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ABSTRACT 1 

Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban 2 

land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of 3 

the most widespread human-dominated land-uses affecting biodiversity. Responses to 4 

urbanization differ greatly among species. Some species are unable to tolerate urban 5 

environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels 6 

of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban 7 

environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization 8 

remains an important goal, but our current understanding of urban tolerance is heavily biased 9 

towards traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous 10 

measure of urbanization — VIIRS night-time lights — with over 900,000 species’ observations 11 

from GBIF to derive a comprehensive analysis of species-specific (N=158 species) responses of 12 

butterflies to urbanization across Europe. The majority of butterfly species included in our 13 

analysis avoided urban areas, regardless of whether species’ urban affinities were quantified as a 14 

mean score of urban affinity across all occurrences (79%) or as a species’ response curve to the 15 

whole urbanization gradient (55%). We then used the species-specific responses to urbanization 16 

to assess which life history strategies promote urban affinity in butterflies. These trait-based 17 

analyses found strong evidence that the average number of flight months, likely associated with 18 

thermal niche breath, and number of adult food types were positively associated with urban 19 

affinity, while hostplant specialism was negatively associated with urban affinity. Overall, our 20 

results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are 21 

most at risk from increasing urbanization, and should thus be considered in urban planning and 22 

prioritized for conservation.  23 
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INTRODUCTION 26 

Anthropogenic habitat modification is, and will continue to be, one of the most significant 27 

drivers of biodiversity declines (Pereira et al. 2010; Barlow et al. 2016; Matuoka et al. 2020). Of 28 

the various anthropogenic stressors, urbanization is one of the most widespread near-term threats 29 

to biodiversity assemblages (McDonald et al. 2019). Urbanization directly leads to habitat loss, 30 

fragmentation, and degradation (Liu et al. 2016). Moreover, urbanization is associated with 31 

increased noise (Francis et al. 2011), light (Hopkins et al. 2018), and chemical (Kabir et al. 2014) 32 

pollution, which also adversely impact biodiversity (McKinney 2006). With the expected amount 33 

of urban land cover to increase by 2-3 million km2 by 2050 (Huang et al. 2019), it is critical to 34 

understand how biodiversity responds to urbanization.  35 

 36 

While the evidence is clear that urbanization can significantly alter biological communities 37 

(Fenoglio et al. 2020), in many cases leading to biotic homogenization (McKinney 2006), there 38 

is a large range of responses among species (Threlfall et al. 2012; Lintott et al. 2016; Gippet et 39 

al. 2017). Some species have adapted to (Homola et al. 2019), and are even thriving in, urban 40 

environments (Evans and Gawlik 2020), while others have been extirpated by urbanization 41 

processes (Warren et al. 2019). In general, species can be placed along a continuum according to 42 

their response to urban environments. On one end of this continuum, species preferentially avoid 43 

urban areas leading to displacement in the face of increasing urbanization. And on the other end 44 

of this continuum, species persist in, or even colonize, urban environments to take advantage of 45 

various aspects of urban form. Quantifying the extent to which a given species is able to tolerate 46 

urban environments is important for restoration prioritization and for incorporating biodiversity 47 

in future urban planning (e.g., Winchell et al. 2017).  48 

https://doi.org/10.1038/nature18326
https://doi.org/10.1016/j.ecolind.2020.106471
https://doi.org/10.1371/journal.pone.0154613
https://doi.org/10.1371/journal.pone.0027052
https://doi.org/10.1002/fee.1828
https://doi.org/10.1016/j.scitotenv.2013.10.010
https://doi.org/10.1016/j.biocon.2005.09.005
https://doi.org/10.1088/1748-9326/ab4b71
https://doi.org/10.1111/geb.13107
https://doi.org/10.1016/j.biocon.2005.09.005
https://doi.org/10.1016/j.biocon.2011.11.026
https://doi.org/10.1002/ece3.1996
https://link.springer.com/article/10.1007%2Fs11252-016-0576-7
https://link.springer.com/article/10.1007%2Fs11252-016-0576-7
https://academic.oup.com/jhered/article/110/6/707/5529283
https://www.nature.com/articles/s41598-020-70934-x
https://doi.org/10.1002/ecs2.2624
https://doi.org/10.1002/ece3.3600
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 49 

A species’ ability to tolerate urban environments is a result of that species’ unique life history 50 

and characteristics, including the species it interacts with (Martin and Bonier 2018), its niche 51 

breadth (Bonier et al. 2007; Palacio 2020), various life history traits (Rodewald and Gehrt 2014; 52 

Lowe et al. 2017; Jung and Threlfall 2018; Callaghan et al. 2019), phylogenetic predisposition 53 

(Sol et al. 2017), or cultural influences (Clucas and Marzluff 2012). This body of previous 54 

research has highlighted the complexity of this question, and results have been largely 55 

inconclusive. However, ecological theory predicts that species traits may be useful predictors to 56 

describe generalities across species (Vallet et al. 2010; Barnum et al. 2017; Jung and Threlfall 57 

2018). Identifying these general patterns in the types of species most at risk from increasing 58 

urbanization will also aid conservation decision-making.  59 

 60 

Our current understanding of urban tolerance and the relationship between urban tolerance and 61 

ecological and life history traits is heavily biased towards traditionally well-studied taxa (e.g., 62 

mammals and birds). Much is known about the ability of traits to predict urban tolerance in birds 63 

(Callaghan et al. 2019; Palacio 2020), mammals (Santini et al. 2019; Uchida et al. 2020), and 64 

amphibians (Winchell et al. 2020; Martínez-Gómez 2020). For other taxa, such as insects, the 65 

response to urbanization remains poorly quantified, but there is evidence that some taxa are more 66 

affected than others (e.g., Fenoglio et al. 2020). It is increasingly important to better understand 67 

how insects are responding to increasing urbanization, given the potential declines of insects at 68 

various spatial scales (Wepprich et al. 2019; Piano et al. 2019; Didham 2020; Svenningsen et al. 69 

2021).  70 

 71 

https://doi.org/10.1073/pnas.1809317115
https://doi.org/10.1098/rsbl.2007.0349
https://doi.org/10.1111/ibi.12732
https://www.semanticscholar.org/paper/Wildlife-Population-Dynamics-in-Urban-Landscapes-Rodewald-Gehrt/a3788fd32c8da53271680e7b02172f3cc8c89995
https://doi.org/10.1093/jue/jux004
https://doi.org/10.1098/rspb.2018.1222
https://doi.org/10.1111/oik.06158
https://doi.org/10.1111/ele.12769
https://doi.org/10.1525/auk.2011.11121
https://doi.org/10.1111/j.1654-109X.2010.01087.x
https://doi.org/10.1002/eap.1619
https://doi.org/10.1098/rspb.2018.1222
https://doi.org/10.1098/rspb.2018.1222
https://doi.org/10.1111/oik.06158
https://doi.org/10.1111/ibi.12732
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.13199
https://link.springer.com/article/10.1007/s11252-020-00950-2
https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13947
https://onlinelibrary.wiley.com/doi/full/10.1111/evo.14002
https://onlinelibrary.wiley.com/doi/full/10.1111/evo.14002
https://onlinelibrary.wiley.com/doi/full/10.1111/evo.14002
https://onlinelibrary.wiley.com/doi/full/10.1111/evo.14002
https://onlinelibrary.wiley.com/doi/full/10.1111/evo.14002
https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13107
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216270
https://onlinelibrary.wiley.com/doi/abs/10.1111/icad.12408
https://onlinelibrary.wiley.com/doi/abs/10.1111/icad.12408
https://www.biorxiv.org/content/10.1101/2020.09.16.299404v1.full
https://www.biorxiv.org/content/10.1101/2020.09.16.299404v1.full
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Butterflies have large geographic ranges, occupy a number of different niches, are popular with 72 

the general public and hence citizen science monitoring, and can be used as indicators of 73 

environmental change due to their sensitivity to local environmental changes at small scales 74 

