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Abstract 9 

Phylogenomics has revealed the remarkable frequency with which introgression occurs across 10 

the tree of life. These discoveries have been enabled by the rapid growth of methods designed to 11 

detect and characterize introgression from whole-genome sequencing data. A large class of 12 

phylogenomic methods makes use of data from one sample per species to infer introgression 13 

based on expectations from the multispecies coalescent. These methods range from simple tests, 14 

such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we 15 

provide a detailed overview of the various signals that different modes of introgression are 16 

expected leave in the genome, and how current methods are designed to detect them. We discuss 17 

the strengths and pitfalls of these approaches and identify areas for future development, using a 18 

small simulation study to highlight the different signals of introgression and the power of each 19 

method to detect them. We conclude with a discussion of how to visualize and interpret the 20 

results of introgression analyses.  21 
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 41 

Introduction 42 

The potential for hybridization and subsequent backcrossing between lineages—also known as 43 

introgression—has long been understood (Heiser 1949, Heiser 1973, Rieseberg and Wendel 44 

1993, Dowling and Secor 1997). However, until genome sequencing became widely available to 45 

biologists, it was difficult to quantify patterns of introgression effectively and reliably. As a 46 

result, introgression’s role in evolution was under-appreciated, especially in animal systems. In 47 

part precipitated by the discovery of introgression between archaic human populations (Green et 48 

al. 2010, Huerta-Sanchez et al. 2014), the past decade has seen an explosive increase in the rate 49 

of discovery of reticulate evolution across the tree of life (Mallet et al. 2016, Taylor and Larson 50 

2019). Although great efforts have been made in recent years to synthesize the biological 51 

implications of these discoveries (Hedrick 2013, Ellstrand et al. 2013, Harrison and Larson 2014, 52 

Racimo et al. 2015, Ottenburghs et al. 2017, Suarez-Gonzalez et al. 2018), comparatively little 53 

synthesis has been provided on the accompanying growth in methods used to detect and 54 

characterize introgression.  55 

The information that can be gleaned from genomic data about introgression depends on both the 56 

number of sampled species and the number of sampled individuals. Methods with only two 57 

species or populations depend on sampling multiple individuals within at least one of them. 58 

Patterns of nucleotide variation among individuals and across loci can then be used to make 59 

inferences about introgression (e.g. Wakeley and Hey 1997, Nielsen and Wakeley 2001, Joly et 60 

al. 2009, Lohse and Frantz 2014, Rosenzweig et al. 2016, Schrider et al. 2018). Because less 61 

information is available about phylogenetic relationships, these methods often rely on the 62 

assumption that all sequenced loci are evolving neutrally or that all loci have the same rate of 63 

nucleotide substitution (or both). For these reasons such methods are more prone to model 64 

violations, such as the heterogeneous effects of background selection across loci (Roux et al. 65 

2016). Despite these limitations, population-genetic methods are one of the few approaches that 66 

can infer gene flow between pairs of sister taxa (see Hahn 2018 for more details). 67 

When there is data for a rooted triplet of species—or an unrooted quartet—it becomes possible to 68 

construct more powerful tests for introgression using genome-scale datasets. Importantly, this 69 

can be done using only a single sample per species and without assumptions about neutrality. 70 

The robustness to non-neutral processes occurs because much of the genealogical signal of 71 

introgression is not mimicked by selection (Przeworski et al. 1999, Williamson and Orive 2002, 72 

Vanderpool et al. 2020). This class of “phylogenomic” methods is largely based on one sample 73 

per species, but also includes methods based on multiple samples. One-sample methods include 74 

the D statistic (also known as the ABBA-BABA test; Green et al. 2010, Durand et al. 2011), its 75 

numerous analogs and extensions (see below), methods based on pairwise sequence divergence 76 

such as the D3 statistic (Hahn and Hibbins 2019), and phylogenetic network approaches such as 77 

those implemented in PhyloNet (Than et al. 2008, Wen et al. 2018), SNaQ (Solís-Lemus and Ané 78 

2016), and SpeciesNetwork (Zhang et al. 2018). When multiple individuals are sampled from 79 

very closely related species or populations, additional power may be gained by measuring the 80 
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deviation from covariances in allele frequency expected under strictly treelike evolution (Reich 81 

et al. 2009, Patterson et al. 2012, Pickrell and Pritchard 2012, Peter 2016). 82 

In this review, we focus on phylogenomic methods for studying introgression, most of which are 83 

based on the multispecies coalescent model. We provide a detailed overview of the signals that 84 

various introgression scenarios are expected to leave in the genome, and the methods that are 85 

designed to detect these signals. We discuss common misuses and misinterpretations of these 86 

methods, as well as providing recommendations for best-use practices. Finally, we present 87 

results from a small simulation study conducted across different introgression scenarios to 88 

highlight the advantages and limitations of currently available methods. Based on these results, 89 

we identify areas for future theoretical and methodological advancement.  90 

Biological processes that generate gene tree heterogeneity 91 

We begin our discussion of phylogenomic methods with the simplest possible sampling scheme: 92 

genomic data from a single sampled haploid individual from each of three focal species and an 93 

outgroup. By “genomic data” we mean data sampled from many loci across the genome, with the 94 

standard assumption of no intra-locus recombination and free inter-locus recombination. This 95 

data structure will hereafter be referred to as a quartet or rooted triplet. For three ingroup species, 96 

P1, P2, and P3, and an outgroup species, O, there are three possible tree topologies describing 97 

how they can be related: (((P1,P2),P3),O), (((P2,P3),P1),O), or (((P1,P3),P2),O) (Figure 1). In 98 

addition to a single phylogeny describing the evolutionary history of the quartet, trees can be 99 

constructed for each individual locus. The frequencies of each topology across loci are referred 100 

to as gene tree frequencies, even when they do not come from protein-coding genes. This 101 

heterogeneity in both the topology and branch lengths of gene trees is caused by two different 102 

biological processes: incomplete lineage sorting and introgression. Below we describe the 103 

expected effects of both processes in order to understand how tests for introgression work. 104 

Incomplete lineage sorting as a null hypothesis for tests of introgression 105 

The phenomenon of incomplete lineage sorting (ILS), in which two or more lineages fail to 106 

coalesce with each other before reaching an ancestral population (looking backwards in time), 107 

can result in individual gene trees that are discordant with the species history (Figure 1). 108 

Phylogenomic methods must account for this phenomenon to make accurate inferences about 109 

introgression. Discordant gene trees occur because, when ILS occurs, it becomes possible for the 110 

order of coalescent events to differ from the order of splits in the species phylogeny (Figure 1, 111 

top right panel). Gene tree discordance due to ILS is very common in modern phylogenomic 112 

datasets (e.g. Pollard et al. 2006, Fontaine et al. 2015, Pease et al. 2016, Novikova et al. 2016, 113 

Copetti et al. 2017, Wu et al. 2018a; Edelman et al. 2019) and can arise within phylogenies that 114 

contain no introgression events. Because both ILS and introgression can generate many of the 115 

same genealogical patterns, it is essential to incorporate ILS into the null hypothesis of tests for 116 

introgression.  117 

Fortunately, the parameters mostly likely to influence the probability of ILS—time between 118 

speciation events and ancestral population size—are well understood from the multispecies 119 

coalescent (MSC) model (Hudson 1983, Tajima 1983, Pamilo and Nei 1988). For a rooted 120 
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triplet, the probability that the two sister lineages (e.g. P1 and P2 in Figure 1) coalesce in their 121 

most recent common ancestral population is given by the formula 1 − 𝑒−𝜏, where τ is the length 122 

of this internal branch in units of 2N generations (sometimes referred to as "coalescent units"). 123 

