to be larger than unpublished ones for the correlation 469 

between male size and reproductive performance in Gambusia. Orchard plot showing means, 470 

95% CI (thick whisker), 95% PI (thin whisker), and individual effect sizes scaled by their 471 

precision (circles). 472 

 473 

4. DISCUSSION 474 

We found that male size and reproductive performance are positively correlated across 475 

studies of Gambusia. Throughout, all mean effect estimates were positive, including the overall 476 

effect and the category-specific meta-regression effects, which suggests that evidence for large-477 

male advantage is robust. Positive selection on male size in the face of reversed sexual size 478 

dimorphism in Gambusia might seem unexpected, but it should be kept in mind that our study 479 

focused on sexual selection on body size. Variation in body size and sexual size dimorphism 480 

originates and is maintained by complex interactions between natural and sexual selection, so 481 

there could be opposing ecological selection pressures and viability costs that keep males small 482 
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(Blanckenhorn, 2000). For example, natural selection via ecological niche partitioning between 483 

the sexes and small-male advantage in foraging have been associated with reversed sexual size 484 

dimorphism in birds of prey (Krüger, 2005). Whether this seemingly directional and positive 485 

selection is driving evolution of male body size in Gambusia is also unclear, in part because the 486 

heritability of body size appears negligible in the most studied Gambusia species, the eastern 487 

mosquitofish (Zulian et al., 1993; Booksmythe et al., 2016; Vega-Trejo et al., 2018). Indeed, 488 

environmental effects, including maternal effects, have been found to be important components 489 

of male body size in eastern mosquitofish (Vega-Trejo et al., 2018). Furthermore, differential 490 

selection on the age/size at maturity (e.g. Carmona-Catot et al., 2011; Reznick et al., 2006; 491 

Hughes, 1985) is likely a key component explaining why variation in male body size is 492 

commonplace in this genus. The overall positive effect contrasts with our prediction and with 493 

earlier studies that found a small-male advantage, mostly when focusing on gonopodial thrusting 494 

as a measure of reproductive performance (Bisazza & Marin, 1995). Nonetheless, the high 495 

heterogeneity found and consequently wide prediction intervals for our main effect highlights 496 

that our results do not preclude a small-male advantage being the ‘true’ effect in certain contexts.  497 

Meta-regressions revealed that the type of reproductive performance measure, the male-498 

to-female ratio, and the type of sperm characteristic are important moderators explaining a 499 

sizable amount of heterogeneity. The five categories of reproductive performance we used could 500 

be associated with different aspects of sexual selection: Female choice is associated with 501 

precopulatory intersexual selection, mating success presumably with both male-male competition 502 

(intrasexual selection) and precopulatory intersexual selection, sperm quality and quantity with 503 

postcopulatory sexual selection, and paternity with overall reproductive success. The category-504 

specific estimates were generally positive, suggesting large males have an advantage at each 505 
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level of sexual selection. However, there are reasons to interpret this cautiously. The estimate for 506 

paternity, arguably the measure closest to fitness in our data, was positive but small and 507 

uncertain. The paternity category had the highest number of effect sizes (k = 115) among all five 508 

categories, but all of those effect sizes were based on a few males (range: 4 – 36) and came from 509 

only four studies. Furthermore, we expected a negative estimate for the mating success category 510 

because, according to the literature, Gambusia shows a coercive mating system where small 511 

males outperform large males at gonopodial thrusting (e.g. Bisazza & Marin, 1995; Pilastro et 512 

al., 1997). Surprisingly, the estimate was still slightly positive, even though this category 513 

included many effect sizes for which individual males were tested singly, which potentially 514 

benefitted smaller males due to the absence of competitors. As the number of males tested 515 

together increased, larger males generally prevailed and performed more gonopodial thrusting 516 

(Figure 2; as in Bisazza & Marin, 1995; Deaton, 2008; Booksmythe et al., 2013). The 517 

inconspicuousness and manoeuvrability that give smaller males an edge in gonopodial thrusting 518 