(Blair 1999; Essens et al. 2017). These attributes combine to make butterflies an excellent taxa to 75 

quantify responses to urbanization. Although butterflies are negatively impacted by urbanization 76 

(Mata et al. 2014; Tzortzakaki et al. 2019; Fenoglio et al. 2020; Kurlyo et al. 2020), minor 77 

changes in urban greenspace management (e.g., connectivity) can help foster and lead to an 78 

increase in butterfly diversity within urban environments, suggesting species are affected by the 79 

relative amount of urban surfaces compared to green surfaces (Mata et al. 2014; Dylewski et al. 80 

2019; Nagase et al. 2019; Iserhard et al. 2019). However, certain species are able to tolerate 81 

urban environments more than other species, and species-specific responses to urbanization still 82 

need to be quantified (Mata et al. 2014).  83 

 84 

Our objective was to quantify species-specific measures of urban affinity for European butterfly 85 

species at a macroecological scale (i.e., continental Europe) using a continuous measure of 86 

urbanization. First, we integrated these species-specific measures of urban affinity with trait data 87 

to test which traits best predict urban affinity in butterflies. We expected that certain life history 88 

and ecological traits would correlate with urban affinity (see Table 1 for details on traits tested 89 

and predictions), including thermal tolerance such as flight period and overwintering strategy 90 

(Pöyry et al. 2006), the degree of generalism (Bartanova et al. 2014), body size (Coulthard et al. 91 

2019), microhabitat use (Essens et al. 2017), and general life history traits such as voltinism and 92 

egg laying type (Wepprich et al. 2019). Second, we applied a cluster analysis across all species 93 

to characterize the most typical species’ response curves to urbanization and the complex of 94 

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/1051-0761(1999)009%5B0164:BABAAU%5D2.0.CO;2
https://link.springer.com/article/10.1007/s10841-017-9972-4
https://onlinelibrary.wiley.com/doi/full/10.1111/een.12744
https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13107
https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13107
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2144
https://link.springer.com/article/10.1007/s10841-014-9696-7
https://onlinelibrary.wiley.com/doi/full/10.1111/een.12744
https://onlinelibrary.wiley.com/doi/full/10.1111/een.12744
https://doi.org/10.3956/2018-94.4.195
https://link.springer.com/article/10.1007%2Fs10531-018-1678-8
https://link.springer.com/article/10.1007/s10841-014-9696-7
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2008.01789.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2008.01789.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2008.01789.x
https://www.eje.cz/pdfs/eje/2014/04/12.pdf
https://doi.org/10.1016/j.biocon.2019.02.023
https://doi.org/10.1016/j.biocon.2019.02.023
https://link.springer.com/article/10.1007/s10841-017-9972-4
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216270
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traits associated with each type of response. Ultimately, these analyses help to identify the 95 

species that are most at risk from increasing urbanization. 96 

 97 

METHODS 98 

Butterfly observation data from GBIF 99 

We downloaded data from the Global Biodiversity Information Facility (GBIF) for butterfly 100 

occurrence throughout continental Europe (GBIF.org 2020). We downloaded data from 2010 to 101 

2020 and only considered observations of butterflies in Europe (i.e., from Papilionidae, 102 

Hesperiidae, Pieridae, Riodinidae, Lycaenidae, and Nymphalidae). Only observations that had 103 

coordinates and did not have geospatial issues, as flagged by GBIF, were kept for potential 104 

analysis. We removed possible GBIF duplicates from analysis by removing any observations that 105 

had the same date, latitude, and longitude.  106 

 107 

We defined a near-contiguous European region for analysis to account for geographic 108 

heterogeneity in the number of records (see Table S1 with the countries included in the analysis 109 

and the corresponding sample sizes). We trimmed the extent to exclude predominantly offshore 110 

islands and regions with disparate records from the analysis (see Fig. S1 for the study extent). 111 

 112 

Urban affinity of butterflies  113 

We estimated a measure of urban affinity for each species along a continuum of urbanization. 114 

Here, we use the term urban affinity to describe the extent to which a species tolerates, or uses, 115 

urban environments. Urban affinity can range from preference, indifference, or avoidance of 116 

urban environments. This measure focuses on the interspecific variation in affinity among 117 
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species. This approach is similar to what others have used to calculate species’ thermal 118 

tolerances (e.g., Devictor et al. 2012). We overlaid GBIF observations with a continuous 119 

measure of urbanization: VIIRS night-time lights (Elvidge et al. 2017). VIIRS night-time lights 120 

measure the radiance in the night-time sky. While VIIRS night-time lights represents one method 121 

to quantify urbanization (cf. housing density), remote sensing research has highlighted that night-122 

time lights can efficiently map urban areas (Pandey et al. 2013) and characterize change in 123 

urbanization levels (Zhang and Seto 2013; Stathakis et al. 2015). Moreover, night-time lights can 124 

help to delineate urban sprawl and urban morphology (Elvidge et al. 2019). Indeed, we found a 125 

significantly negative relationship between VIIRS night-time lights and enhanced vegetation 126 

index (Fig. S2). It has an added advantage that it is globally applicable, and continuous, allowing 127 

the measurement of the relative intensity of urbanization. Moreover, it is easily available as 128 

open-source data, allowing for the applicability of our analysis in other parts of the world. In our 129 

context, light pollution itself can also impact animal populations, including insects (Hölker et al. 130 

2010), thus making this an intuitive metric to measure butterfly response to urbanization. 131 

Nevertheless, this approach is likely currently limited to macro-ecological analyses given that the 132 

current resolution (15 arc-seconds) is larger than other measures of urbanization, and may need 133 

to be calibrated with other data when regions with very different development levels, 134 

corresponding to different levels of electricity consumption, are compared. We took the median 135 

values of all images from 2014-2020 at the native resolution of 15 arc-seconds (~ 500 m) 136 

(Evlidge et al. 2017). The year 2014 was when this VIIRS stray light corrected product was first 137 

produced and thus the temporal scale of the urbanization measure (median value from 2014-138 

2020) does not exactly correspond to the temporal scale of our GBIF occurrence records (2010-139 