Conversely, the probability of ILS (i.e. that they do not coalesce) is 𝑒−𝜏. If ILS occurs, all three 124 

lineages (P1, P2, and P3) enter their joint ancestral population. Within this population the 125 

coalescent events happen at random, such that lineages leading to each pair of species have a 1/3 126 

chance of coalescing first. This means that the two discordant gene tree topologies are expected 127 

to be equal in frequency (Figure 1, top right), with probabilities of  1 3⁄ 𝑒−𝜏 each. In addition, the 128 

concordant tree topology can be produced either by lineage sorting with probability 1 − 𝑒−𝜏 or 129 

incomplete lineage sorting with probability 1 3⁄ 𝑒−𝜏 (Figure 1, top left). This guarantees that the 130 

concordant tree topology will always be at least as frequent as the two discordant trees (Figure 1, 131 

top row). These expectations under ILS form the null hypothesis for tests of introgression based 132 

on gene tree frequencies.  133 

In addition to gene tree frequencies, ILS affects expected coalescence times, and therefore 134 

sequence divergence, between pairs of species. In any population, the expected times to 135 

coalescence depends on how many lineages are present (Kingman 1982, Hudson 1983, Tajima 136 

1983). If three lineages are present, the first coalescence is expected to occur 2 3⁄ 𝑁  generations 137 

in the past. After this first coalescence—or if only two lineages were present to begin with—the 138 

next coalescence is expected a further 2N generations in the past. These expectations are equally 139 

applicable to current populations as to ancestral populations, but coalescence cannot occur until 140 

the lineages under consideration are in a common population. Therefore, expected coalescence 141 

times between species always have the time of speciation included as a constant, no matter how 142 

far back lineage-splitting occurred (Gillespie and Langley 1979).  143 

For example, the time to coalescence between species P1 and P2 in Figure 1 is expected to be 2N 144 

generations prior to their speciation event. If this coalescent event happens in their most recent 145 

common ancestral population (i.e. lineage sorting), then the next coalescent event occurs 146 

between the resulting single lineage and the lineage leading to P3 in the common ancestral 147 

population of all three species (Figure 1, bottom row). This event is again 2N generations prior to 148 

the speciation event between P3 and the common ancestor of P1+P2. If ILS occurs, then the first 149 

coalescence (regardless of which lineages are involved) occurs 2 3⁄ 𝑁 generations prior to this 150 

same speciation event, and the second coalescence 2N generations before this. Note that, if we 151 

condition on lineage sorting having occurred, the expected coalescence times become slightly 152 

more complicated (see Mendes and Hahn 2018, Hibbins and Hahn 2019 for exact expectations) 153 

The two pairs of non-sister lineages in a rooted triplet (P1 and P3 or P2 and P3 in Figure 1) can 154 

coalesce at one of two times, depending on whether they are the first or second pair to coalesce 155 

in a gene tree (there can only be a discordant topology if they are the first to coalesce). Owing to 156 

the symmetry of gene tree topology shapes and frequencies, these times are equivalent across 157 

loci, leading to the null expectation under ILS that genome-wide divergence between both pairs 158 

of non-sister taxa should be equal (Figure 1, bottom row). Finally, each of these coalescence 159 

times is expected to follow a unimodal exponential distribution under ILS alone (Hudson 1983, 160 

Tajima 1983). 161 
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The effects of introgression on gene trees 162 

Introgression between two lineages occurs when an initial hybridization event is followed by 163 

back-crossing into one or both of the parental lineages. Hybridization itself—the creation of a 164 

hybrid individual—is generally not sufficient to be called introgression, though polyploid or 165 

homoploid hybrid species will be identified by many of the same tests described here (e.g. Meng 166 

and Kubatko 2009; Blischak et al. 2018; Folk et al. 2018). Similarly, horizontal gene transfer 167 

will also generate discordant gene trees, but introgression is generally distinguished from this 168 

process by the requirement that there be mating between the hybridizing lineages in order to be 169 

considered introgression. In addition, the mating requirement means that the hybridizing species 170 

are closely related enough such that the tree topologies produced by introgression will likely be 171 

the same as those produced by ILS. Horizontal gene transfer, on the other hand, can produce 172 

highly discordant topologies that can only be produced by the interspecific exchange of genetic 173 

material (e.g. Knowles et al. 2018). 174 

There are a large number of different introgression scenarios, each with a different effect on the 175 

underlying gene trees. While there are well-developed mathematical tools that describe the 176 

effects of introgression on gene tree topologies (e.g. the multispecies network coalescent; 177 

reviewed in Degnan 2018, Elworth et al. 2019), we generally do not need the predictions from 178 

these models to test for the presence of introgression (with some exceptions discussed below). 179 

Instead, because our tests are often simply looking for a rejection of the ILS-only model, a 180 

general understanding of the key outcomes of introgression will be sufficient. Figure 2 181 

summarizes the scenarios involving introgression that are most commonly encountered.  182 

As a first key distinction, introgression can occur either between sister lineages (events 1 and 2 183 

in Figure 2A) or non-sister lineages (events 3, 4, and 5 in Figure 2A). As a general rule, 184 

introgression between sister lineages should increase the proportion of concordant gene trees 185 

relative to the case of ILS alone. To see why this is, consider introgression event 1 in Figure 2: 186 

gene flow after speciation between P1 and P2 effectively increases τ, the length of the internal 187 

branch separating these two lineages from their common ancestor with P3. Loci with an 188 

introgressed history therefore have a reduced probability of ILS because of the increased time for 189 

them to coalesce. While there are some exceptions to this rule—all of which involve 190 

introgression between sister lineages on an internal branch of the species tree (i.e. event 2 in 191 

Figure 2; Solis-Lemus et al. 2016, Long and Kubatko 2018, Jiao and Yang 2020)—in no cases 192 

should gene flow between sister lineages result in one discordant topology becoming more 193 

common than the other discordant topology.  194 

Because an increase in concordant topologies can also be generated under an ILS-only model 195 

with a longer internal branch in the species tree, gene tree frequencies alone cannot tell us 196 

whether introgression has occurred between sister lineages. Note, however, that loci with a 197 

history of introgression can have a different distribution of branch lengths in this scenario than 198 

expected under ILS alone: the coalescence times are more recent than expected under ILS for 199 

either event 1 or 2 (Figure 2B). Our ability to determine whether the distribution of branch 200 

lengths is due to a history of introgression partly depends on whether gene flow is continuously 201 

occurring after speciation or occurs as a single pulse of hybridization and backcrossing at a 202 
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period considerably after speciation: pulses of introgression following secondary contact 203 

between species will almost always be easier to detect (see section on "Detecting introgression 204 

using coalescence times"). Using only a single sample from each species, we also cannot 205 

determine the direction of gene flow between sister lineages; this is why we have drawn events 1 206 

and 2 as bidirectional introgression. In order to make this determination between sister species 207 

we must use population genetic methods (e.g. Schrider et al. 2018). 208 

When introgression occurs between non-sister lineages (events 3, 4, and 5 in Figure 2A) then one 209 

discordant tree topology can become more common than the other. The resulting asymmetry in 210 

discordant tree topologies is one of the clearest signals of introgression. In both events 3 and 4 211 

we expect loci that have introgressed to be more likely to have a gene tree topology placing P2 212 

and P3 sister to one another: ((P2,P3),P1) (Figure 2C). While not all loci following this 213 

introgression history will have this discordant topology, the extended period of shared history 214 

between P2 and P3 makes it more likely for these lineages to coalesce. In general, the strength of 215 

the asymmetry in discordant topologies will depend on the net rate, timing, and direction of 216 

introgression (Durand et al. 2011; Martin et al. 2015; Zheng and Janke 2018), as well as the 217 

absence of introgression between the other non-sister pair (in which case the other discordant 218 

topology would also go up in frequency). Although the same discordant topology will be 219 

produced in excess by events 3 and 4 (Figure 2C), note that the resulting branch lengths will 220 

differ on average between the two. This difference makes it possible to determine the main 221 

direction of introgression between non-sister taxa (see below). Although we have drawn gene 222 

flow as unidirectional to highlight the fact that this distinction can be made, bidirectional gene 223 

flow between these lineages is equally biologically plausible. 224 

Finally, event 5 depicts an introgression event involving an unsampled ("ghost") lineage. For 225 

many of the signals of introgression discussed here, the sampled lineages included in a study 226 

may not be the ones that actually hybridized. Whether species go unsampled because they are 227 

extinct or simply unavailable, non-sister ghost lineages that act as donors in introgression events 228 

will often generate detectable patterns of gene flow. These patterns can result in misleading 229 

inferences about the lineages involved in gene flow and the direction of gene flow, and should 230 

therefore always be kept in mind; we include introgression from ghost lineages in our simulation 231 

study below to demonstrate some of these effects. Ghost lineages that are either the recipients of 232 

gene flow or are sister to sampled taxa are much less likely to leave any signal of introgression. 233 