(Bisazza & Marin, 1995; Pilastro et al., 1997) may be eclipsed by larger males’ competitive 519 

dominance, and thus, this category may have underestimated the influence of male-male 520 

competition.  521 

As predicted, the association between male size and sperm quantity was positive, while 522 

the relationship between male size and sperm quality was virtually non-existent. The latter 523 

finding contrasted with our prediction for a trade-off between sperm quality and male 524 

size/growth. It is possible that sperm competition in this genus is so intense irrespective of male 525 

size that no clear association exists between male size and sperm quality (Zane et al., 1999). 526 

Moreover, Gambusia males may facultatively adjust how much sperm they spend depending on 527 

the perceived sperm competition risk instead of altering the quality of their ejaculate (Evans et 528 
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al., 2003). Future studies are needed to understand the role and mechanism of sperm competition 529 

and to disentangle the effect of male size, sperm quantity, and sperm quality, especially since 530 

internal fertilization and livebearing make poeciliids an ideal model organism for studying sperm 531 

competition.  532 

The female choice category showed a greater estimate than the other categories, 533 

challenging us to rethink the role that female choice may play in Gambusia and also the way 534 

female choice is measured in the laboratory. Of 13 studies that investigated female choice, 11 535 

confirmed female preference for large males, so it is possible that there is a latent female 536 

preference whose expression is hindered in the wild but is detectable in the artificial settings of 537 

dichotomous mate choice tests. However, it is unclear whether the female association preference 538 

represents a preference to reproduce with large males. In the laboratory, eastern mosquitofish 539 

females were shown to aggregate with other females to dilute the costs of excessive male sexual 540 

harassment such as increased predation risk and reduced foraging efficiency (Dadda et al., 2005). 541 

Similarly, females associated with a larger male when a harassing male was present, which may 542 

be a strategy to curtail harassment via the larger male monopolizing access to the female and 543 

fending off smaller males (Dadda et al., 2005; Searcy, 1982). In nature, eastern mosquitofish 544 

females tended to shoal with similar-sized females (Bisazza & Marin, 1995), so female 545 

preference for large males may also be a by-product of female schooling behaviour. Future 546 

studies on the role of female choice in Gambusia should consider the effect of this gregarious 547 

tendency in females.  548 

Female choice was mostly measured in dichotomous mate choice tests with no physical 549 

interaction between the sexes, which does not reflect the ecological reality of male-female 550 

interactions. Instead, researchers could make use of recent advances in tracking technology to 551 



30 
 

study female choice in this group (e.g. Pérez-Escudero et al., 2014; Sridhar et al., 2019). Our 552 

analyses revealed a larger effect in the absence than in the presence of physical interaction, so it 553 

is possible that female preference for large males was somewhat artificially inflated. When 554 

experimental fish did freely interact, experimental density, male-to-female ratio, and the 555 

interaction between these and habitat complexity explained a substantial percentage of 556 

heterogeneity. When considered singly, male-to-female ratio had a positive effect on the 557 

relationship between male size and reproductive performance, explaining the second greatest 558 

amount of heterogeneity in this meta-analysis (10.4%). That is, our results suggest that male size 559 

is a stronger predictor of reproductive performance when male-male competition is high. It 560 

should be kept in mind that separating the effects of male-to-female ratio from the effects of 561 

male and female density is difficult; for example, male and female density under varying sex 562 

ratios was shown to exert different influence on patterns of male behaviour change in western 563 

mosquitofish (Smith, 2007).  564 

Some of the limitations of our meta-analysis reside in the experimental conditions of the 565 

included studies. First, all included studies were conducted in the laboratory where Gambusia 566 

mating behaviour was often measured in unrealistically low complexity settings, making it 567 

difficult to draw connections between the results of our meta-analysis and reproductive dynamics 568 

in natural populations. Furthermore, even the ‘high complexity’ category in our meta-analysis 569 