2020). However, this approach assumes that because urban cover changes relatively slowly, the 140 

https://www.nature.com/articles/nclimate1347/
https://doi.org/10.1080/01431161.2017.1342050
https://doi.org/10.1016/j.rsase.2015.10.001
https://doi.org/10.1080/01431161.2017.1342050
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relative patterns from 2014 onwards represents the relative difference between high and low 141 

urban cover, and additionally we note that the majority of our GBIF occurrence records are 142 

derived from post 2014. See Callaghan et al. 2020a for more details about this process. Spatial 143 

analyses were performed in Google Earth Engine (Gorelick et al. 2017). We acknowledge that 144 

butterflies can necessarily select habitat at spatial scales less than 500 m, but our analysis here 145 

was focused on landscape-level responses.  146 

 147 

After each observation was assigned a measure of VIIRS night-time lights at a continuous scale, 148 

each species had a distribution of their frequency of use along an urbanization gradient (e.g., Fig. 149 

S3). Only species with a minimum of 250 observations were considered for analyses as this has 150 

been shown previously to minimize the variance in response to urbanization among species and 151 

be applicable at localized spatial scales (Callaghan et al. 2020a; Callaghan et al. 2020b). Because 152 

each species differs in their geographic extent across Europe (Schweiger et al. 2014) we adjusted 153 

the distribution of VIIRS night-time light levels for each species by standardizing for (1) the 154 

available urban habitat in a species’ range and (2) the bias in sampling observations in a species’ 155 

range relative to urban habitat (Callaghan et al. 2020c, Liu et al. 2021). To do this, we created a 156 

concave hull around the observations for each species using the concaveman package in R 157 

(Gombin 2020). We then subtracted the mean of all VIIRS values for all observations within a 158 

species’ range from the mean of all VIIRS observations for a given species. This provides a 159 

value that can be negative (species under-occupy urban areas suggesting they actively avoid 160 

them) or positive (species over-occupy urban areas suggesting they prefer them). This measure 161 

of urban affinity was treated as our response variable in further analyses and referred to as an 162 

urban affinity score. The urban affinity score was strongly correlated with the breadth of 163 

https://doi.org/10.1111/ecog.04863
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1111/ecog.04863
https://doi.org/10.1016/j.biocon.2020.108753
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904140/
https://doi.org/10.1111/oik.07356
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urbanization used by a species as well, calculated by the interquartile range of species’ 164 

distribution to VIIRS night-time lights (see Fig. S4). In other words, species with higher mean 165 

urban affinity scores also occupied areas with a large range of VIIRS values.  166 

 167 

To confirm that our measure of urban affinity captured the continuum in species-specific 168 

responses, and was not driven by detection bias of species towards urban areas, we ran an 169 

additional analysis using occupancy-detection models. We modelled relationships between 170 

species’ occurrence patterns and the level of urbanization using species-specific occupancy 171 

models, also allowing urbanization to affect detection probabilities, in the unmarked package in 172 

R (Fiske and Chandler 2011). There was a strong correlation in the estimated urban affinities 173 

between these two markedly different approaches, and we therefore focused our analyses on the 174 

urban affinity score described above, which is a simpler and more generalizable approach (see 175 

details in Fig. S5). 176 

 177 

Life history and ecological traits 178 

Based on known relationships in the published literature, we developed a trait framework that 179 

involved five broad categories of traits (i.e., extent of specialization, body size, microhabitat use, 180 

life history, and thermal tolerance), each with one or more specific variables to represent these 181 

categories, with a total of 11 different traits (Table 1). The traits investigated were: (1) average 182 

number of flight months; (2) overwintering strategy; (3) mean temperature in a species’ range; 183 

(4) number of adult food types; (5) hostplant specificity; (6) hostplant specialism index; (7) wind 184 

index; (8) mean voltinism; (9) egg laying type; (10) hostplant growth forms; and (11) number of 185 

egg laying locations. Trait data were extracted from Middleton-Welling et al. 2020 for all traits 186 

http://www.jstatsoft.org/v43/i10/
https://www.nature.com/articles/s41597-020-00697-7


11 

 

 

besides the mean temperature of a species’ range (a measure of thermal preference), which was 187 

extracted from Schweiger et al. 2014. After taxonomic matching (all names were matched to the 188 

taxonomy provided by Middleton-Welling et al. 2020), we were left with 159 species that had 189 

both an urban affinity score and associated trait data (Table S2). One of these species, however, 190 

Geranium Bronze (Cacyreus marshalli) had an urban affinity score 5x greater than any other 191 

species in our dataset because it is a known invasive pest that often relies on houseplants and has 192 

known synanthropy with novel anthropogenic environments (Quacchia et al. 2008). This was the 193 

only species in the dataset that was not native to our study region within Europe. This species 194 

was regarded as an atypical, outlier species, and thus excluded from our analyses. 195 

 196 

Statistical analysis 197 

We approached our analysis from different angles, using different statistical tools, to provide 198 

complementary evidence and visualizations on how urban affinity was associated with species’ 199 

traits. In brief, this involved: (1) correlation analysis to examine simple correlations among all 200 

traits; (2) multiple regression analysis to focus on understanding variation in urban affinity and 201 

partial effects of other traits; (3) boosted regression trees to examine non-linearity and account 202 

for interactions among traits; and (4) clustering analysis to visualize the dominant trait clusters 203 

associated with an urbanization gradient.  204 

 205 

Correlation and Regression modelling. First, for all numeric predictor variables (N=10), we 206 

assessed the pairwise relationships between urban affinity and the predictor variables using 207 

Pearson correlation coefficients. Second, to assess the strength of the relationship between a 208 

given predictor variable and urban affinity, accounting for the relationship of all other predictor 209 

https://zookeys.pensoft.net/articles.php?id=3167
https://link.springer.com/article/10.1007/s10531-008-9350-3
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variables, we used multiple linear regression with a Gaussian distribution. The response variable 210 

was urban affinity, and the predictor variables (N=11) were: the average number of flight 211 

months, wing index, mean temperature in range, the number of adult food types (log10 212 

transformed), mean voltinism, the number of hostplant growth forms, the number of egg laying 213 

locations, hostplant specificity, egg laying type, hostplant index (log10 transformed), and 214 

overwintering stage. Egg laying type was a categorical variable with three levels (single, small, 215 

and large batches) but was dummy-coded in the multiple linear regression because it showed 216 

little correlation with the response variable in exploratory analyses; we therefore did not assess 217 

differences among the levels of egg laying type. Parameter estimates from the model were 218 

standardized by centering and dividing by 2 standard deviations (Gelman 2008). In addition to 219 

the large model with all the traits, we ran two separate linear regressions between urban affinity 220 

and overwintering stage and hostplant growth form, respectively (see Table 1). These two traits 221 

were treated separately as each trait was associated with multiple binomial levels, and we wanted 222 

to avoid over-inflating the number of predictor variables in a single multiple linear regression. In 223 

each instance, the possible overwintering stages (i.e., egg, larval, pupal, adult) and possible 224 

hostplant growth forms (i.e., shrub, tall herb/grass, short herb/grass, and tree) were treated as 225 

binomial predictor variables in separate multiple linear regressions. For all three multiple linear 226 

regression models, we used weights in the model-fitting procedure where more weight was given 227 

to a species based on the number of observations of that species used to derive its urban affinity 228 

score, but the number of observations was capped at 1000 to ensure that our results were not 229 

driven by a few species with high weights. 230 

 231 

http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
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Boosted regression trees. We also performed a third analysis, using boosted regression trees 232 