For similar reasons, the sister lineages shown in Figure 2 do not need to be one another's most 234 

closely related species in nature; what is important is whether they are sister (or non-sister) 235 

among sampled species. 236 

Detecting introgression using gene tree frequencies 237 

The D statistic 238 

Perhaps the most widely used method for inferring introgression is the D statistic, or—perhaps 239 

because there are already so many D's in use—what is commonly referred to as the ABBA-240 

BABA test. This test was originally formulated to test for evidence of gene flow between 241 
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Neanderthals and archaic humans (Green et al. 2010, Durand et al. 2011), and is based on the 242 

effect of introgression between non-sister taxa on gene tree frequencies.  243 

The statistic counts the occurrence of two configurations of shared derived alleles across three 244 

species and an outgroup. Assuming the species tree (((P1,P2),P3)O), and denoting the ancestral 245 

allele as "A" and the derived allele as "B," there are two phylogenetically informative patterns of 246 

discordant sites. The pattern “ABBA” represents sites where P2 and P3 share a derived allele, 247 

while P1 and the outgroup have the ancestral allele. The pattern “BABA” represents sites where 248 

P1 and P3 share a derived allele, to the exclusion of P2 and the outgroup (Figure 3). For clarity, 249 

note that sites supporting the species topology would have the pattern BBAA; however, these are 250 

not used in this statistic. 251 

The D statistic assumes an infinite sites model, meaning that the two discordant site patterns can 252 

only arise via single mutations on the internal branches of discordant gene trees (Figure 3, blue 253 

dots/branches). Under this assumption, the frequencies of ABBA and BABA site patterns are 254 

expected to reflect the frequencies of underlying gene trees.  If the number of ABBA and BABA 255 

sites differ significantly, then an asymmetry in gene tree topologies is inferred, with 256 

introgression occurring between the species sharing the derived state more frequently. Figure 3 257 

depicts the scenario when the site pattern ABBA is more common, implying introgression 258 

between P2 and P3.  259 

To make it comparable across studies, the value of the D statistic is typically reported after 260 

normalization using the sum of ABBA and BABA pattern counts, giving the following formula: 261 

𝐷 =  
𝐴𝐵𝐵𝐴 − 𝐵𝐴𝐵𝐴

𝐴𝐵𝐵𝐴 + 𝐵𝐴𝐵𝐴
 262 

where ABBA and BABA represent the number of sites of each type. This statistic has an 263 

expected value of D = 0 if there is no gene flow. When used as a whole-genome test of 264 

introgression between non-sister taxa, the D-statistic is robust under many different scenarios 265 

(Zheng and Janke 2018, Kong and Kubatko 2021), but can be affected by certain forms of 266 

ancestral population structure (Slatkin and Pollack 2008, Durand et al. 2011, Lohse and Frantz 267 

2014) (see section entitled "Distinguishing introgression from ancestral population structure" 268 

for more discussion of this issue).  269 

Despite the widespread popularity and relative robustness of D, there are several important 270 

considerations and limitations to its use, some of which are often overlooked. The first of these 271 

concerns how to properly test the null hypothesis that D = 0. The expected site pattern counts of 272 

the D-statistic can easily be calculated, so it may be tempting to use a parametric test for 273 

differences. However, such tests assume that individual observations represent independent 274 

samples: this assumption is violated because closely spaced sites often share the same underlying 275 

local genealogy, making them non-independent. The pseudoreplication that results from treating 276 

all sites independently leads to inaccurate p-values. The solution to this issue is to use a block-277 

bootstrap (or block-jackknife) approach to estimate the sample variance and then to calculate the 278 

p-value (Green et al. 2010). This approach correctly accounts for correlations within blocks of 279 

adjacent sites.  280 
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Although formulated as a single genome-wide test, there are cases where the D-statistic has been 281 

applied to look for introgression in smaller genomic windows (e.g. Kronforst et al. 2013, Zhang 282 

et al. 2016, Wu et al. 2018b, Grau-Bové et al. 2020). However, the genome-wide expectation 283 

under ILS alone that D = 0 does not hold true for smaller genomic windows. Since a single non-284 

recombining locus contains a single genealogy by definition, it is only capable of generating one 285 

phylogenetically informative biallelic site pattern (again assuming an infinite sites mutation 286 

model). The consequence is that the value of D at a single locus can only be +1, 0, or -1, 287 

depending on the local genealogy (i.e. only ABBA, BBAA, or BABA). Therefore, even in ILS-288 

only scenarios, there will be regions of the genome with extreme values of D, either positive or 289 

negative. This situation is more likely to occur in regions of low recombination, as in these 290 

regions even large genomic windows may only contain a small number of independent 291 

genealogies. Highlighting this problem, Martin et al. (2015) found that the variance of D is 292 

inflated in regions of low recombination, resulting in an excess of false positives if tests were to 293 

be performed on a per-window basis. Similar caution is warranted when applying D to 294 

inversions, as the entire inversion can act as a single locus (cf. Fuller et al. 2018). For these 295 

reasons, while it may be informative to plot the value of the D statistic along chromosomes, tests 296 

using D should be applied only to whole genomes, or at least to genomic regions that are 297 

sufficiently large to guarantee sampling a large number of underlying genealogies.  298 

Finally, the D-statistic does not provide any information about introgression other than its 299 

presence or absence. While its value does increase with the rate of introgression, it is not a good 300 

estimator of this quantity, tending to greatly overestimate the true value (Martin et al. 2015, 301 

Hamlin et al. 2020). In addition, the sign of D is sometimes interpreted as providing information 302 

on the direction of introgression, though it can only identify which taxa are involved, and not the 303 

donor and recipient populations. For example, a significant D statistic implying introgression 304 

between P2 and P3 could involve the P3 → P2 direction, the P2 → P3 direction, or some 305 

combination of the two. Overall, the D statistic is a very reliable genome-wide test for 306 

introgression, but alternative methods are needed to infer more details about any detected 307 

introgression events. 308 

Inferring the rate and direction of introgression using derived allele counts  309 

Many researchers are interested not only in the presence or absence of introgression, but in 310 

quantifying its magnitude. Methods for inferring introgression can often be used to estimate its 311 

“rate,” which can generally be taken to mean one of two things. In the context of phylogenomic 312 

approaches and phylogenetic networks, the rate refers to the proportion of the genome that 313 

originates from a history of introgression. This is also sometimes referred to as the “inheritance 314 

probability” or “admixture proportion.” Alternatively, in the isolation-with-migration (IM) 315 

framework, the rate refers to the movement of migrant individuals over continuous time 316 

(Wakeley and Hey 1998, Nielsen and Wakeley 2001). In this and following sections, we will 317 

take the “rate” to have the former definition.   318 

The degree of asymmetry in discordant gene tree topologies contains information about the 319 

proportion of introgressed loci across the genome. However, simply using the D statistic does not 320 

provide an unbiased estimation of the rate (Martin et al. 2015, Hamlin et al. 2020). A recently 321 
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proposed extension of D called Dp makes one simple addition that improves the estimate of the 322 

proportion of introgressed loci. The statistic adds the counts of BBAA sites to the denominator to 323 

form:  324 

𝐷𝑝 = |
𝐴𝐵𝐵𝐴 − 𝐵𝐴𝐵𝐴

𝐵𝐵𝐴𝐴 + 𝐴𝐵𝐵𝐴 + 𝐵𝐴𝐵𝐴
| 325 

Taking the degree of asymmetry as a fraction of the total number of phylogenetically informative 326 

biallelic sites brings Dp conceptually closer to estimating a genome-wide introgression 327 

proportion. The statistic tends to slightly underestimate the true rate of introgression—and its 328 

accuracy is affected by the direction of introgression—but it scales linearly with the rate of 329 

introgression and has better precision for lower true amounts of introgression (Hamlin et al. 330 