(small rocks and/or natural or artificial plants) did not reflect the true complexity of natural 570 

habitats and was heavily underrepresented (k = 27), which could explain the lack of a clear 571 

statistical effect in our meta-regression. Visual field observations revealed that male chases of 572 

females in western mosquitofish mostly came to a halt when the chased female dashed into dense 573 

vegetation in shallow water (Martin, 1975). Thus, it is likely that females use vegetation to 574 
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escape from, and selectively not escape from, the males, and this aspect of Gambusia mating 575 

behaviour was largely overlooked. In addition, most trials were conducted at 28 °C with 14 hours 576 

of light period, which does not reflect the natural variation since Gambusia can occupy icy lakes 577 

and ponds as well as hot springs and thermally elevated lakes reaching 42-44 °C (Meffe & 578 

Snelson, 1989). Importantly, eastern mosquitofish males have been observed to reproduce across 579 

the entire test temperature range of 14 °C to 38 °C in laboratory (Wilson, 2005). Since 580 

temperature and photoperiod are generally regarded as the two most vital environmental factors 581 

in fish reproductive cycle, how photoperiod and temperature interact to control Gambusia 582 

reproduction requires further investigation. Specifically, attention should be paid to seasonal and 583 

daily fluctuations, which might have greater influence than the test temperature and photoperiod.  584 

Female reproductive status is another important factor to consider when studying 585 

Gambusia mating behaviour. Although females try to thwart male copulatory attempts at all 586 

stages of their reproductive cycle (Bisazza & Marin, 1995), mosquitofish females have been 587 

suggested to more likely associate with males when virgin, postpartum, or male-deprived 588 

(Hughes, 1985; Pilastro et al., 2003; Bisazza et al., 2001). Thus, we hypothesized larger effect 589 

sizes for virgin or postpartum females than for gravid females. Unfortunately, there were 590 

insufficient effect sizes to calculate an estimate for postpartum females because many studies 591 

excluded postpartum females due to heightened male interest (Constanz, 1989), which was 592 

deemed a confounding variable for some research questions. If female receptivity and male 593 

interest are at their peak 1-2 days after parturition, future sexual selection studies may benefit 594 

from focusing more on postpartum females, not less, which would help avoid a systematic design 595 

issue that underestimates the role of female behaviour and mate choice.  596 
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Our systematic review and meta-analysis also underscored evidence of publication bias in 597 

the published literature. First, our analyses showed some evidence of small-study bias, 598 

suggesting that some low-precision studies might still remain unavailable despite our efforts to 599 

include both published and unpublished effect sizes. Evidence for small-study bias is often found 600 

in meta-analysis in ecology and evolution and needs to be considered when interpreting meta-601 

analytic results (e.g. Parker, 2013; Wang et al., 2018; Sánchez‐Tójar et al., 2020a; 2020b). The 602 

existence of publication bias was further demonstrated since published effect sizes tended to be 603 

larger than unpublished effect sizes, and studies reporting data incompletely also tended to show 604 

larger effect sizes than studies reporting data in full. Similar patterns have been shown in recent 605 

meta-analyses in the field (Sánchez-Tójar et al., 2018; Moran et al., 2020), and we expect these 606 

patterns to be more and more commonly uncovered since meta-analysts have started to make use 607 

of open data (Culina et al., 2018). Despite the evidence of publication bias in the published 608 

literature, our approach of combining both published and unpublished data largely mitigated its 609 

effect (Figure S7.1). However, some caution should still be taken when interpreting the results of 610 

our meta-analysis. 611 

In sum, our meta-analysis found evidence of positive sexual selection on male body size 612 

in Gambusia that was seemingly robust across contexts. We found gaps and limitations in 613 

experimental designs used to study Gambusia mating behaviour, which should help guide the 614 

necessary future research on this topic, particularly since our meta-analysis revealed a large 615 

proportion of unexplained heterogeneity across effect sizes. Our study also identified the need to 616 

rethink the role and form of female choice in this genus and how it is measured in the laboratory. 617 

Female choice may play a subtle and underestimated part, and association preference for large 618 
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males for protection could be a means through which females may exert some amount of choice 619 

in an ostensibly coercive mating system.  620 
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