(Elith et al. 2008). This analysis is advantageous because it allows for both linear and nonlinear 233 

relationships between urban affinity and the ecological and life history traits of butterflies, as 234 

well as complex interactions among the predictor variables themselves. Because of the 235 

robustness of this analysis, we included all possible predictor variables from the three multiple 236 

linear regressions mentioned above (N=19), testing our entire suite of different predictions 237 

(Table 1). Although predictor variables do not need to be transformed for boosted regression 238 

trees (Elith et al. 2008), we kept the log10-transformed versions of hostplant index and the 239 

number of adult food types for consistency with the multiple linear regression modelling. First, 240 

we extracted the relative influence for each predictor variable, which shows the effect of each 241 

predictor variable on the response variable normalized to sum to 100 (Friedman 2001; Elith et al. 242 

2008). Second, for any variable that explained >5% of the total relative influence, we produced 243 

partial dependency plots that illustrate the influence of a given predictor variable accounting for 244 

the average effects of other predictor variables (e.g., Vilmi et al. 2019). The boosted regression 245 

tree analysis was performed using the dismo package in R (Hijmans et al. 2017). We used a tree 246 

complexity of 5, a learning rate of 0.001, and a bag fraction of 0.5 (e.g., Elith et al. 2008; Buston 247 

and Elith 2011; Vilmi et al. 2019). Exploratory analyses varying the level of tree complexity, 248 

learning rate, and bag fraction showed no difference in the quantitative or qualitative results. 249 

 250 

Clustering analysis. To characterize the trait values associated with the most typical patterns of 251 

species’ urban affinity, we used Generalized Additive Models (gams) in combination with 252 

clustering analysis. We used gams to model the presence/absence of species in 5 x 5 km grids 253 

within their distributional extent (delineated by the convex hull of their occurrence records) with 254 

https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1214/aos/1013203451
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13584
https://cran.r-project.org/package=dismo
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2011.01803.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2011.01803.x
https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13584
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urban cover in each grid as the predictor, as a spline term. A gam was fit to each species 255 

separately, assuming a binomial error distribution, and VIIRS within each species range was 256 

logged (to the base 10) and scaled between 0 and 1 for each species’ gam. We used a spline to 257 

allow a non-linear relationship between species occupancy and VIIRS, and hence accommodate 258 

the diversity of possible species’ urban response curves. However, we constrained the spline to a 259 

low number of knots (k=5) to minimize biologically unrealistic multi-modal response curves 260 

from being fit. Using the fitted gam, we then predicted the occupancy probability of each species 261 

within grid cells of varying VIIRS values between 0 and 1 (in sequential steps of 0.05). Once we 262 

had characterized the response curve of each species to varying urban cover amounts (VIIRS), 263 

we then identified the most typical response curves using a clustering analysis. We first 264 

calculated a dissimilarity matrix among species’ response curves. Since we were not interested in 265 

differences in the mean occupancy of species but rather relative differences in occupancy 266 

according to urban cover, we used a correlation-based dissimilarity metric (Pearson correlation 267 

coefficient). We then used hierarchical partitioning to split the dissimilarity matrix into discrete 268 

groups (i.e., clusters) of species sharing the most similar urban’ response curves. To identify the 269 

most appropriate number of clusters, we compared several cluster metrics including Dunn’s 270 

index, silhouette widths, and minimum cluster size and meaningful biological interpretation. For 271 

each cluster, we calculated the mean occupancy of species at each VIIRS value and bootstrapped 272 

the species values to provide 95% confidence intervals. Finally, we visualized the distribution of 273 

species traits in each cluster to identify the suite of traits values associated with each.  274 

 275 

Data analysis and availability 276 
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All data analysis was conducted in R statistical software and relied heavily on the tidyverse 277 

(Wickham et al. 2019). Statistical significance, in the case of multiple linear regressions, was 278 

concluded at alpha <0.05. Code and data to reproduce these analyses are available here: 279 

https://doi.org/10.5281/zenodo.4727170.  280 

 281 

RESULTS 282 

We used a total of 922,687 observations for 158 species to position each species’ urban affinity 283 

along an urbanization-affinity continuum. The mean number of observations per species was 284 

5840 (± 9748 SD). A total of 125 species (79%) had an urban affinity score < 0, suggesting that 285 

they disproportionately use less urbanized habitat in comparison with that available within their 286 

range. The mean urban affinity score was -0.73 (+/- 1.60) (Fig. 1). The species with the highest 287 

urban affinity score was Polygonia egea (urban score=5.97), followed by Satyrium w-album 288 

(urban score=4.29), Thecla betulae (urban score=3.56), and Pieris rapae (urban score=3.44). In 289 

contrast, the species that most actively avoided urbanization were Euphydryas maturna (urban 290 

score=-4.37), Muschampia proto (urban score=-3.84), Hipparchia fidia (urban score=-3.77), and 291 

Glaucopsyche melanops (urban score=-3.63) (Fig. 1). For an interactive version, showing the 292 

urban affinity scores for the 158 species included in analysis, see here. 293 

 294 

Pairwise relationships between the urban affinity score and ecological and life history traits (Fig. 295 

2; Fig. 3) showed that urban affinity was positively correlated with all variables aside from 296 

hostplant specialism index. In particular, urban affinity was strongly correlated with the average 297 

number of flight months (r=0.53) and mean voltinism (r=0.45), and less weakly correlated with 298 

the number of adult food types (r=0.28). There was weak positive correlation between mean 299 

https://joss.theoj.org/papers/10.21105/joss.01686
https://doi.org/10.5281/zenodo.4727170
https://coreytcallaghan.github.io/GCB-21-0250/butterfly_ranks.html
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temperature in range (r=0.11) and urban affinity, and there was a negative relationship between 300 

urban affinity and hostplant specialism index (r=-0.24). Overall, our predictions matched the 301 

expected relationship for our numeric variables (cf Table 1 and Fig. 3a). 302 

 303 

Our multiple linear regression explained the variance in urban affinity reasonably well 304 

(R2=0.38), showing that there was strong evidence (i.e., confidence intervals did not overlap 305 

zero) that the average number of flight months and the number of adult food types were the most 306 

important traits associated with urban affinity (Fig. 3b). The other traits were not significantly 307 

associated after accounting for the effects of these two traits. However, weak evidence was found 308 

for a positive relationship between mean voltinism, wing index, and number of hostplant growth 309 

forms and urban affinity. A separate multiple linear regression for binomial traits of hostplant 310 

growth forms showed that species associated with all four types of hostplant growth forms were 311 

more likely to be tolerant of urban environments, but there was strong evidence for species that 312 

associated with shrub hostplant and tall herb/grass (Fig. S6). For the overwintering stage, a 313 

separate multiple linear regression showed that species overwintering as adults and pupae 314 

showed a positive relationship with urban affinity, whereas species that overwinter as larvae or 315 

eggs showed a negative relationship with urban affinity. There was strong evidence that species 316 

that overwinter in the larval stage are negatively associated with urban affinity (Fig. S7). 317 