2020).  331 

In an alternative approach, the observed value of an introgression test statistic is compared to the 332 

value that would be expected under a scenario where the entire genome was introgressed. The 333 

F4-ratio or α statistic (Green et al. 2010, Patterson et al. 2012, Peter 2016) makes this comparison 334 

by taking the ratio of two F4 statistics (a genome-wide test for introgression based on allele 335 

frequencies). The α statistic requires data from five samples and assumes an admixed population 336 

with two parent populations. HyDe (Blischak et al. 2018, Kubatko and Chifman 2019) estimates 337 

the rate in a similar way under a hybrid speciation scenario using linear combinations of derived 338 

site patterns. The assumptions of these methods are somewhat restrictive and are likely not 339 

reflective of the majority of introgression in nature (Schumer et al. 2014). However, HyDe gives 340 

highly accurate estimates of the rate of introgression when its assumptions about hybridization 341 

are met, and still provides reasonable estimates for the rate when these assumptions are violated 342 

(Kong and Kubatko 2021).  343 

The fd statistic of Martin et al. (2015) also takes the ratio of two D-statistics. However, by 344 

making the assumption that allele frequencies would be completely homogenized in a complete 345 

introgression scenario, fd can be applied to quartets rather than requiring an additional sample. 346 

Like Dp, fd is sensitive to the direction of introgression because it estimates the proportion of the 347 

genome that came from the donor population during introgression. The fd statistic somewhat 348 

overcomes this issue by assuming that the population with the higher derived allele frequency is 349 

the donor at each site. Nonetheless, fd tends to underestimate the proportion of introgressed loci 350 

when P2 is the donor population. 351 

Unless additional assumptions are made, there is not enough information contained in the 352 

frequency of gene tree topologies (i.e. site pattern counts) alone to estimate the direction of 353 

introgression in a quartet or rooted triplet. However, if a sample is obtained from a fifth species 354 

(Eaton and Ree 2013, Pease and Hahn 2015) or if polymorphism data is available for the quartet 355 

(Martin and Amos 2020), then it is possible to infer the direction of introgression. The 356 

“partitioned D-statistics” of Eaton and Ree (2013) were the first attempt to infer the direction of 357 

introgression in a five-taxon phylogeny. Unfortunately, redundant site pattern counts make the 358 

results of this directionality test uninterpretable. The DFOIL method of Pease and Hahn (2015) 359 

resolves this problem by setting up a system of four D statistics, explicitly testing each of the 16 360 
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possible introgression events and directions. DFOIL assumes that the 5-taxon phylogeny is 361 

symmetric, with two pairs of sister species. In this particular configuration of species it becomes 362 

possible to polarize introgression events because the direction of introgression affects 363 

relationships between the donor and both the recipient species and its sister taxon. Unfortunately, 364 

DFOIL does not work if the species tree is an asymmetric, or "caterpillar," tree. 365 

Martin and Amos (2020) showed that information about the rate, direction, and timing of 366 

introgression in a quartet becomes available using site patterns if multiple individuals are 367 

sampled per lineage. Their approach, called the “D frequency spectrum” or DFS for short, 368 

estimates the D statistic in each bin of the joint derived allele frequency spectrum constructed for 369 

the two sister taxa in a quartet. The shape of the DFS is expected to be affected by the direction of 370 

introgression. If one of the sister taxa is the recipient, then the spectrum is left-skewed, as the 371 

signal of introgression will be enriched among low-frequency alleles. In contrast, if a sister 372 

lineage is the donor and the non-sister lineage is the recipient, the spectrum is expected to be flat, 373 

because the frequency spectrum of the non-sister lineage is not used to construct the DFS. The 374 

degree of left-skewness is affected by the timing of introgression, while the rate of introgression 375 

affects the magnitude of the D-statistic across bins. The shape of the DFS is also affected by 376 

demographic history and changes under more complex introgression scenarios, so it will 377 

typically be necessary to perform simulations to explicitly test different introgression scenarios 378 

with this approach (Martin and Amos 2020).  379 

Inferring introgression events from reconstructed gene trees 380 

While methods based on site patterns and allele frequencies can be powerful, there are also 381 

fundamental limitations to the kinds of data they can be applied to. First, as mentioned earlier, a 382 

key assumption of the D statistic is an infinite sites model of mutation. When applied to closely 383 

related, extant species, this assumption is likely to hold. However, with increasing divergence it 384 

becomes more likely that ABBA and BABA site patterns can accumulate due to convergent 385 

substitutions. For this reason, site patterns are generally not a reliable way to test for 386 

introgression between more distantly related extant species, or along branches deeper in a species 387 

tree. Second, as the number of sampled species increases, the number of possible trees and 388 

quartets increases super-exponentially (Felsenstein 2004). This makes it impractical to apply 389 

quartet-based methods to trees with many taxa.  390 

A solution to these problems is to estimate gene tree topologies directly, as many different 391 

methods can be used to accurately infer the topology at a locus. Once gene trees have been 392 

reconstructed from a large number of loci, the counts of discordant topologies can be used in 393 

much the same way as ABBA and BABA sites are in the D test. In fact, Huson et al. (2005) 394 

proposed such a test, using a statistic they called ∆. Significance in genome-scale datasets can be 395 

evaluated by bootstrap-sampling the estimated gene trees (Vanderpool et al. 2020) or by 396 

assuming a 2 distribution (Suvorov et al. 2021), with ∆ = 0 again representing the null 397 

hypothesis under ILS alone.  While ∆ has greater potential to be affected by sources of technical 398 

error such as systematic bias in gene tree inference—and may have limited power to detect very 399 

ancient introgression—it has the advantage of being more robust to the infinite-sites assumption 400 

and allows for testing of introgression along deep, internal branches of a phylogeny. Therefore, ∆ 401 
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represents a straightforward way to test for introgression using a small number of additional 402 

assumptions. 403 

Estimated gene trees can also be used as input to phylogenetic network methods. These methods 404 

construct a likelihood or pseudolikelihood function that is explicitly derived from a phylogenetic 405 

network model, for which parameters can then be estimated using either maximum-likelihood or 406 

Bayesian approaches. Phylogenetic network methods can handle several different data types 407 

(which will be discussed in subsequent sections), but some of them can make inferences using 408 

only gene tree topologies as input. PhyloNet (Than et al. 2008, Wen et al. 2018) infers networks 409 

directly from gene tree topologies using either maximum likelihood or maximum pseudo-410 

likelihood. Similarly, SNaQ (Solis-Lemus & Ane 2016) estimates a network with reticulation 411 

edges via maximum pseudo-likelihood using quartet concordance factors (Baum 2007)—412 

essentially just the counts of the three possible unrooted tree topologies. The principles outlined 413 

in previous sections apply equally well to these methods, showing how phylogenetic network 414 

approaches can detect, polarize, and estimate the rate of introgression events in a tree with a 415 

minimum of five taxa. Additionally, they can be applied to species trees with many more than 416 

five taxa, making use of all available information available. We will discuss phylogenetic 417 

network methods in more detail later, in the section entitled “Application and interpretation of 418 

methods for inferring introgression”.  419 

Detecting introgression using coalescence times 420 

While much can be learned about introgression from the frequency of gene tree topologies alone, 421 

including additional information about the distribution of coalescence times can lead to much 422 

richer inferences. Some advantages of including coalescence times include more flexibility in 423 

inferring introgression between non-sister species, detection of introgression between sister taxa, 424 

and distinguishing introgression from ancestral population structure. In the following sections we 425 

expand on the expected effects of introgression on coalescence times and branch lengths, 426 

followed by a description of how this information is used in concert with gene tree frequencies to 427 

make inferences about introgression.  428 

Detecting introgression using signals of pairwise divergence  429 

Just as was the case for gene tree topologies, it is possible to make inferences about introgression 430 

by studying violations of expected patterns of pairwise coalescence times under an ILS-only 431 

model. As previously mentioned, one of these expected patterns is a symmetry in coalescence 432 

times between the two pairs of non-sister taxa in a quartet (Figure 1, bottom). If one pair of non-433 

sister taxa has more recent coalescence times on average than the other, post-speciation 434 

introgression between that pair is a likely explanation. Coalescence times can be approximated 435 

using simple measures of pairwise sequence divergence, assuming an infinite sites model (or at 436 

least that genetic distance is proportional to coalescence time). Therefore, one of the simplest 437 

ways to test for introgression is to test for an asymmetry in pairwise sequence divergence. This 438 

logic has been informally applied to test for introgression (Brandvain et al. 2014) and has 439 

recently been formalized in several test statistics including D3 (Hahn and Hibbins 2019) and the 440 
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branch-length test (Suvorov et al 2021). D3 is straightforward, and has the following definition 441 