 318 

Boosted regression tree analysis showed that our predictor variables explained 23.8% of 319 

deviances in urban affinity of butterflies. The most important predictor variables — those that 320 

explained >5% of relative influence — were the average number of flight months (35.5%), mean 321 

temperature in a species range (14.5%), hostplant specialism index (11.4%), wing index (10.7%), 322 



17 

 

 

overwintering stage as larvae (7.1%), and the number of adult food types (6.3%) (Fig. 3c; Fig. 323 

3d). The boosted regression tree analysis showed the non-linear patterns in these predictor 324 

variables. For the average number of flight months, there were marginal gains in urban affinity 325 

from ~ 4–6 flying months per year, but then from ~6–8 there was a strong increase in the 326 

relationship with urban affinity. Hostplant specialism index showed a generally smooth decline 327 

in its association with urban affinity, and wing index showed a non-linear positive response with 328 

urban affinity. In contrast, mean temperature in a species range showed a non-linear response 329 

with a positive association from about 0 degrees Celsius to 10 degrees Celsius, followed by a 330 

negative association with urban affinity from about 10 degrees Celsius to 15 degrees Celsius 331 

(Fig. 3d; Fig. 2). 332 

 333 

Our cluster analysis of responses to urbanization supported an ecological interpretation of three 334 

main clusters generalizing the diversity of species-specific responses to urbanization along a 335 

gradient of urbanization (Fig. 4a), showing relatively strong agreement with our urban affinity 336 

scores (Fig. S8). Cluster 1 (N=25 species) grouped together species most common in high urban 337 

areas — i.e., urban exploiters; cluster 2 (N=46 species) grouped together species most common 338 

at intermediate levels of urbanization — urban adapters; and cluster 3 (N=87 species) grouped 339 

together species that were most common at low urban areas and rarely occurred outside of low 340 

urban areas — i.e., urban avoiders (Fig. 4a; Table S2). When these clusters were mapped onto 341 

species-specific traits, we found a general increase from cluster 3 (least urban tolerant) to cluster 342 

1 (most urban tolerant) in the number of average food types eaten by adults (Fig. 4b) and the 343 

number of average flight months (Fig. 4e). Typically, species in cluster 1 had a flight period of ~ 344 

7 months, while species in clusters 2 and 3 were flying ~ 3–5 months during the year, on 345 



18 

 

 

average. Also, the number of adult food types was typically 3 for species in cluster 1, but fewer 346 

than 3 types in the other clusters. We also found a general decrease from cluster 3 to cluster 1 in 347 

the hostplant specialism index values (Fig. 4c). There were no apparent differences among 348 

clusters for the mean temperature in range, yet the most warm-adapted species tended to be 349 

captured in cluster 1 (Fig. 4d). 350 

 351 

DISCUSSION 352 

We integrated a continuous measure of urbanization — VIIRS night-time lights — with over 353 

900,000 species’ observations from GBIF to derive a comprehensive analysis of species-specific 354 

(N=158 species) responses of butterflies to urbanization across continental Europe. The majority 355 

of butterfly species included in our analysis were shown to avoid urban areas (Fig. 1; Fig. S8), 356 

regardless of whether species’ affinities were quantified as a single mean score (79% of species 357 

avoided urban areas) or as a species’ response curve to the whole urbanization gradient (55% of 358 

species). Together, these results help to explain the reduced taxonomic diversity of butterflies in 359 

urban ecosystems (e.g., Pignataro et al. 2020; Fenoglio et al. 2020; Kurlyo et al. 2020) and 360 

highlight which species should be the focus of active conservation in urban areas (see Table S2). 361 

Still, a reasonable number of species (25 species) were shown to be more common in urban areas 362 

than elsewhere (Fig. 4a), hinting at which species might be the winners of anthropogenic change 363 

as urban areas continue to expand. Overall, our results demonstrate that generalist life histories 364 

enable butterfly species to use urban areas, whether generalism is defined in terms of thermal or 365 

diet preferences. 366 

 367 

https://link.springer.com/article/10.1007/s11252-020-00975-7
https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13107
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2144
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We found support that thermal flexibility was linked with urban affinity among European 368 

butterflies. The average number of flying months was consistently the strongest and most 369 

important predictor of urban affinity across our different analyses. Species with long flight 370 

periods during the year, typically over multiple seasons, have to cope with a range of climatic 371 

conditions and hence may have a broader thermal niche breadth. The relationship between urban 372 

affinity and thermal preferences or flexibility has been found in other taxa as well, including ants 373 

(Diamond et al. 2017), trees (Kendal et al. 2018), lizards (Campbell-Staton et al. 2020) and birds 374 

(Deutsch et al. 2008; Clavero et al. 2011; Barnagaud et al. 2012). Our results, combined with 375 

previous literature, support the general notion that species with broad environmental tolerances 376 

may prosper in urban environments (Bonier et al. 2007): those species have the necessary 377 

flexibility to succeed in the unique and novel environmental, physiological, and/or ecological 378 

attributes of urban environments. We also found that species with longer flight periods were 379 

likely to be bi- or multi-voltine, explaining why voltinism was also somewhat associated with 380 

urban affinity in our analysis. Species with multiple generations per year (i.e., bi- or multi-381 

voltine) are also potentially more buffered against negative effects of urbanization (Croci et al. 382 

2008), if urbanization is associated with a higher frequency of disturbances (e.g., variability of 383 

resources, or climatic disturbances) during the year. More generally, our results support the 384 

hypothesis that human-dominated habitats may pose a thermal challenge for much of 385 

biodiversity (Daily and Ehrlich 1996). 386 

 387 

The mean temperature within a species’ range, previously used as a measure of thermal 388 

preference in butterflies (Devictor et al. 2012), explained some variability in urban affinity 389 

among species. Urban areas are typically warmer than their surroundings because of the urban 390 

https://doi.org/10.1093/biolinnean/blw047
https://doi.org/10.1111/geb.12728
https://www.nature.com/articles/s41559-020-1131-8
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1371/journal.pone.0018581
https://doi.org/10.1371/journal.pone.0032819
https://doi.org/10.1098/rsbl.2007.0349
https://www.nature.com/articles/nclimate1347
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heat island effect. Hence, species that tolerate the negative effects of urbanization also have to 391 

tolerate the warmer mean temperatures within urban areas. But because urban areas, as measured 392 

in our analysis, can include urban cold islands as well (Gonçalves et al. 2018), thermal flexibility 393 

may be more important than the mean temperature in a species’ range because urban heat islands 394 

and urban cold islands both work to increase the diurnal variability in temperature compared 395 

with non-urban areas (Gonçalves et al. 2018). However, the relationship between the mean 396 

temperature within a species’ range and urban affinity was non-linear and inconsistent across our 397 

analyses. The relatively weak signal of thermal preference found in our analysis could be 398 

explained by the fact we used the mean temperature throughout a species range as our predictor 399 

variable, ignoring any potential intraspecific variability in thermal preference throughout a 400 

species’ range. Indeed,  butterflies can respond to local microclimatic variation (Horner-Devine 401 

et al. 2003), and some species that are warm-adapted but not urban tolerant (e.g., Charaxes 402 

jasius, Aricia cramera, and Pseudophilotes panoptes) may be using habitat at a scale not 403 

captured by our analysis. Local-scale measures of temperature and climate can interact with 404 

phenological changes in a species’ life history (Altermatt 2012). Because small invertebrates are 405 

more susceptible to local climatic conditions than larger‐sized taxa, such as birds and mammals, 406 

the urban heat island effect may moderate some of the negative impacts of urbanization (Kaiser 407 

et al. 2016), especially in temperate regions where invertebrates are predicted to commonly 408 

experience temperatures below their thermal optimums (Deutsch et al. 2008). Although we did 409 

not investigate the relationships among different climate regions, further work should aim to 410 

repeat our analysis below the continental-scale, for instance stratified by climate region or along 411 

an aridity gradient, to test the robustness of our results. Such an analysis at different spatial 412 

scales with different measures of thermal preference for a species may be more likely to find 413 

https://doi.org/10.1046/j.1523-1739.2003.01310.x
https://doi.org/10.1046/j.1523-1739.2003.01310.x
https://doi.org/10.1002/ece3.2166
https://doi.org/10.1002/ece3.2166
https://doi.org/10.1073/pnas.0709472105
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stronger support for the influence of thermal preference on a species’ urban affinity. For 414 

example, for a specific species, urban environments in warm regions may be less tolerable than 415 

those in colder regions, due to the high temperatures in the former. Nevertheless, our analysis 416 

aimed at interspecific variation in thermal preference found some support for a link with urban 417 

affinity: in our clusters of species responses to urbanization, cluster 1, comprising the most urban 418 

tolerant species, also included some of the most warm-adapted species in our analysis such as 419 

Euchloe belemia, Polygonia egea, and Lampides boeticus (Fig. 4). As climate change continues, 420 

species living in urban areas will have to tolerate even warmer temperatures, including heatwave 421 

events and summer droughts. As a result, multi-voltine species will likely have an increased 422 

ability to cope with climate change as they have a greater likelihood to reproduce within the 423 

optimal conditions in a given breeding season, and moreover, species which have the ability to 424 

shift their phenology (e.g., breed earlier in the year) will have a greater likelihood to cope with 425 

increasing climate change (Altermatt 2010a). Therefore, associations between climate and urban 426 

affinity suggest that selection pressures from climate warming may also foster urban tolerant 427 

species. Further disentangling the relationship between urban affinity and thermal tolerance and 428 

flexibility will remain an important goal for understanding the influence of urbanization on 429 

butterflies and identifying the winners and losers of increasing urbanization. 430 

 431 

In addition to the importance of thermal flexibility, we found that urban affinity in butterflies 432 

was positively associated with diet generalism, confirming previous research that has 433 

demonstrated the link between diet and phenology in butterflies (Altermatt 2010b). Diet 434 

generalism at both adult (i.e., the number of adult food types) and larval (i.e., hostplant 435 

generalism) life stages were important for tolerating urban ecosystems (Fig. 3, Fig. 4). This 436 

https://doi.org/10.1098/rspb.2009.1910
https://doi.org/10.1111/j.1461-0248.2010.01534.x
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suggests that considering the influence of different life history stages (e.g., egg, larval, pupal, or 437 

adult) in how species adapt to urban environments may be important in future work. For most 438 

butterfly species, the larval stage is longer than the adult stage, and often larval food resources 439 

are thus more important in the butterfly life cycle (Altermatt and Pearse 2011). In support of this 440 

general pattern, we found that larval resources (i.e., hostplant specialism) were marginally more 441 

important than adult resources (Fig. 3) in predicting urban affinity. Tolerance to urbanization 442 

may be especially challenging for species that use different resources and habitats during their 443 

life cycle, including holometabolous insects, compared with other taxa with more uniform 444 

resource requirements during their lifespan. These differences among life history strategies could 445 

be linked to the differential impacts of thermal tolerance and local climatic events among life 446 

history strategies (Long et al. 2016). Alternatively, because urban environments can sometimes 447 

have greater species richness in plants, due in part to the prevalence of non-native plant species, 448 

species with diet generalism across life stages may be able to take advantage of this unique 449 

attribute of urban ecosystems. 450 

 451 

Overwintering strategy and dispersal ability played more minor roles in a species’ ability to use 452 

urban environments. Butterfly species’ responses to climate has been previously shown to 453 

depend on their overwintering strategy (Long et al. 2016). We found that species overwintering 454 

as adults were more urban-tolerant than species overwintering as eggs (Fig. 3b). And a separate 455 

analysis showed that species overwintering as adults or pupae were positively associated with 456 

urban affinity whereas overwintering as eggs and larvae were negatively associated with urban 457 

affinity (Fig. S7). Species that overwinter as adults are typically those able to begin reproducing 458 

earlier in the season, whereas those overwintering as larvae must first undergo metamorphosis. 459 

https://www.journals.uchicago.edu/doi/full/10.1086/661248
https://doi.org/10.1111/1365-2656.12594
https://doi.org/10.1111/1365-2656.12594
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Hence, this result is also consistent with the positive effect of the number of flight months on 460 

species affinity to urbanization. Our results also showed that body size, as measured by wing 461 

index, was somewhat positively associated with urban affinity. Body size in butterflies is linked 462 

to dispersal ability (Stevens et al. 2011; Sekar et al. 2011; Middleton-Welling et al. 2020) and 463 

climate tolerance (Klockmann et al. 2016), suggesting that both these traits probably interact to 464 

explain the moderate evidence we found that body size predicts urban affinity among butterflies.  465 

 466 

Our analysis was focused on butterfly responses to urbanization at a macro-ecological scale, 467 

using a globally-applicable remotely-sensed product of urbanization at a native resolution of 468 

~500 meters (Elvidge et al. 2017). However, urbanization processes happen at multiple spatial 469 

scales, ranging from local to landscape levels (Concepción et al. 2015; Piano et al. 2019),  and 470 

biodiversity responses to urbanization may differ among these spatial scales (Merckx and Van 471 

Dyck 2019). Butterflies can select habitat at fine-grained spatial scales within urban ecosystems 472 

smaller than 500 meters (e.g., Kaiser et al. 2016), such as urban meadows (Dylewski et al. 2019) 473 

or revegetated road verges (Saarinen et al. 2005; Valtonen et al. 2007). Indeed, the spatial 474 

resolution of our analysis likely explains why we found weak support for micro-scale habitat 475 

predictors such as the habitat of hostplant types or egg-laying location types. These traits may be 476 

important for predicting space use within urban areas, but not urban affinity as measured in our 477 

current analysis. Future work should formally test how species-specific responses to urbanization 478 

varies among spatial scales in butterflies (e.g., Moll et al. 2020; Callaghan et al. 2020). In 479 

addition to our limitations in the spatial resolution, we highlight that we only looked at urban 480 

preferences in butterflies averaged across the full annual cycle, but some species may increase 481 

their use of urban areas during certain times of the year. For example, some species may move 482 