(changed from the original to be consistent with the notation used here):  442 

𝐷3  =  
𝑑𝑃2𝑃3 – 𝑑𝑃1𝑃3

𝑑𝑃2𝑃3  +  𝑑𝑃1𝑃3
 443 

Where d denotes the genetic distance between the specified populations. This statistic takes the 444 

same general form as the D-statistic, where the relevant difference in the numerator is 445 

normalized by the sum of the two values in the denominator. Like the D-statistic, significance of 446 

D3 can be evaluated using a block-bootstrap. A major advantage of D3 over site-pattern based 447 

tests is that it does not require data from an outgroup—it only needs one sample from three 448 

ingroup species. As with D, D3 can only detect introgression between non-sister lineages. 449 

Characterizing introgression using reconstructed gene trees with branch lengths 450 

Using pairwise divergences between only non-sister taxa ignores information about the full 451 

distribution of coalescence times within different gene tree topologies. More information is 452 

contained within these branch lengths, allowing for estimation of the timing and direction of 453 

introgression in a quartet. Because introgressing taxa can coalesce via either introgression 454 

(Figure 4A, blue) or speciation (Figure 4A, red) depending on the history at a locus, a bimodal 455 

distribution arises when coalescence times are measured across loci (Figure 4A). This 456 

distribution is not expected under ILS alone, and can therefore be used to test for introgression. 457 

In addition, the more recent peak provides information about the timing of introgression, while 458 

the frequency of gene trees under this peak compared to the older peak provides information on 459 

the rate of introgression.  460 

This approach to characterizing introgression is implemented in the software QuIBL 461 

(Quantifying Introgression via Branch Lengths) (Edelman et al. 2019). QuIBL takes gene trees 462 

with inferred branch lengths as input, using maximum-likelihood to infer whether one 463 

distribution (ILS-only) or two distributions (ILS + introgression) is a better fit. If two 464 

distributions is a better fit, then introgression between non-sister species is inferred. QuIBL may 465 

also be able to infer the timing and rate of introgression using information contained within these 466 

distributions.  467 

The direction of introgression uniquely affects the coalescence times of the non-sister pair of 468 

species uninvolved in introgression (Figure 2C, Figure 4B). For example, the direction of 469 

introgression between P2 and P3 has predictable effects on the coalescence time between P1 and 470 

P3. When introgression occurs from P3 into P2 (Figure 4B, left), P2 traces its ancestry through 471 

the P3 lineage at introgressed loci (note that while the direction of introgression is typically 472 

described forward in time, the coalescent process occurs backwards in time). Because of this, 473 

divergence between P1 and P3 is unchanged by introgression in this direction. By contrast, when 474 

introgression is from P2 into P3 (Figure 4B, right), P3 traces its ancestry through the P2 lineage 475 

at introgressed loci. This allows P3 to coalesce with P1 earlier than it normally would, which 476 

decreases the divergence between P1 and P3.  477 
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These genealogical processes lead to general predictions that can be used to infer the primary 478 

direction of introgression between taxa. Gene trees that are concordant with the species tree can 479 

be used as a baseline for the expected amount of P1-P3 divergence; although these trees can 480 

arise from ILS at introgressed loci, the effect of the direction will not be manifest since they are 481 

concordant. By comparing this baseline divergence to the amount of P1-P3 divergence in gene 482 

trees consistent with a history of introgression, the direction of introgression can be inferred. 483 

Lower P1-P3 divergence in the latter class of trees provides evidence for P2 → P3 introgression, 484 

but does not necessarily rule out the other direction (i.e. there could simply be less gene flow in 485 

the other direction). Alternatively, if P1-P3 divergence is the same in both topologies, then 486 

introgression is primarily P3 → P2. This logic to polarizing introgression is used by the D2 487 

statistic (Hibbins and Hahn 2019) and the DIP method (Forsythe et al. 2020).  488 

Finally, PhyloNet (Than et al. 2008, Wen et al. 2018) is able to infer phylogenetic networks with 489 

reticulation edges (i.e. discrete introgression events) from gene trees with branch lengths using 490 

maximum likelihood. Based on the previously discussed patterns, this method should be capable 491 

of accurately estimating the presence, timing, direction, and rate of introgression by making use 492 

of all available information on the distribution of coalescence times. It can also estimate multiple 493 

independent events on the same species tree, and on trees with more than five taxa. As we 494 

discuss in a following section, it is also capable of detecting the signals of introgression between 495 

sister species.  496 

Distinguishing introgression from ancestral population structure  497 

In addition to being generated by introgression, asymmetric gene tree topology frequencies can 498 

arise from certain kinds of ancestral population structure (Slatkin and Pollack 2008, Durand et al. 499 

2011, Lohse and Frantz 2014). The scenario that generates asymmetries imagines that the 500 

population ancestral to all three species is split into at least two subpopulations, such that the 501 

ancestors of P3 are more closely related to either the ancestors of P1 or P2 (but not both) 502 

(Supplementary Figure 1A). Because the gene tree topologies in this ancestral species will be 503 

skewed toward relationships joining P3 and one of the sister lineages, this scenario can lead to a 504 

significant asymmetry in gene tree topologies even in the absence of post-speciation 505 

introgression (Durand et al. 2011). This will also result in a slight asymmetry of genome-wide 506 

pairwise divergence times, since the more common discordant tree will contribute more to the 507 

average value. All of this means that ancestral structure can result in false positives when testing 508 

for introgression using simple patterns of asymmetry.  509 

Fortunately, while these two scenarios are indistinguishable using only gene tree topologies 510 

alone, they are distinguishable when using the distribution of branch lengths. Under ancestral 511 

population structure, divergence between the sister taxa in whichever discordant gene tree 512 

becomes more frequent will be higher than it would be under introgression. Lohse and Frantz 513 

(2014) incorporated the expected branch length differences in these two models into a 514 

maximum-likelihood framework, which was then used to confirm the signal of human-515 

Neanderthal introgression that was originally uncovered by the D-statistic.  Additionally, 516 

ancestral population structure is not expected to result in a bimodal distribution of coalescence 517 
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times. This means that methods capable of detecting two peaks of coalescence, such as QuIBL 518 

and PhyloNet, should also be robust to the effects of population structure.  519 

Detecting introgression between sister species 520 

Introgression between sister species is very difficult to detect using a single sample from each 521 

species. The classic asymmetry patterns described in previous sections do not apply in this 522 

scenario, either for gene tree topologies or coalescence times. While introgression between sister 523 

species should lead to an increased variance in coalescence times compared to an ILS-only 524 

model, this signal is easily confounded by other processes such as non-equilibrium demography 525 

or linked selection (Cruickshank and Hahn 2014; Roux et al. 2016; Sethuraman et al. 2019). 526 

These limitations have typically been addressed by combining two alternative sources of 527 

information: 1) polymorphism data for the two introgressing species, and 2) local reductions in 528 

between-species divergence relative to a genome-wide baseline.  529 

Most available methods for inferring introgression between sister taxa are not phylogenomic in 530 

multiple senses: they typically require polymorphism data, they often identify locally 531 

introgressed regions rather than genome-wide signals, and they do not explicitly test against an 532 

ILS-only case. Genome scans using summary statistics such as FST  (Wright 1949) and dxy (Nei 533 

and Li 1979) are common, though relative measures of divergence such as FST are confounded 534 

by natural selection when used for this task (Charlesworth 1998, Noor and Bennett 2009, 535 

Nachman and Payseur 2012, Cruickshank and Hahn 2014). There are multiple statistics based on 536 

minimum pairwise distances between multiple haplotypes in two species that avoid problems 537 

caused by selection (Joly et al. 2009, Geneva et al. 2015, Rosenzweig et al. 2016), and new 538 

machine learning methods combine multiple summary statistics into a single comparative 539 

framework that is powerful and robust (e.g. Schrider et al. 2018). However, these methods also 540 

usually require coalescent simulation under known demographic history to evaluate patterns of 541 

introgression, and this information is not always available.  542 

None of the aforementioned limitations mean that genome-wide tests with one sample per 543 

species are not possible. Introgression between sister taxa—at least when it occurs in relatively 544 

discrete pulses—should result in the same multimodal distribution of coalescence times 545 

described above for non-sister taxa. This may be the most promising avenue for a genome-wide 546 

test of sister introgression when only one sample per species is available, since coalescence times 547 

for two species should follow an exponential distribution under ILS alone. Nevertheless, no 548 

methods have been developed to date that explicitly test for this pattern (QuIBL can only infer it 549 

for non-sister taxa). However, PhyloNet appears to be capable of reliably inferring introgression 550 

(including estimating the timing and rate) between sister taxa using gene trees with branch 551 

lengths using this signal (Wen and Nakhleh 2018), at least when nested within a tree containing 552 

more taxa. Despite this, the direction of introgression between sister taxa may not be inferable 553 

from only one sample per species.  554 

Finally, while introgression between extant sister species is not detectable using gene tree 555 

frequencies, this may not necessarily be the case for introgression between ancestral sister 556 

lineages. Several studies have now shown that when introgression occurs between P3 and the 557 



 16 

ancestor of P1 and P2 (event 2 in Figure 2), it becomes possible under specific conditions for 558 

both discordant gene tree topologies to become more common than the species tree topology, 559 

while remaining at equal frequencies (Solís-Lemus et al. 2016, Long and Kubatko 2018, Jiao and 560 

Yang 2020). It should be possible in principle to infer introgression using this pattern, but it 561 

requires sufficiently high rates of introgression to result in the anomalous trees, in addition to 562 

independent knowledge of the species tree topology.  563 

Application and interpretation of methods for inferring introgression 564 

Evaluating the power to detect and characterize introgression  565 

To illuminate many of the patterns and approaches discussed in this review, we conducted a 566 

small simulation study using ms (Hudson 2002) and Seq-Gen (Rambaut and Grassly 1997). We 567 

used the five introgression scenarios shown in Figure 2, as well as one scenario with only ILS 568 

and several additional scenarios involving ghost introgression (Supplementary Figure 2). For 569 

each set of conditions, we performed 100 replicate simulations each consisting of 3000 gene 570 

trees with branch lengths. We simulated 1kb per locus using Seq-Gen with θ = 0.005 per 2N 571 

generations. We evaluated the performance of three different test statistics designed to capture 572 

slightly different information about introgression: D, D3, and ∆. In addition, we applied the 573 

InferNetwork_ML method (Yu et al. 2014) in PhyloNet, which infers a phylogenetic network 574 

using maximum-likelihood. For the three test statistics, we evaluated significance by bootstrap-575 

resampling the gene trees in each dataset to estimate the sampling variance. The z-score obtained 576 

from bootstrap-resampling was used to estimate a two-tailed p-value. The method we use in 577 

PhyloNet evaluates the fit of a phylogenetic network internally (Yu et al. 2012) using a 578 

combination of the model selection measures AIC (Akaike 1974), AICc (Burnham and Anderson 579 

2002), and BIC (Schwarz 1978). For our purposes, a positive result was taken as any result 580 

where PhyloNet selected a network over a strictly bifurcating tree. See Supplementary Table 1 581 

for the simulation parameters used for each condition.  582 

The power of each method to detect introgression under each scenario is shown in Figure 6. All 583 

four methods yielded low false positive rates in the presence of high ILS but no introgression, 584 

confirming that they are effective tests against an ILS-only null hypothesis. For non-sister taxa, 585 

PhyloNet was always capable of identifying introgression, while the power of the other methods 586 

was strongly affected by the direction of introgression. A reduction of power for P1 → P3 587 

introgression is consistent with the effect of direction on gene tree branch lengths described 588 

above, but the magnitude of the reduction is somewhat surprising: there is almost three times as 589 

much power to detect P3 → P1 introgression. Of the four methods, only PhyloNet appears 590 

capable of reliably inferring introgression between sister lineages, again consistent with 591 

expectations. 592 

The D and ∆ statistics, as well as PhyloNet, did not give significant results when introgression 593 

occurred between P1 and an unsampled ingroup lineage. The D3 statistic, interestingly, does 594 

appear to be sensitive to this scenario, at least when the ghost population is the donor. This 595 

suggests that patterns of pairwise divergence may be especially useful for detecting introgression 596 

with unsampled populations. When introgression occurs between P1 and an outgroup ghost 597 
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lineage, there is no effect when the ghost is the recipient, while all four methods are strongly 598 

affected when the ghost is the donor. These observations are consistent with expectations for 599 

ghost populations, highlighting the importance of careful interpretation of the potential taxa 600 

involved in a positive result. In this case, all methods appear to suggest introgression between P2 601 

and P3, even though neither of these lineages was involved in the introgression. This occurs 602 

because introgression from outside the rooted triple draws P1 to the outside as well, leaving P3 603 

more closely related to P2.  604 

In addition to testing for the presence of introgression, we evaluated the ability of PhyloNet to 605 

infer the direction of introgression, and of several methods to infer the rate of introgression. We 606 

evaluated the ability of PhyloNet to correctly identify the taxa involved, the donor and recipient 607 

lineages, and the rate of introgression. For the two conditions involving introgression between 608 

non-sister taxa, we additionally estimated the rate of introgression using the Dp statistic and an 609 

analogous version of the ∆ statistic where the count of the concordant tree topology was added to 610 

the denominator; we refer to this statistic as ∆p. 611 

We found that PhyloNet was highly accurate at identifying the taxa and direction for P1 → P3 612 

introgression (Supplementary Figure 3). However, somewhat surprisingly, it often failed to 613 

identify the taxa involved when introgression was P3 → P1 (although it always correctly 614 

identified that introgression had occurred somewhere). While it is more difficult to detect 615 

introgression in the P1 → P3 direction, once it is detected it appears that the additional signal in 616 

gene tree branch lengths makes it easier for PhyloNet to infer the direction. For sister lineages, 617 

PhyloNet always correctly identified the taxa, but cannot accurately infer the direction. However, 618 

PhyloNet must always specify the direction of introgression (see below for more explanation), 619 

and its behavior differs between scenarios. For introgression between extant sister species, the 620 

direction of introgression appears to be assigned randomly, while for ancestral sister species 621 

introgression is always inferred to be in one direction. For the rate of introgression, PhyloNet 622 

appears to slightly overestimate the true rate under all scenarios in which it correctly identified 623 

introgression (Supplementary Figure 4). By contrast, Dp and ∆p tend to slightly underestimate the 624 

rate of introgression between non-sister taxa (Supplementary Figure 4).  625 

Inferring the number of introgression events  626 

A major challenge that remains in the inference of introgression is how to assess the fit of 627 

different numbers of introgression events inferred on the same tree. The mostly widely used 628 

methods are formulated to test for the presence of introgression versus no introgression, but 629 

provide no rigorous way to evaluate the number of distinct introgression events. One approach is 630 

to perform many quartet-based tests, and then to infer the most parsimonious set of introgression 631 

events by collapsing sets of positive tests that share the same ancestral populations (Pease et al. 632 

2016, Suvorov et al. 2021). However, this approach is highly conservative, as it can collapse 633 

cases where there truly are multiple instances of post-speciation introgression within a clade. 634 