https://doi.org/10.1111/j.1461-0248.2011.01709.x
https://doi.org/10.1111/j.1365-2656.2011.01909.x
https://www.nature.com/articles/s41597-020-00697-7
https://doi.org/10.1111/gcb.13407
https://doi.org/10.1080/01431161.2017.1342050
https://doi.org/10.1111/oik.02166
https://doi.org/10.1111/gcb.14934
https://doi.org/10.1111/geb.12969
https://doi.org/10.1111/geb.12969
https://doi.org/10.1002/ece3.2166
https://doi.org/10.1111/een.12744
https://doi.org/10.1016/j.biocon.2004.12.012
https://doi.org/10.1016/j.landurbplan.2005.09.003
https://doi.org/10.1111/ecog.04762
https://doi.org/10.1111/ecog.04863
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into urban areas during mid-late autumn when the surrounding temperatures drop, taking 483 

advantage of the urban heat island effect (Kaiser et al. 2016). Future work should investigate 484 

patterns in urban affinity of butterflies across the full annual cycle (Marra et al. 2015). Our 485 

analysis focused on presence or absence of a species to approximate a species’ affinity, or use, of 486 

urban environments and ranking them based on an affinity spectrum. However, some species 487 

may actually be thriving in urban areas, and encompassing abundance information into our 488 

metric of urban affinity will be important to further refine our understanding of how butterflies 489 

are responding to urbanization. Finally, we treated phenology as a fixed trait in our analysis but 490 

in reality, species’ phenology can vary among years and places. Indeed, phenology might also 491 

vary with urbanization, with warmer temperatures within urban areas allowing some butterflies 492 

to appear earlier in the year (but see Diamond et al. 2014). 493 

 494 

Butterflies are popular with the non-scientific public and provide many cultural ecosystem 495 

services (e.g., McGinlay et al. 2017), particularly within urban ecosystems where they are most 496 

likely to be encountered even by casual observers. Butterflies, therefore, might play important 497 

roles in minimizing ‘extinction of experience’ for humans who are becoming increasingly 498 

concentrated in urban areas (Soga and Gaston 2016). Conserving urban biodiversity, including 499 

butterflies, is increasingly important in urban conservation planning. An important first step in 500 

this process is understanding the species that are tolerant and intolerant of urban ecosystems. We 501 

provide a method to efficiently quantify the urban affinity of butterflies at a macro-ecological 502 

scale and accomplished this for 158 species of European butterflies. As data in GBIF continues 503 

to grow, largely due to citizen science efforts (Chandler et al. 2017), our analysis here can be 504 

updated for the remaining European butterfly species. Nonetheless, we provide strong evidence 505 

https://doi.org/10.1002/ece3.2166
https://doi.org/10.1098/rsbl.2015.0552
https://doi.org/10.1890/13-1848.1
https://doi.org/10.1016/j.ecoser.2017.07.007
https://doi.org/10.1002/fee.1225
https://doi.org/10.1016/j.biocon.2016.09.004


25 

 

 

that generalism, in terms of both thermal flexibility and diet, is inherently linked with urban 506 

affinity and that generalist species are best-adapted to urban ecosystems. Our findings suggest 507 

that the majority of  European butterfly species avoid highly urbanized areas, highlighting the 508 

need to include greening strategies in urban planning and conservation decisions (Ramírez-509 

Restrepo and MacGregor-Fors 2017).  510 

 511 
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TABLES 791 

 792 

Table 1. A summary of the traits included in analyses, as well as our prediction for each trait. All data were extracted from Middleton-793 

Welling et al. 2020 except for the mean temperature in a species range which was extracted from Schweiger et al. 2014. 794 

 795 

Category Trait Description Prediction 

Thermal 

tolerance 

Average number of 

flight months 

The average number of months of the year a 

species is observed flying, taken as the average of 

the minimum and maximum number of flight 

months observed for each species. 

We expected that species that had a greater 

number of flight months would be positive 

associated with urban affinity. 

Overwintering stage 

(ordinal) 

Originally a categorial variable, corresponding to 

the overwintering stage for a species, where the 

options are egg, larva, pupa, or adult. We converted 

the possible combinations of these categorical 

variables into an ordinal variable ranging from 1 

(egg) to 4.5 (adult). 

We expected that the ordinal overwintering 

stage variable would be positive associated 

with urban affinity, as species that 

overwintered as adults would be more 

likely to be urban tolerant. 

Overwintering stage 

(binomial) 

We also treated overwintering stage in a separate 

analysis where each categorical option was treated 

as a binomial predictor variable. 

We expected that species which overwinter 

as adults would be the most urban tolerant, 

followed by species that overwinter as 

pupae, larvae, and eggs.  

Mean temperature 

in range 

The mean temperature within a species range. We expected that species with a higher 

mean temperature in their range would be 

positively associated with urban affinity. 

Extent of 

specializ

ation 

Number of adult 

food types 

Eight possible adult food types were presented by 

Middleton-Welling et al. 2020: herbs, flowers, 

ergot, shrub/tree flower, honeydew, sap, decaying 

plant, animal, and mineral. We used the total 

number of categories an adult species feeds on, 

with a highest possible value of 8, and lowest of 1. 

We expected a positive relationship 

between the number of adult food types 

and urban affinity. 

Hostplant 

specificity 

An ordinal variable corresponding with the range of 

host plants a species can use, ordered as 

monophagous species (1), narrow oligophagous 

We expected a positive relationship 

between hostplant specificity and urban 

affinity. 
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(2), broad oligophagous (3), and polyphagous (4). 

See details in Middleton-Welling et al. 2020. 

Hostplant index An index ranging from 0 to 1, providing a 

quantitative measure of overall hostplant 

specificity, where 1 is most specific. See 

Middleton-Welling et al. 2020 for details of this 

calculation. 

We expected a negative relationship 

between the hostplant index and urban 

affinity: more specialized species would be 

least urban tolerant. 

Body 

size 

Wing index A composite variable representing a single 

measurement of overall size for all butterfly species 

generated from forewing length and wingspan 

measures, for both males and females. See 

Middleton-Welling et al. 2020 for details of this 

calculation. 

We expected a positive relationship 

between wing index and urban affinity. 

Life 

history 

Mean voltinism A measure of the number of generations a species 

has in a year. We took the mean value between the 

minimum and maximum voltinism measures 

provided by Middleton-Welling et al. 2020. 

We expected a positive relationship 

between mean voltinism and urban affinity. 

Egg laying type A categorical variable representing three types of 

egg-laying strategies: single egg, small batch, and 

large batch. Some species may lay single eggs or 

small batches, and we used the largest possible 

category for each species.  

We expected a positive relationship 

between the number of eggs a species lays 

with urban affinity. 

Microhab

itat use 

Number of 

hostplant growth 

forms 

A variable representing the total number of growth 

forms of a species' hostplants, ranging from 1 to 5. 

The five categories of species' hostplants were 

short herb/grass (<1m), tall herb/grass (>1m), 

shrub, tree, and liana. 

We expected a positive relationship 

between the number of hostplant growth 

forms and urban affinity. 

Hostplant growth 

form (binomial) 

We also treated hostplant growth form in a separate 

analysis where each categorical option was treated 

as a binomial predictor variable. But because so 

few species in our analysis used liana, this was not 

included as a variable. 