Additionally, it requires large datasets and the piecing together of many quartets, which makes it 635 

impractical in many cases. Nonetheless, it can be used to generate a conservative estimate for the 636 

minimum number of introgression events.  637 
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Even with likelihood methods, estimating the number of introgression events is not a solved 638 

problem. One issue is that adding additional parameters to the likelihood model always improves 639 

the likelihood score. This makes it necessary to penalize model complexity when comparing 640 

estimated likelihoods. Unfortunately, the information measures that are classically used to 641 

perform model selection, such as AIC and BIC, do not adequately scale with the increased 642 

complexity of adding a new reticulation to a phylogenetic network. This is because adding a new 643 

reticulation does not just add a new model parameter—it adds a whole new space of possible 644 

networks, with different taxa involved in introgression, at different times and in different 645 

directions (Blair and Ané 2020). AIC and BIC penalize the increased complexity of model 646 

parameters, but not the increased complexity of models within a set of parameters. The problem 647 

is greater for methods based on pseudo-likelihood such as SNaQ, because these information 648 

measures are not intended for pseudo-likelihood estimates. Bayesian approaches such as those 649 

implemented in PhyloNet (Wen and Nakhleh 2018) and SpeciesNetwork can incorporate 650 

appropriate penalties for model complexity, but unfortunately scale poorly to larger datasets and 651 

larger numbers of reticulations (Elworth et al. 2019). 652 

While no methods currently exist that can both explicitly penalize model complexity and scale to 653 

large datasets, there are several alternate approaches available for assessing the fit of 654 

phylogenetic networks. One simple, empirical approach is to use a slope heuristic where 655 

networks are inferred across different numbers of reticulations, and the best network is taken as 656 

the least complex one after which the likelihood score appears to stop improving. This is the 657 

method recommended for use with SNaQ (Solís-Lemus and Ané 2016). PhyloNet has methods 658 

that can evaluate the fit of a network using k-fold cross-validation or parametric bootstrapping 659 

(Yu et al. 2014), which can both address this problem. Finally, a promising approach from Cai 660 

and Ané (2020) involves using the multispecies network coalescent to calculate the quartet 661 

concordance factors expected from an estimated network. A goodness-of-fit function is then used 662 

to evaluate the fit of these expected concordance factors to those observed in the data. This is 663 

similar to the method implemented in admixturegraph (Leppälä et al. 2017) for use with D 664 

statistics (see next section). 665 

Visualizing and interpreting phylogenetic networks  666 

When visualizing inferred phylogenetic networks, reticulations represent the histories of loci that 667 

have introgressed. Visually, the relative placement, orientation, and length of these reticulations 668 

imply specific information about the timing and direction of introgression, as well as the identity 669 

of the species involved. However, not all phylogenetic networks are constructed from the same 670 

underlying models, and therefore they may not always convey the same information (Huson and 671 

Bryant, 2005). As a result, choices for network visualization that are primarily stylistic can 672 

unintentionally imply specific introgression processes. In this section we discuss these different 673 

visualizations and how to interpret them. 674 

One important distinction when visualizing networks is the contrast between introgression that 675 

occurs among extant lineages and introgression that results in the formation of a new lineage. 676 

Supplementary Figure 5A depicts the former scenario, which corresponds to the introgression 677 

scenarios considered in this paper thus far. In such cases, a single horizontal reticulation is 678 
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typically used to connect the two taxa involved. Such visualizations do not naturally convey any 679 

information about the direction of introgression. By contrast, methods that assume the formation 680 

of an admixed population (e.g., Bertorelle and Excoffier 1998, Wang 2003) or hybrid species 681 

(e.g., Meng and Kubatko 2009) often use the visualization shown in Supplementary Figure 5B, 682 

where reticulations connect each parent lineage to the newly formed lineage. This representation 683 

implies a directionality of introgression: from the two parent lineages into the newly formed 684 

lineage. In both cases, a horizontal reticulation edge is used to denote the instantaneous exchange 685 

of alleles between the involved lineages. Supplementary Figure 5C shows an example using non-686 

horizontal branches, which may imply a period of branching off and independent evolution from 687 

the parent species before the hybrid lineage is formed (e.g., Patterson et al 2012, Yu et al. 2014, 688 

Zhang et al. 2018). Alternatively, this could represent "standard" introgression involving a now-689 

extinct species, in which case the extinct lineage was the donor in the introgression scenario. In 690 

all three cases, the placement of the reticulation edge conveys information about the timing of 691 

introgression and/or lineage formation.  692 

The key take-away from this last representation is that non-horizontal reticulation edges often 693 

imply directionality, with the introgressed alleles travelling toward the tips. Unfortunately, many 694 

automated methods for visualizing species networks do not allow strictly horizontal edges—695 

instead, all reticulations must have a bifurcating "parent" node that occurs closer to the root than 696 

the "daughter" node, which has two incoming lineages. This was the behavior observed in 697 

PhyloNet in the previous section. To highlight how different network visualizations can 698 

potentially be (mis-)interpreted, with particular emphasis on the direction of introgression, we 699 

plotted the same inferred networks using four popular tools (Figure 5): Dendroscope (Huson and 700 

Scornavacca 2012), IcyTree (Vaughan 2017), PhyloPlots, which is part of the Julia package 701 

PhyloNetworks (Solís-Lemus et al. 2017), and admixturegraph (Leppälä et al. 2017). The 702 

networks were inferred using PhyloNet on simulated gene trees from the two non-sister 703 

introgression scenarios (i.e. both P1 → P3 and P3 → P1) discussed in the previous section. For 704 

admixturegraph, we simply plotted the outcome of applying the D-statistic to the data under both 705 

scenarios.  706 

In Dendroscope’s visualizations (Figure 5A, 5B), the position of the hybrid node (the node with 707 

two parents) is made clear, but it is not clear which parent corresponds to a history of 708 

introgression vs. the species tree history, since both are represented using a curved blue line (and 709 

therefore both resemble reticulation edges). As a result, the direction of introgression confounds 710 

accurate representation of the underlying introgression scenario. For the P3 → P1 direction 711 

(Figure 5A), the visualization strongly implies that P1 is a hybrid species that formed from 712 

hybridization between P2 and P3. While this representation accurately conveys the fact that P1 713 

is the recipient of introgressed alleles, it unfortunately suggests that P2 was involved in 714 

hybridization when it was not. The P1 → P3 visualization (Figure 5B) is easier to interpret, 715 

because one of the blue edges cannot possibly represent an introgression history. Additionally, 716 

the curvature of the blue edges suggests a non-horizontal reticulation, which may imply a period 717 

of independent evolution. However, in this case it is purely stylistic as the network does not 718 

contain any branch lengths. Finally, it is important to note that all the visualizations we discuss 719 

do not take branch lengths into account, so the placement of the reticulation edges within 720 
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branches of the species tree are arbitrary and do not convey information about the timing of 721 

introgression. IcyTree and PhyloPlots are capable of plotting networks with branch lengths, in 722 

which case the timing of introgression within lineages can be displayed. Since our primary 723 

concern is with the direction of introgression, we have not shown these visualizations.  724 

IcyTree uses a different style of visualization (Figure 5C, D). A dashed line represents the 725 

reticulation edge, which branches off from the donor population and enters the recipient 726 

population. This allows the introgression and species tree histories to be more visually distinct, 727 

while still depicting the direction of introgression. However, it implies that a lineage branched 728 

off from the donor and underwent a period of independent evolution before entering the 729 

recipient, which did not happen in either case. As the network is plotted without branch lengths, 730 

the point at which the reticulation leaves the donor branch is arbitrary. PhyloPlots (Figure 5E, F) 731 

visually distinguishes the reticulation edge (light blue) from the species tree history (black) while 732 

explicitly labelling the hybrid node. The reticulation edge is not horizontal, erroneously implying 733 

some period of independent evolution, though it does effectively convey the direction of 734 

introgression. The distinct coloration of each history, in combination with labelling of the hybrid 735 

node, means that the direction of introgression can be easily visualized. Finally, admixturegraph 736 

(Figure 5G, 5H) plots the network solely from the results of a series of D tests. This means that 737 

no inference of directionality is possible. As with Dendroscope, this method plots phylogenetic 738 

networks as admixture graphs, which have the same issues with implied directionality and hybrid 739 

speciation. In our case, this results in P1 being the implied recipient of introgression regardless 740 

of the true direction.  741 

The message we hope to convey from this discussion is that it is very difficult to simultaneously 742 

visualize the direction of introgression and to preserve the underlying model of hybridization. 743 