We expected that species which use 

herbs/grass would be more positively 

associated with urban affinity. 
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Number of egg 

laying locations 

A variable representing the total number of unique 

structures that eggs are laid on by a particular 

species, with a highest possible value of 7 for the 

most general, and 1 for the most specific. The 7 

categories provided by Middleton-Welling et al. 

2020 are bare ground, short turf/herbs/grass (<1m), 

tall herbs/grass (>1m), shrub, tree trunk, canopy, 

and liana. 

We expected a positive relationship 

between the number of egg laying 

locations with urban affinity. 
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FIGURES799 

 800 
Figure 1. a) Three species included in our analysis, ordered from left to right in terms of their 801 

urban tolerance scores: Scarce Fritillary (Euphydryas maturna) with an urban tolerance score of -802 

4.37; Old World Swallowtail (Papilio machaon) with an urban tolerance score of 0.15; Southern 803 

Comma (Polygonia egea) with an urban tolerance score of 5.97. All photos by Julia Wittman 804 

(@birdingjulia) and are CC-BY-NC. b) Example of the rankings for 60 randomly chosen 805 

butterflies, ranked from those that were found proportionately in more urbanized areas (above 0) 806 

to those found proportionately in less urbanized areas (below 0). For a full interactive figure 807 

showing all 158 species considered in analysis see here. c) A histogram of the urban tolerance 808 

scores for all 158 species included in the analysis. 809 

 810 

https://www.inaturalist.org/observations/66001421
https://www.inaturalist.org/observations/66180968
https://www.inaturalist.org/observations/65482113
https://www.inaturalist.org/observations/65482113
https://coreytcallaghan.github.io/GCB-21-0250/butterfly_ranks.html
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 811 
Figure 2. The relationship between our urban tolerance score for N=158 species of butterfly, and 812 

the average number of flight months (top left), hostplant specialism index (top right), number of 813 

adult food types (bottom left), and mean temperature in a species’ range (bottom right). The 814 

orange line represents a simple linear model fit, and the shaded gray area represents a 95% 815 

confidence interval around the linear model fit. 816 

 817 
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 818 

Figure 3. Results of our statistical analysis quantifying the relationship between urban tolerance 819 

score of butterflies (N=158) and various predictor variable (see Table 1). a) Correlation plot of 820 

all numeric predictor variables (N=10) and our response variable (in red text). Variables are 821 

ordered left to right by the strength of their pairwise relationship with the response variable. b) 822 

Results of our multiple linear regression and standardized parameter estimates with 95% 823 

confidence intervals. Variables to the right of the vertical orange line positively interacted with 824 

urban tolerance whereas variables to the left of the orange line negatively interacted with urban 825 

tolerance. c) and d) Results from our boosted regression tree analysis, with c) representing the 826 

relative influence of all predictor variables (N=19) included in the model, ordered from the 827 

variable with the most relative influence to the least, and d) shows the partial dependence plots 828 

for all predictor variables that had >5% relative influence on the urban tolerance of butterflies. 829 
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 830 
Figure 4. Results of our cluster analysis, and the three normalized responses to urbanization (a), 831 

for each cluster respectively. The clusters mapped to four traits (b-e), confirming the importance 832 

of these traits for urban tolerance among the species within each respective cluster. Cluster 1 833 

(N=25 species) grouped together species most common in high urban areas — i.e., urban 834 

exploiters; cluster 2 (N=46 species) grouped together species most common at intermediate 835 

levels of urbanization — urban adapters; and cluster 3 (N=87 species) grouped together species 836 

that were most common at low urban areas and rarely occurred outside of low urban areas — i.e., 837 

urban avoiders (see Table S2 for the species corresponding to each cluster).838 
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SUPPLEMENTARY FIGURES 

 
 

Figure S1. A map of the study extent that was manually delineated using the observations from 

GBIF. The concave map was made using the ‘concaveman’ package in R which is a R port for a 

mapbox library of the same name, and the default concavity of 2 was used to make a polygon 

surrounding our point observations from GBIF. 
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Figure S2. The relationship between VIIRS night-time lights (x-axis) for our original 977,388 

considered GBIF occurrences and Enhanced Vegetation Index (y-axis) as a measure of the 

greenness at a point. This relationship was statistically significant (parameter estimate=-0.033, t-

value=0.0004, p-value<0.0001). 



1 

 

 

 
Figure S3. Fifteen example species, and their distribution in response to VIIRS night-time lights. 
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Figure S4. The relationship between urban affinity (the difference between the mean of all 

observations within a species’ range and the observations of each species within their range) and 

urban breadth (the difference between the interquartile range of all observations within a species’ 

range and the observations of each species within their range) showed a strong positive 

relationship. Shown here are all species (N=158) included in analysis. Because of this 

relationship, our analysis focused on the urban affinity score throughout. 
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Figure S5. To confirm the reliability of our distributional approach, we performed a separate 

analysis to rank species along a continuum of urban affinity/preference using unmarked models. 

For this analysis, species were grouped by 5km grid across Europe, and week of the year, into 

presence/absence, and each species was only calculated within its concave hull range. The mean 

VIIRS night-time lights level was also calculated within each 5km grid. An unmarked model was 

ran which accounted for the effects of urban cover (VIIRS) on the detection probability of 

species. Only species with a standard error of their modelled response to urbanization <2 was 

included in the comparison between the two approaches (N=138 species). 
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Figure S6. Results of a separate multiple linear regression which investigated the binomial 

predictor variables of hostplant growth form with the urban affinity score response variable. 
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Figure S7. Results of a separate multiple linear regression which investigated the binomial 

predictor variables of overwintering stage form with the urban affinity score response variable. 
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Figure S8. The results of our two different methods to quantify urban affinity of butterflies 

throughout Europe. 
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SUPPLEMENTARY TABLES 

Table S1. The countries included in analysis and the number of observations included for 

potential analyses in each country. 

Country 

ISO country 

code 

Number of 

samples 

Species 

richness 

Sweden SE 565214 126 

Ireland IE 144570 43 

France FR 83491 247 

Germany DE 51761 149 

Spain ES 36110 221 

Portugal PT 20614 116 

Italy IT 12791 220 

Switzerland CH 11128 162 

Greece GR 10762 173 

Austria AT 7113 149 

Bulgaria BG 5340 164 

Slovenia SI 4949 128 

Norway NO 4385 90 

North Macedonia MK 2919 140 

Poland PL 2919 91 

United Kingdom GB 2422 44 

Hungary HU 2411 108 

Luxembourg LU 1777 54 

Croatia HR 1492 107 

Finland FI 1205 69 

Czechia CZ 894 60 

Denmark DK 713 58 

Slovakia SK 626 72 

Andorra AD 562 115 

Montenegro ME 418 91 

Albania AL 253 76 

Bosnia & 

Herzegovina BA 139 56 

Serbia RS 135 57 

Malta MT 117 13 

Liechtenstein LI 63 26 

Gibraltar GI 50 17 

Belgium BE 17 7 

Kosovo XK 15 12 

Monaco MC 11 7 

San Marino SM 2 1 
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Table S2. Uploaded separately - table of raw data used for modelling in the analysis. 

 

 