This is especially challenging for cases when network visualization needs to be automated, 744 

because the standard computational representation of phylogenetic networks, the Extended 745 

Newick format (Cardona et al. 2008), requires labeling of parent and daughter nodes, and 746 

therefore implies directionality any time a hybrid node is inferred. “Tube tree” representations 747 

like the ones we use for figures in this paper (e.g. Figure 4) can be effective for individual cases, 748 

but to our knowledge no automated approaches exist as of yet that can accurately convey all the 749 

necessary information. In general, care should be taken not to over-interpret phylogenetic 750 

network visualizations.  751 

Conclusions 752 

In conclusion, several methodological and technical challenges remain in the inference of 753 

introgression, including: more accurate estimation of the rate, timing, and direction of 754 

introgression; detection of introgression between sister taxa; spurious results generated by 755 

unsampled lineages; inference of the number of introgression events in a clade; and accurate 756 

automated visualization of phylogenetic networks. Despite these challenges, currently available 757 

approaches have remarkable power to detect and characterize introgression under a wide variety 758 

of conditions, especially when used in a complementary fashion. Overall, these methods will 759 

continue to reveal the nature and influence of introgression throughout the natural world.  760 
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 780 

Figure 1: Expected gene tree topologies and coalescence times under ILS only. For a rooted 781 

triplet, four topologies are possible (top row): two concordant with the species tree, which can 782 

result either from lineage sorting or ILS (top left), and two that are discordant with the species 783 

tree and arise from ILS only (top right). The two concordant trees must be at least as frequent as 784 

the two discordant trees, which are equally frequent to each other. For non-sister pairs of taxa—785 

either P2-P3 (bottom left) or P1-P3 (bottom right)—coalescence is expected to occur at one of 786 

two times, depending on whether they coalesce first or second in a gene tree (grey dotted lines). 787 

These expected times are symmetrical across gene trees, and so pairwise divergences between 788 

the non-sister lineages are expected to be equal when averaged across loci.  789 

 790 
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 802 

Figure 2: An overview of detectable introgression scenarios for a rooted triplet, and their effects 803 

on gene tree frequencies and branch lengths. A. The species tree relating three lineages. 804 

Introgression can occur between extant (1) or ancestral (2) sister lineages, or between non-sister 805 

taxa, with P3 as either the recipient (3) or the donor (4). One of the sampled taxa may also be the 806 

recipient of introgression from an unsampled taxon (5). B. Gene trees for introgression between 807 

sister lineages. Introgression between sister taxa reduces divergence between the involved taxa 808 

but does not generate discordant gene trees (events 1 and 2). In both trees the expected time to 809 

coalescence for pairs of lineages in the absence of introgression is denoted with dashed 810 

horizontal lines. C. Gene trees for introgression between non-sister lineages. When P3 is the 811 

recipient of introgression (event 3), discordant gene trees are generated uniting P2 and P3. In 812 

addition, divergence is reduced between both P2 and P3 and between P1 and P3. When P3 is the 813 

donor of introgression (event 4) discordant gene trees are again generated uniting P2 and P3. In 814 

this case divergence is reduced only between P2 and P3, while divergence is increased between 815 

P1 and P2. In both trees the expected time to coalescence for pairs of lineages in the absence of 816 

introgression is denoted with dashed horizontal lines. No example gene tree is shown for 817 

introgression from a ghost lineage outside the triplet (event 5). The expectation is that these 818 

events will generate topologies with P2 pulled outside the clade, sister to the two unintrogressed 819 

lineages. 820 
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 824 

 825 

Figure 3: Biallelic site patterns are informative of underlying gene tree topologies. With the 826 

exception of low levels of homoplasy, such patterns can only arise from mutations (blue) on 827 

internal branches of the local genealogy. The occurrence of the incongruent site patterns 828 

“ABBA” (top middle) and “BABA” (top right) are therefore expected to reflect the frequency of 829 

discordant gene tree topologies. With introgression between a specific non-sister species pair, 830 

one incongruent pattern (bottom) can increase in frequency over the other due to the underlying 831 

asymmetry in gene tree frequencies.  832 
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 837 

Figure 4: Coalescence times provide information on the timing, direction, and presence of 838 

introgression. A) Post-speciation introgression between P2 and P3 allows them to coalesce more 839 

quickly at introgressed loci (blue). This reduces their whole-genome divergence relative to P1 840 

and P3, an asymmetry that can be used to test for introgression. Since coalescence can now occur 841 

at one of two times, after introgression (blue) or after speciation (red), it also results in a bimodal 842 

distribution of coalescence times across loci (right figure). The more recent peak of this 843 

distribution can be used to estimate the timing of introgression. B) The direction of introgression 844 

between P2 and P3 affects the time to coalesce of P1 and P3 at introgressed loci. P2 → P3 845 

introgression allows P1 and P3 to coalesce more quickly (right), reducing their divergence at 846 

introgressed loci.  847 

 848 
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 849 

Figure 5: Different visualizations of the same underlying phylogenetic networks. The left 850 

column comes from a network representing P3 → P1 introgression, while the right column 851 

comes from a network representing P1 → P3 introgression. The rows, from top to bottom, show 852 

visualizations from Dendroscope (A, B), IcyTree (C, D), PhyloPlots (E, F), and admixturegraph 853 

(G, H), respectively.   854 
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 857 

 858 

 859 

Figure 6: Power (y-axis) of four different methods (color legend) to infer the presence of 860 

introgression across ten different simulation conditions (x-axis). Power is measured as the 861 

proportion of tests that are significant; for the "High ILS" condition it therefore represents the 862 

false positive rate. 863 
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 871 

Supplementary Figure 1: Distinguishing ancestral population structure (A) from introgression 872 

(B). Persistent structure in the ancestral population of a quartet, which may or may not continue 873 

after the first speciation event, can result in the same asymmetries in gene tree topologies and 874 

divergence times that are expected from introgression between non-sister taxa. These two 875 

scenarios are distinguishable by studying the distribution of branch lengths, in particular the 876 

length of the tip branch leading to P3 (red).  877 
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 889 

 890 

Supplementary Figure 2: A visual overview of the ten different conditions used in our simulation 891 

study. Branch lengths are not to scale.  892 
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 897 

Supplementary Figure 3: The power of PhyloNet to identify the taxa involved and direction of 898 

introgression across five simulation conditions. 899 
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 904 

Supplementary Figure 4: Accuracy of three methods (color legend) for estimating the rate of 905 

introgression (y-axis) across four simulation conditions (x-axis). The horizontal dashed line 906 

shows the true simulated rate of introgression.  907 
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 922 

Supplementary Figure 5: Network representations of introgression between extant lineages (A) 923 

vs. introgression that results in the formation of a new lineage (B, C).  924 
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 943 

Supplementary Table 1: Parameters used for introgression simulation conditions in ms. Split 944 

times and theta are in units of 2N generations.  945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

Condition P1/P2_split P1P2/P3_split P1P2P3/O1_split O1/O2_split intro_timing intro_rate ghostpop_split theta

P1 into P3 0.6 1.2 8 20 0.3 0.05 N/A 0.005

P3 into P1 0.6 1.2 8 20 0.3 0.05 N/A 0.005

Sister species 0.6 1.2 8 20 0.3 0.05 N/A 0.005

Ancestor into P3 0.6 1.2 8 20 0.9 0.05 N/A 0.005

P3 into ancestor 0.6 1.2 8 20 0.9 0.05 N/A 0.005

High ILS 0.6 0.62 8 20 N/A 0.05 N/A 0.005

P1 into ingroup ghost 0.6 8 20 30 0.3 0.05 1.2 0.005

Ingroup ghost into P1 0.6 8 20 30 0.3 0.05 1.2 0.005

P1 into outgroup ghost 0.6 1.2 8 30 0.3 0.05 20 0.005

Outgroup ghost into P1 0.6 1.2 8 30 0.3 0.05 20 0.005
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